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ABSTRACT
Since their initial observation, contact sites formed between different organelles have transitioned
from ignored curiosities to recognized centers for the exchange of metabolites and lipids. Contact
formed between the ER and endomembrane system (eg. the plasma membrane, endosomes, and
lysosomes) is of particular biomedical interest, as it governs aspects of lipid metabolism, organelle
identity, and cell signaling. Here, we review the field of ER-endolysosomal communication from the
perspective of three model systems: budding yeast, the fruit fly D. melanogaster, and mammals.
From this broad perspective, inter-organelle communication displays a consistent role in metabolic
regulation that was differentially tuned during the development of complex metazoan life. We also
examine the current state of understanding of lipid exchange between organelles, and discuss
molecular mechanisms by which this occurs.
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Introduction: Membrane contact sites in cell
biology and disease

Since their initial observation over 60 years ago, contact
sites formed between different organelles have transi-
tioned from ignored curiosities to recognized centers for
the exchange of metabolites and lipids.1 Recent studies
have identified several conserved protein families that
function as “tethers” at inter-organelle membrane con-
tact sites (MCSs), as well as soluble proteins that dock at
these sites to mediate the non-vesicular trafficking of lip-
ids. Many of these proteins have important roles in
human physiology, and their loss contributes to serious
genetic conditions, underscoring the need to understand
their roles in cell biology, and ultimately, human physiol-
ogy and pathophysiology (Table 1).

The purpose of this short review is two-fold: 1) to
examine the growing list of proteins that function at sites
of inter-organelle contact, and 2) to discuss how perturb-
ing their functions impact metabolism and disease across
evolution from yeast and fruit flies to mammals. As this
is a broad topic, most attention will be paid to proteins
involved in contact between the Endoplasmic Reticulum
(ER) and the endomembrane trafficking pathway (the
plasma membrane, endosomes, and lysosomes). Since
several MCS-localizing proteins play important roles in

lipid metabolism, we will also discuss how lipid metabo-
lism integrates into general physiology, and how this
relationship governs organismal health and aging.
Finally, we will briefly examine current models describ-
ing how lipids are exchanged at MCSs, and how perturb-
ing this affects metabolism and organelle identity. For
additional information regarding other inter-organelle
contact sites, as well as discussions of inter-organelle
communication, endosome movement, lipid transport,
and signaling, the reader is directed to other excellent
reviews.2-5

Yeast ER-endolysosomal contact sites in cell
metabolism and disease

Although ER-endolysosomal contact sites are currently
the focus of intense study in mammalian systems, pro-
teins that localize to sites of contact between the ER and
vacuole (the yeast lysosome) have been well known for
over a decade.6-8 Many of these act as inter-organelle
“tethers” and were originally described in the budding
yeast Saccharomyces cervisiae. Here the site of contact
between the ER and vacuole is known as the Nuclear ER
(nER) Vacuolar Junction (NVJ), and comprises a~200–
500 nm long patch-like strip juxtaposed between the
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Table 1. Location, proposed functions, and associated diseases of ER-organelle MCS proteins.

Protein

S. cerevisiae D. melanogaster H. sapiens Observed Membrane Contact Site(s) Proposed Function(s) Disease(s) Associated References

Tricalbin Esyt2 E-Syts ER-PM (yeast, human) ER-PM tethering,
potential role in
non-vescicular lipid
transport

Tavassoli, S. et al.,
2013

Scs2/22 VAP VAP-A/B (ALS8) ER-PM (yeast) ER-PM tethering,
recruitment of
FFAT motif-
containing proteins

ALS disease Nishimura, A. L. et al.,
2004

Ist2 Axs? TMEM16/Ano
family

ER-PM (yeast) ER-PM tethering,
possible channel
activity

defects in
chromosomal
segregation in D.
melanogaster

Nvj1 n/a n/a ER-vacuole (yeast) ER-vac tethering,
essential for
Piecemeal
Autophagy of the
Nucleus (PMN)

Pan, X. et al., 2000

Vac8 n/a n/a ER-vacuole (yeast) ER-vac tethering,
vacuole inheritence

Pan, X. et al., 2000

Nvj2 CG43783 HT008/Tex2 ER-vacuole (yeast) ER-vacuole tethering
(?); possible role in
lipid trafficking via
its SMP domain

Toulmay, A. & Prinz,
W. A., 2012

Tsc13 Sc2? TECR ER-vacuole (yeast) enoyl reductase,
generates very
long chain fatty
acids (VLCFAs);
mutants in humans
affect sphingolipid
metabolism

essential in flies;
mutants in mouse
models

Abe, K. et al., 2013;
Kvam, E. et al.,

2005.

Mdm1 Snz Snx13,14,19, 25 ER-vacuole (yeast) ER-vacuole,
comunication and
lipid metabolism in
yeast, and possible
roles in obesity,
aging, and
neurological
disease in
metazoans

snz-deficienct fruit
flies exhibit
lifespan extension
and obesity;
human SNX14-
deficiency is linked
to cerebellar ataxia
with intellectual
disability

Henne, W. M. et al.,
2015; Suh, et al.
2008; Thomas,
et al., 2014

Protrudin ER-endosome (human) endosomal migration,
Lam6/Ltc1 CG34394? STARD3/

STARD3NL
ER-vacuole/ER-mitochondria (yeast) StART-like domain

containing sterol-
binding protein;
possible role in
inter-organelle
sterol shuttling

loss of mammalian
homologs linked to
diseases of
cholesterol
homeostasis and
breast cancer
(MLN64/STARD3)

Alpy, F. et al., 2013;
Elbaz-Alon, Y.
et al., 2015;

Murley, A. et al.,
2015

Vps13 VPS13A VPS13A/CHAC;
VPS13B/COH

vacuole-mitochondria; ER-vacuole
(yeast)

unknown, gain-of-
function mutants
can bypass loss of
ERMES function in
yeast

VPS13A: chorea-
acanthocytosis;
VPS13B: Cohen
Syndrome

Velayos-Baeza, A.
et al., 2004

Osh1-7 OSBPs ORPs ER-PM (Osh6 yeast; Orp5/8 human);
ER-vacuole (Osh1)

sterol and
phospholipid-
binding proteins,
which shuttle lipids
including PS and
PI4P at multiple
membrane contact
sites

links to defects in
phosholipid and
cholesterol
homeostasis
diseases

Olkkonen, V. M.
et al., 2012

dSTIM STIM1 ER-PM coordinates store
operated calcium
entry (SOCE) at ER-
PM contact sites

combined immuno-
deficiency (CID) in
humans, bristle
development in
flies

Eid, J.-P., et al., 2008
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outer nuclear envelope (continuous with the peripheral
ER) and vacuole surface. The NVJ is principally formed
by the direct interaction of the integral ER protein Nvj1,
which directly binds to the vacuolar-resident protein
Vac8.6 Notably, Vac8 is not an integral membrane pro-
tein, but binds tightly to the vacuole surface including
numerous post-translational palmitoylations on its N-
terminus.9 Both Nvj1 and Vac8 have no obvious mam-
malian orthologs. However, a second NVJ-resident ER
integral membrane protein, Nvj2, has a clear ortholog in
humans: Tex2/HT008,7 although its function is unclear.
Nvj2 contains two lipid-binding domains: a predicted
PH domain, and a lipid-binding synaptotagmin-like-
mitochondrial-lipid binding protein (SMP) domain that
is present in numerous MCS-localizing proteins, includ-
ing the Extended-Synaptotagmins (E-Syts).10-12 E-Syts
and their yeast homologs, the Tricalbins (Tcbs), act as
tethers at ER-plasma membrane (PM) contact sites, and
also interact with VAP proteins, which have been impli-
cated in ALS disease.13,14

Numerous lipid-modifying and transport proteins
also show enrichment at yeast NVJs. The enoyl reductase
Tsc13, which catalyzes the final step of very long chain
fatty acid (VLCFA) elongation, exhibits clear human
homologs in the TECR protein family,15,16 which are
linked to intellectual disability. Loss of Tsc13 function
affects sphingolipid synthesis, leading to decreases in
mature sphingolipids and C24 ceramide. Notably, loss of
Tsc13 can be rescued by reintroduction of TECR, indi-
cating a conservation of function between yeast and
man. Osh1, a member of the Oxysterol binding OSBP/
ORP protein family, also enriches at NVJs in response to
stationary growth stress.8 Osh/ORP family proteins play
key roles in lipid metabolism, and are implicated in the
non-vesicular transport of sterols and phospholipids
between organelles. Their loss may contribute to numer-
ous familial hypercholesteraemias and lysosomal choles-
terol-sphingolipid storage diseases.17

More recently, other proteins with clear functions
in lipid metabolism have been found to localize at
NVJs. Yeast Mdm1/Snx13 is an ER-resident protein
with clear orthologs in all metazoans (Fig. 1). It con-
tains a PI3P-binding Phox homology (PX) domain
that binds the vacuole surface, and is thus capable of
tethering the nER and vacuole at NVJs.18 Yeast also
express a soluble paralog of Mdm1, named Nvj3,
which also localizes to NVJs in an Mdm1-dependent
manner. Notably, Sorting Nexin 14 (Snx14), one of
four human orthologs of Mdm1, was recently impli-
cated in pediatric cerebellar ataxia and intellectual dis-
ability.19,20 The precise function of Mdm1 and its
homologs is still unknown, but intriguingly over-
expression of disease-analogous Mdm1 alleles that

mimic the Snx14 alleles found in SNX14-deficient
patients perturbs yeast sphingolipid metabolism, sug-
gesting Mdm1 may function in lipid metabolism at
NVJs.18 A role for Mdm1 family proteins in lipid
metabolism is also supported by the fact that Snazurus
(Snz), the Drosophila homolog of Mdm1, is highly
expressed in the fly fat body, the lipid metabolic center
of the insect.21

Recently, other proteins have been shown to
dynamically localize to NVJs, and several of these are
implicated in lipid metabolism and human disease.
The Lipid Transfer Anchored at Membrane contact
site (Lam) protein Lam6/Ltc1 localizes to both ER-
mitochondrial and ER-vacuole MCSs, and is a mem-
ber of the STAR-related lipid-transfer (StART)
domain-containing protein family.22-24 Notably,
StART domain-containing proteins bind sterols, and
several are implicated in diseases of cholesterol
metabolism, including diabetes. Members of this pro-
tein family such as STARD3 may also function with
Niemann-Pick proteins NPC1 and NPC2 to traffic
cholesterol out of lysosomes, the failure of which
causes the pathological accumulation of sterols and
other lipids in lysosomal storage diseases.

Another protein, Vps13, was recently found to
dynamically localize to both ER-mitochondrial and ER-
vacuole MCSs.25 When yeast are grown in glycerol-con-
taining media, known to suppress formation of vacuole-
mitochondria contact sites, Vps13 concentrates at NVJs.
The reason for this localization is currently unclear, but
it is tempting to speculate that Vps13 functions in lipid-
exchange at these different MCSs. At least two Vps13
homologs exist in humans, VPS13A/CHAC and
VPS13B/COH1, which have been implicated in chorea-
acanthocytosis and Cohen Syndrome, respectively.26

Intriguingly, both these disorders exhibit significant neu-
rological and neuromuscular defects, as well as altera-
tions in lipid metabolism in patients. The molecular
mechanisms governing this remain obscure, however in
yeast Vps13 appears to function on a parallel pathway to
the ERMES complex, which controls ER-mitochondrial
phospholipid flux. Vps13 alleles have been identified,
which suppress the toxicity associated with growing
ERMES-deficient strains on non-fermentable media,
indicating that establishing alternative inter-organelle
contact sites may compensate for the loss of ER-mito-
chondrial contact.25 Further studies will be needed to
understand the function of Vps13 and its homologs, as
well as the roles of ER-endolysosomal contact sites in cel-
lular lipid metabolism.

Thus, many yeast MCSs display clear orthologs in
metazoans with roles in metabolism. Understanding
their metabolic roles in metazoans is a clear priority in
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order to understand their connections to human disease.
This review now turns to studies in the fruit fly Drosoph-
ila melanogaster as a potential model system to under-
stand metazoan lipid metabolism and inter-organelle
communication.

Organelle contact site proteins in Drosophila
metabolism and aging

Numerous parallels exist between Drosophila and verte-
brate metabolism, especially with respect to nutrient

Figure 1. Domain architecture of proteins implicated in ER-endolysosomal membrane contact sites. Protein orthologs among Saccharo-
myces cerevisiae (Sc top), Drosophila melanogaster (Dm, middle) and Homo sapiens (Hs, bottom) are depicted. Abbreviations: PHg, Pleck-
strin homology gram; MENTAL, MLN64 N-terminal alignment; StART, StAR-related Lipid Transfer; PH, Pleckstrin homology; OSBP,
Oxysterol binding domain; PXA, PX-Associated; RGS, Regulator of G-protein Signaling; PX, Phox Homology; MSP, Major Sperm Protein;
SMP, Synaptotagmin-like mitochondrial lipid-binding protein; DUF, domain of unknown function.
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sensing and lipid metabolic pathways. The fly genome is
also remarkably well shared between both yeasts and
mammals, making it an ideal model system linking uni-
cellular and multicellular organisms. Additionally, neu-
ropeptides, enzymes, organs, and even disease
phenotypes are highly conserved from flies to
humans.27-29

Numerous proteins involved in ER-endolysosomal
MCSs in yeast are also conserved in Drosophila, and a
few show clear disease pathologies. VAP-B/ALS8, the
metazoan homolog of yeast Scs2/22 that promotes ER-
PM contact sites, is linked to ALS disease in humans.
Consistent with this, a fly model for ALS using mutant
VAPP58S manifests protein aggregation and defects in
synaptic morphology.30 Ist2, which in yeast also partici-
pates in ER-PM contact sites, is homologous to Drosoph-
ila Axs (Abnormal X segregation), which is ER-localized
and linked to defects in chromosomal segregation during
meiosis.31 It is unclear whether this phenotype is linked
to inter-organelle communication. Stim1, which couples
ER-PM Ca2C flux in mammals, is also highly conserved
in flies and is essential for proper larval development
and mechano-sensory bristle differentiation.32,33 The
yeast enoyl-reductase Tsc13 that localizes to ER-vacuole
NVJs in yeast is conserved in flies as Sc2, whose loss is
embryonic lethal. Mutant Sc2 alleles have also been
shown to exacerbate fly models of spinocerebellar
ataxia.34

Previous studies have identified Snazarus (Snz), the fly
ortholog of yeast NVJ tether Mdm1, as a novel lifespan-
associated gene by executing a fat body enhancer trap
screen followed by longevity testing of the enhancer trap
fly collection.21 Snz is highly expressed in the fly fat
body, the central organ for insect lipid metabolism,
implying a role in fat metabolism. Consistent with this,
Snz-deficient flies exhibit remarkable longevity, living
approximately twice as long as their wildtype brethren.
As lifespan is traditionally associated with alterations in
metabolism and caloric intake/expenditure, it begs the
question: what is the role for Snz in fly metabolism? Fur-
thermore, how does alteration of Snz promote changes
in aging and extend fly lifespan?

Metabolism and lifespan in Drosophila

Classic life-span studies in Caenorhabditis elegans impli-
cate roles for insulin signaling in aging.35 As in mam-
mals, fruit fly insulin metabolism is regulated through
neuroendocrine signaling. Drosophila secrete 8 insulin-
like peptides (DILPS) that control growth, lipid and car-
bohydrate homeostasis, stress response, and aging.36-39

Flies also produce a glucagon homolog, adipokinetic hor-
mone (AKH), which regulates sugar levels in the

hemolymph.40,41 Recent studies have highlighted the sig-
nificance of the minor glucose fraction in fly metabolism
and its relevance to mammalian physiology.42 Moreover,
a high degree of functional conservation is observed
among organ systems involved in metabolic processes,
for example, the fat body is analogous to the mammalian
adipose tissue and liver, storing excess energy as lipids
and glycogen.27,28,40,43

Like vertebrates, flies mobilize their fat reserves
to provide energy during conditions of starvation
or stress, and regulate sugar levels in response to
environmental changes.27,40 The processes of lipoly-
sis and lipid storage are highly conserved between
mammals and flies; flies express numerous cyto-
plasmic lipases including adipose triglyceride lipase
(ATGL) homolog, brummer lipase, and a perilipin-
like protein, LSD2 (lipid storage droplet 2), which
localize to the outer membrane of lipid droplets.44-
46 Lysosomal lipases are less defined, but include
Lip4 which are implicated in the turnover of lipid
droplets during lipophagy.47 In addition to main-
taining lipid and carbohydrate homeostasis, the fat
body also secretes lipoproteins and hormones to
maintain metabolic balance; for example, the fat
body produces DIPL6, the closest homolog to IGF,
on induction by dFOXO and starvation. Interest-
ingly, increased DILP6 levels have been linked to
increased lifespan in flies, possibly by inhibiting
secretion of DILP2 from brain insulin producing
cells (IPCs).37,39,48

Numerous studies have also established a relation-
ship between energy homeostasis and aging in yeast,
worms, flies, and mice. For example, attenuated
insulin and TOR signaling, AMPK activation, and
caloric restriction prolong lifespan.28,37,49,50 Nutri-
tional deprivation, short of malnutrition, is a potent
stimulator of cellular autophagy: a process of self-
degradation of cytoplasmic components by lyso-
somes and recycling of the catabolized products back
to the cytosol to meet the nutritional demands of
the cell, and to use as building blocks for new cellu-
lar components.51,52 Defects in autophagy have been
associated with accelerated aging, as aging is often
characterized by accumulation of proteotoxic aggre-
gates and dysfunctional organelles that contribute to
cellular damage.53-55 Autophagy is also involved in
the breakdown of lipid droplets and triglycerides by
a process called lipophagy, thereby playing a vital
role in maintaining lipid homeostasis.56 Studies in C.
elegans have shown that up-regulation of lipid
hydrolysis increases lifespan; intestinal induction of
lysosomal acid lipase LIPL-4 triggers a lipid
chaperone-mediated lysosome-to-nucleus longevity

COMMUNICATIVE & INTEGRATIVE BIOLOGY e1156278-5



pathway.57 However, the observed longevity may not
be a consequence of reduced “adiposity,” as paradox-
ically, many long-lived mutants have increased fat
storage.58,59

Consistent with the relationship between autophagy
and aging is the observation that several lifespan-
extending mutations affect fat storing tissues. In mice,
targeted loss of the murine insulin receptor in adipose
tissue extends lifespan.60 Murine Sir2 may confer
anti-aging effects by stimulating fat hydrolysis via
repression of the master regulator of adipogenesis
(PPAR-g)61; in the fruit fly, fat body-specific trans-
genic expression of Sir2 produces a similar result.62

Drosophila is especially suitable to aging and longev-
ity studies as it is possible to perform loss-of-function
and gain-of-function screening, in a tissue-specific
manner.63

Mammalian ER-endosome contact sites in health
and disease

As in Drosophila, mammals must also organize and regu-
late sophisticated metabolic pathways, and numerous
studies are beginning to highlight inter-organelle MCSs
as hubs for this metabolic regulation. Collectively, these
studies indicate that zones of ER-endolysosomal contact
regulate metabolism.

Unlike the singular and stable nuclear-vacuole junc-
tion of yeast, live-cell imaging and electron microscopy
indicate that mammalian ER-endosome/lysosome MCSs
are highly dynamic and prevalent within cells. ER-endo-
some MCSs are currently thought to be relatively tight
connections between the 2 membranes (10–30 nm).64

Intriguingly, this contact begins early in endosome bio-
genesis, and changes throughout its maturation. As
endosomes mature, the number of ER-endosome contact
sites increase and it has been reported that 99% of late
endosomes (LEs) form contacts with the ER.64-66 How-
ever, the dynamics and regulation of ER–endosome con-
tact sites still remain poorly understood.

How do mammalian cells utilize ER-endolysosomal
MCSs? Numerous studies indicate that these sites play
roles in endosomal fission, receptor dephosphorylation,
cholesterol transfer and Ca2C exchange.67 Specific pro-
teins have also been identified which localize to ER-
endosomal MCSs. Protrudin, an ER-localized protein
that regulates protrusion and neurite outgrowth in mam-
mals (although there is no obvious fly or yeast homolog),
was recently found to localize to ER-LE contact sites,
where it governs endosome mobility.68 Protrudin facili-
tates LE translocation to the cell periphery through
recruiting kinesin-1. Notably, mutations in the Protrudin
gene ZFYVE27 are associated with an inherited

neurological disorder and hereditary spastic paraplegia
(HSP).69 Thus, Protrudin is also named spastic paraple-
gia (SPG33). Consistent with this, previous studies indi-
cate that Protrudin interacts with numerous HSP-
associated proteins. A subset of HSP patients exhibit the
ProtrudinG191V mutant, which promotes protein aggre-
gation and exacerbates ER stress response and abnormal
ER morphology. Another ER-endosome MCS protein is
PTP1B, an ER-localized protein tyrosine phosphatase
that interacts with the epidermal growth factor receptor
(EGFR) at ER-endosome MCSs,70 has been reported as
both an oncogene and tumor suppressor in different can-
cer types,71 and has also been implicated in metabolic
disease.72

Numerous sterol-binding proteins have also been
implicated in ER-endolysosomal lipid metabolism and
trafficking. The STARD3 StAR (steroidogenic acute reg-
ulatory protein) related lipid transfer (START) domain-
3, previously known as MLN64 (metastatic lymph node
64),73 and STARD3NL (STARD3 N-terminal like), pre-
viously known as MENTHO74 proteins, are components
of ER-LE MCS bridging complexes.75 Tichauer et al.
reported that overexpression of STARD3 in mice pro-
motes liver damage,76 and studies also found that high-
grade prostate cancer and HER2-positive breast cancer
are associated with STARD3.77,78 The Drosophila
STARD3 homolog, Start1, is linked to insect egg devel-
opment. Research also revealed that bone mineral den-
sity patients have single-nucleotide polymorphisms of
STARD3NL.79

Lipid flux at inter-organelle contact sites in
human health and disease

Several studies collectively implicate inter-organelle
MCSs in non-vesicular lipid transport.80,81 An increasing
number of proteins are being identified as “tethers” that
bring together membranes of opposing organelles into
close proximity (<30 nm).82,83 In addition to sustaining
the integrity of the MCS, these “tethers” may function in
shuffling lipids between nearby membranes. Major
efforts in the field have been aimed at distinguishing
between these two functions.81 Alternatively, MCS “teth-
ers” may recruit soluble effector molecules known as
lipid transfer proteins (LTPs) that mediate lipid transfer
between organelles.84,85 Therefore, the closely juxtaposed
MCSs provide a convenient center for both spontaneous
and LTP-mediated non-vesicular lipid transport.86,87

Based on their specificity to different lipids, well-
defined LTPs can be grouped into three main categories:
(1) sphingolipid-, (2) sterol- and (3) phospholipid-trans-
fer proteins.86 The crystal structures of several LTPs have
been resolved both in the presence or absence of their
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lipid-binding ligands, which aid in understanding their
mechanism of action (Fig. 2).85,86 In general, LTPs bind
individual lipids in a hydrophobic pocket or tunnel
formed within the tertiary fold of the protein. In addition
to the core hydrophobic pocket, most LTPs also contain
protein-binding and/or lipid-binding domains that allow
them to directly interact with membranes that donate
and/or accept lipids. Additionally, the interaction of
some LTPs with membranes is thought to induce confor-
mational changes which expose the lipid-binding pocket
within the LTP. The physical and chemical properties of
this hydrophobic pocket dictate the lipid-binding speci-
ficity and affinity of different LTPs.86 Typically, a lid-like
domain shields the transferred lipids and acts as a gate
during lipid exchange.88,89

Several LTPs have been directly implicated in lipid
metabolism at the MCSs (Table 1). LTPs are classically
defined by their ability to facilitate lipid transfer between
membranes in vitro.90,91 However, in many cases, it
remains unclear whether LTPs can also shuttle lipids
between membranes in vivo.85 One alternative hypothe-
sis is that LTPs may function as lipid sensors or even
lipid chaperones that localize to MCSs to escort or “pres-
ent” specific lipids to metabolic enzymes to be
processed.85 So far, only a few studies have demon-
strated in vivo lipid transfer activities by LTPs.85,92 One
example is the ceramide-transfer protein CERT which
mediates the transport of various molecular species of
ceramides between the ER and Golgi.93-95 CERTs are
cytosolic proteins that consist of an N-terminal

Figure 2. Three-dimensional structure of LTPs showing the protein backbone (gray ribbon representation) and the bound lipid (purple
sphere representation) (a) The crystal structure of the yeast oxysterol-related domain ORD of oxysterol binding protein (OSBP) homolog
4 (Osh4) in complex with 25-hydroxycholesterol (PDB: 1ZHX). (b) The crystal structure of CERT (STAR)-related transfer (STARt) domain in
complex with C16-ceramide (PDB: 2E3P). (c) The crystal structure of extended-synaptotagmin 2 (E-syt2) SMP domain in complex with
TritonX-100 and DOPE (PDB: 4P42).
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pleckstrin homology (PH) domain, an FFAT motif (two
Phe residues in an acidic tract),96 and a C-terminal
START domain (Fig. 1). The START domain is sufficient
to mediate ceramide transfer in vivo.97 The crystal struc-
ture of CERT START domain has been solved both in
the apo-form and in complex with different ceramides
providing structural insights into the mechanism by
which it recognizes different ceramide species.98

CERT. CERTs have been reported to function at the
ER-Golgi MCSs,93 and mediate the transfer of ceramides
from their site of synthesis in the ER to the Golgi com-
plex where they are converted to sphingomyelin by
sphingomyelin synthase (SMS).97,99 The interaction with
the ER is mediated by the CERTs FFAT motif, which
binds to the VAMP-associated proteins (VAPA and
VAPB), while the PH domain of CERT mediates the
interaction with the Golgi complex by binding
PtdIns4P.100,101 Mutations in either the FFAT motif or
the PH domain not only abrogate the ER-Golgi MCS
localization of CERTs, but also inhibit ceramide trans-
port and consequently sphingolipid synthesis.97,100 This
suggests that the spatial restriction of CERT-mediated
ceramide transfer at the ER-Golgi MCSs is required for
sphingolipid metabolism.86

FAPP2. Another example of LTPs is FAPP2, which
was shown to transfer glycosylated ceramides (GlcCer)
in vivo.102 FAPP2 have similar domain organization as
CERT and contains an N-terminal PH domain and a C-
terminal glycolipid transfer protein or GLTP-homology
domain.102 The crystal structure of GLTP has been
solved both in the presence and absence of the bound
ligand, which provides molecular insights into the speci-
ficity of glycolipid binding and the mechanism of trans-
fer.103 The amino acid residues that are required for
GLTP-mediated glycolipid transfer are highly conserved
in FAPP2.102,103 FAPP2 has been demonstrated to pro-
mote non-vesicular transfer of GlcCer between the Golgi
compartments102 as well as from the Golgi to the ER.104

GlcCer transport to the ER lumen was reported to be sig-
nificantly reduced due to the knockdown of FAPP2,
which also severely impaired glycosphingolipids (GSL)
metabolism.104

Nir2. Nir2 is an example of a phosphoinositol transfer
protein (PITP). PITPs were shown to transfer phosphati-
dylcholine (PtdCho) and phosphatidylioinositol (PtdIns)
in vitro.105 In cells, lipid transfer activity of PITPs was
demonstrated using the Drosophila PITP DrdgBa. The
levels of PtdIns(4,5)P2 was found to be significantly
reduced in the DrdgBa mutants cells indicating that
DrdgBa may play a role in moving PtnIns from their site
of synthesis in the ER to the PM for local conversion to
PtdIns(4,5)P2.

106,107 Similar to CERT, Nir2 contains an
FFAT motif, which mediates its interaction with the ER.

Nir2 also contains an N-terminal PITP domain, which
binds lipids. Structural analysis of two human PITPs
(PITPa and b)108,109 and the yeast PITP Sec14p110,111

and its closest homolog Sfh1112 provided insights into
the mechanism of lipid exchange by PITPs.

Oxysterol binding proteins (OSBP/ORP). Oxysterol
binding proteins (OSBPs) bind to phospholipids and
sterols, and often contain a lipid binding PH domain
and a FFAT motif, which mediate dual interactions with
lipid and protein, respectively. Additionally, mammalian
OSBP has a C-terminal oxysterol-related domain
(ORD), which binds 25-hydroxycholesterol (25-OH).
OSBP is a member of a bigger family of sterol-binding
proteins which includes11 OSBP-related proteins
(ORPs). The yeast OSBP ortholog Osh1 localizes to the
nuclear vacuole junction (NVJ) by binding to Nvj1.8 The
crystal structure of another yeast ortholog Osh4 has been
solved,89 and the mechanism of sterol transfer has been
demonstrated in vivo.113 In addition, more recent work
has demonstrated that Osh/ORP proteins can exchange
phospholipids including phosphatidylserine (PS) and
PtdIns4P between the ER and plasma membrane, and do
so at ER-PM contact sites.89

SMP domain-containing proteins. The synaptotag-
min-like mitochondrial-lipid-binding protein (SMP)
domain is found in several proteins that localize to inter-
organelle contact sites such as the ERMES complex (ER-
mitochondria) and the extended synaptotagmins (E-
Syts), known in yeast as tricalbins (ER-PM).10-12 SMP
domains are found to bind several different lipids,12 and
they are proposed to transfer lipids between organelles at
membrane contact sites, although the molecular mecha-
nisms governing this require more study.

Lipid exchange at MCSs may plays an important role
in lipid metabolism. Abnormal lipid metabolism can
lead to several life-threatening conditions including obe-
sity, diabetes, and heart disease. Moreover, genetic
defects in several LTPs were found to have severe conse-
quences on lipid metabolic pathways, which underlines
the significance of these proteins in human health and
development (Table 1). One of the well-studied examples
of diseases associated with lipid metabolism is the
Neimann-Pick Disease.

As mentioned in the previous section, two recent
studied have implicated Snx14, the human homolog of
the yeast MCS protein Mdm1, in a neurological disease
with hallmarks of lipid storage diseases.19,20 Cells derived
from patients showed enlarged lysosomes and accumula-
tion of cellular debris20 which may implicate Snx14 in
the turnover of lysosomal lipids. Finally, few diseases
have been directly linked to defects in MCS “tethering”
proteins suggesting that these contact sites are important
locations for inter-organelle communication. A mutation
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in VAPB, which may reduce the level of ER anchoring of
lipid-binding proteins, has been linked to motor-neuron
degeneration in amyotrophic lateral sclerosis (ALS)
(Table 1).114

Conclusions and perspectives

In conclusion, the study of inter-organelle contact sites
has transformed from a curiosity of electron microscopy
to a source of new understanding in the fields of lipid
metabolism, nutrient exchange, signaling, and organelle
identity. The discovery of key proteins and protein com-
plexes which mediate inter-organelle tethering, or local-
ize to MCSs for their functions, has been instrumental in
the understanding of membrane contact sites in general
cell biology. Most notably, it is now appreciated that key
proteins with essential roles in human physiology appear
to utilize MCSs for their functions. Loss of these proteins
contributes to major genetic or acquired diseases, thus
prompting the need to further understand these proteins,
as well as how sites of inter-organelle contact are main-
tained, regulated, and integrate into general cellular
physiology and pathophysiology. Future studies will no
doubt continue to identify new and exciting proteins and
pathways that utilize inter-organelle membrane contact
sites.
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