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Abstract

Background: This study hoped to explore the potential biomarkers and associated metabolites during osteosarcoma
(OS) progression based on bioinformatics integrated analysis.

Methods: Gene expression profiles of GSE28424, including 19 human OS cell lines (OS group) and 4 human normal
long bone tissue samples (control group), were downloaded. The differentially expressed genes (DEGs) in OS vs.
control were investigated. The enrichment investigation was performed based on DEGs, followed by protein–protein
interaction network analysis. Then, the feature genes associated with OS were explored, followed by survival analysis to
reveal prognostic genes. The qRT-PCR assay was performed to test the expression of these genes. Finally, the OS-
associated metabolites and disease-metabolic network were further investigated.

Results: Totally, 357 DEGs were revealed between the OS vs. control groups. These DEGs, such as CXCL12, were mainly
involved in functions like leukocyte migration. Then, totally, 38 feature genes were explored, of which 8 genes showed
significant associations with the survival of patients. High expression of CXCL12, CEBPA, SPARCL1, CAT, TUBA1A, and
ALDH1A1 was associated with longer survival time, while high expression of CFLAR and STC2 was associated with poor
survival. Finally, a disease-metabolic network was constructed with 25 nodes including two disease-associated
metabolites cyclophosphamide and bisphenol A (BPA). BPA showed interactions with multiple prognosis-related genes,
such as CXCL12 and STC2.

Conclusion: We identified 8 prognosis-related genes in OS. CXCL12 might participate in OS progression via leukocyte
migration function. BPA might be an important metabolite interacting with multiple prognosis-related genes.
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Highlights

1. We identified 8 prognosis-related genes in OS.
2. CXCL12 might take part in OS via leukocyte

migration function.
3. CXCL12 and STC2 might be used as novel

biomarkers for OS.

4. Bisphenol A might be an important metabolite
interacting with multiple genes.

Background
Osteosarcoma (OS) is one of the most common malig-
nant bone tumors in children and adolescents under 20
years old [1], accounting for about 5% of all children’s
tumors [2]. Current optimal treatment for OS consists
of multi-agent chemotherapy and aggressive surgical re-
section of all sites of disease involvement [3]. Unfortu-
nately, in patients with recurrent or metastatic OS, the
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long-term survival rate is only 20% [4]. Thus, it is im-
portant to further investigate the detailed pathological
mechanism of OS.
The mutation of certain genes is responsible for syn-

dromes that predispose to OS [5]. It has been proved
that some genes are differentially expressed between OS
samples and normal samples in humans, which can be
further used for the prediction of chemotherapy re-
sponse [6]. A previous study shows that the differentially
expressed genes (DEGs) such as SRY-Box transcription
factor 2 are taking part in the development of OS via in-
fluencing cell stemness and migration [7]. A recent study
indicates that cyclin E1 is overexpressed in OS samples,
which can be used as a prognostic biomarker and poten-
tial therapeutic target in OS [8]. Dong et al. proved that
the lung adenocarcinoma transcript 1 that related with
metastasis promoted the proliferation and metastasis of
OS cells by stimulating the PI3K/Akt pathway [9]. Actu-
ally, the emerging biomarkers in OS have been revealed
not only from genomics but also via metabolomics [10].
A previous study shows that catecholamines and their
receptors can be potential molecular markers for OS
[11]. It has been proved that metabolites such as para-
thyroid hormone peptides through the regulation of hya-
luronan metabolism affect OS cell migration [12]. A
previous global microarray analysis by Namløs et al. [13]
revealed that several microRNA (miRNA)-gene interac-
tions (such as miR-9/TGFBR2) were implicated in the
development of OS. However, the potential biomarkers
and their associated detail molecular mechanism during
the OS progression is unknown.
Based on the microarray data provided by Namløs et al.

[13], the current bioinformatics analysis was performed to
reveal potential DEGs between human OS cell lines and
human normal long bone tissue samples, followed by the
function and pathway enrichment analysis based on these
DEGs. The feature genes for OS were explored based on
online databases, followed by the survival analysis to reveal
prognostic genes. Finally, the OS-associated metabolites
and networks were further investigated. Figure S1 shows
the workflow of this study. We hoped to explore the po-
tential biomarkers and associated molecular mechanisms
during OS progression.

Material and methods
Data resource and preprocessing
A gene expression profile GSE28424 including 19 human
OS cell lines (OS group) and 4 human normal long bone
tissue samples (control group) was obtained from GEO
database (platform: GPL570: Illumina HumanWG-6 v2.0
expression beadchip). As described in the study of Namløs
et al. [13], the 19 human OS cell lines, HAL, HOS, 143B,
IOR/MOS, IOR/OS9, IOR/OS10, IOR/OS14, IOR/OS15,
IOR/OS18, SARG, KPD, MG-63, MHM, MNNG/HOS,

OHS, OSA, Saos-2, U-2 OS, and ZK-58 were derived from
ATCC or different partner laboratories within EuroB-
oNeT. Cell line authentication was performed by STR
DNA profiling using Powerplex 16. The four normal long
bone tissue samples were obtained from amputations of
cancer patients at the Norwegian Radium Hospital. The
processed gene expression matrix file was obtained using
Affy package in R software [14]. Probes with different gene
symbols were excluded from this study, and the average
value of genes matched to multiple probes was taken as
the expression value of the probe.

Differentially expression analysis
The limma package (version: 3.34.9) of R [15] was used to
investigate DEGs between two groups based on the linear
regression and empirical Bayesian methods. DEGs were
screened by Benjamini & Hochberg (BH) adjusted P <
0.05 and |log2 fold change (FC)| > 2. Then, the results
were visualized by volcano plots and clustering heatmap.

Functional enrichment analysis of DEGs
Gene ontology-biological process (GO-BP) function and
The Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses of DEGs were performed
using the clusterProfiler package (version: 3.2.11) in R
software [16] with thresholds of P value < 0.05 and
count ≥ 1.

The difference analysis of KEGG between OS group and
control group
Based on the enrichment background (c2.cp.kegg.v7.2.-
symbols.gmt) in MSigDB v7.2 database [17], the enrich-
ment scores of each KEGG in each sample of GSE28424
were calculated to obtain a scoring matrix using gene set
variation analysis (GSVA) algorithm in R package. Then,
the differential expression analysis between the OS
group and control group was performed on each KEGG
item using the limma package in R software. Finally, the
adjusted P < 0.05 was considered as the cut-off value for
significantly different items.

Protein–protein interaction (PPI) network
The Search Tool for the Retrieval of Interacting Genes
(STRING) database (version: 11) [18] provides experi-
mental and predicted interaction information. The hub-
proteins associated with DEGs were selected according
to the STRING database. Then PPI network was con-
structed by Cytoscape software (version: 3.6.1) [19] with
medium confidence (score) = 0.7. The degree (number
of the connections for the target protein) was used to
evaluate the importance of the target gene.
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The feature gene prediction of OS
The relationship between disease (keyword: osteopor-
osis)-associated chemical molecular and target gene was
revealed by Comparative Toxicogenomics Database
(CTD) [20]. Then, based on VENN plot analysis, the
screened genes in CTD and genes in GeneCards data-
base [21] were intersected with nodes in the PPI net-
work to explore the feature genes for OS.

Survival analysis for feature genes
Survival analysis was used to identify biomarkers from
significant feature genes. The log2(fpkm+1) expression
data and clinical information of OS in the TARGET
database were downloaded from the University of Cali-
fornia Santa Cruz (UCSC) Genome Browser database
(https://xenabrowser.net/datapages/?cohort=GDC%2
0TARGET-OS&removeHub=https%3A%2%2Fxena.
treehouse.gi.ucsc.edu%3A443) [22]. The results were vi-
sualized using Kaplan-Meier plots. The samples were di-
vided into two groups (high and low) based on median
expression level, followed by the overall survival com-
puted between OS and normal by K-M survival curve.

Real-time reverse transcription PCR (qRT-PCR)
Human OS cell line 143B was obtained from ATCC and
was cultured in DMEM (Gibco) supplemented with 10%
heat-inactivated fetal bovine serum (FBS). MC3T3, a
murine pre-osteoblast cell line, was acquired from the
Shandong Provincial Key Laboratory of Oral Tissue Re-
generation. The cells were cultured in α-minimal essen-
tial medium (α-MEM) supplemented with 10% heat-
inactivated FBS. The expression of all 8 prognostic genes
in 143B cells and MC3T3 cells was detected by qRT-
PCR. Briefly, total RNAs were extracted using TRizol re-
agent (cwbiotech, # CW0581) and reverse transcripted
using HiFiScript cDNA Synthesis Kit (cwbiotech, #
CW2569). The current assay was performed on
ABI7900FAST (Thermo Fisher Scientific), and the
primers were listed in Table 1. The PCR program was
performed with thermocycling conditions: 50°C for 3
min, 95°C for 3 min, 40 cycles of 95°C for 10 s; 60°C for
30s, and melt curve 60 to 95°C (increment 0.5°C for
10s). The 2-ΔΔCt method was used for the investigation
of gene expression.

Predictive analysis of metabolites related to OS
The relationship between disease (keyword: osteopor-
osis)-associated chemical molecular and target gene was
revealed by CDT, followed by the combination of
prognosis-related genes obtained above to explore the
key genes and compounds of OS. The chemicals associ-
ated with OS were mapped to metabolite ID with the
application of the Compound ID Conversion tool in
MetaboAnalyst database (www.metaboanalyst.ca/).

Disease-metabolic network construction
KEGG pathway graph of DEGs was regarded as the ana-
lytic target to construct the differential pathway network
that contained chemical compounds, reactions, enzymes,
pathways, and KEGG modules using a heat diffusion
model-based algorithm [23]. Specifically, the metabolic
perturbation can be considered as the heat flow that tra-
verses the KEGG graph. The null diffusive process
highlighted that heat could flow out from nodes, which
corresponded to the affected metabolites and across the
whole differential pathway network. The p values of
nodes were calculated according to the diffusion scores
and ranked. The formula for the temperature diffusion
score was as follows: T = - KI * G.
G indicator is input metabolite, it is 1 if the affected

metabolite is entered; otherwise, 0. KI is the conduct-
ance matrix and equals to L plus B (L: the unnormalized
graph Laplacian and B: the diagonal adjacency matrix).
Notably, B (i, i) = 1 if node i is a pathway; otherwise, B
(i, i) = 0. Herein, the nodes with p < 0.05 were retained
and used to construct the disease-metabolic network.

Results
DEGs between the OS group and control group
A total of 357 DEGs were revealed between the OS group
and control group, containing 47 upregulated and 310
downregulated genes. The volcano plot showed that the
upregulated genes and downregulated genes were signifi-
cantly separated (Fig. 1A, B), suggesting a reliable result.

Enrichment analysis and GSVA investigation
The upregulated DEGs mainly enriched in 14 GO-
BP functions including leukocyte migration (GO:

Table 1 Amplified sequences of genes and their primers

Primer Sequence

β-actin Forward: 5′-AGACCTGTACGCCAACACAG-3′
Reverse: 5′-CGGACTCGTCATACTCCTGC-3′

CXCL12 Forward: 5′-CTACAGATGCCCATGCCGAT-3′
Reverse: 5′-CAGCCGGGCTACAATCTGAA-3′

CEBPA Forward: 5′-AGAACAGCAACGAGTACCGG-3′
Reverse: 5′-G GCGGTCATTGTCACTGGTCA-3′

SPARCL1 Forward: 5′-ATGGCGATGATGATGGCGAT-3′
Reverse: 5′-GATTGAGCTCTCTCGGCCTC-3′

CFLAR Forward: 5′-TTGTGCCGGGATGTTGCTAT-3′
Reverse: 5′-AGAGCAGTTCAGCCAAGTCC-3′

CAT Forward: 5′-AGTGATCGGGGGATTCCAGA-3′
Reverse: 5′-AAGTCTCGCCGCATCTTCAA-3′

STC2 Forward: 5′-CACTGTTTGGTCAACGCTGG-3′
Reverse: 5′-AGCGTGGGCCTTACATTTCA-3′

TUBA1A Forward: 5′-CTATCCCCGCATCCACTTCC-3′
Reverse: 5′-TTTACCATGGCGAGGGTCAC-3′

ALDH1A1 Forward: 5′-ATCCTCTGACCCCAGGAGTC-3′
Reverse: 5′-AACACTGTGGGCTGGACAAA-3′
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0050900, Genes: C–X–C motif chemokine ligand 12
(CXCL12), etc.) (Fig. 2A) and 3 KEGG pathways
such as biosynthesis of amino acids (hsa01230,
genes: phosphoglycerate dehydrogenase (PHGDH),
etc.) (Fig. 2B). Meanwhile, downregulated DEGs were

mainly involved in GO-BP functions including neu-
trophil activation (GO:0042119, genes: Fc fragment
of IgG receptor IIIb (FCGR3B), etc.) and pathways
like phagosome (hsa04145, genes: FCGR3B, etc.) (Fig.
2C, D).

Fig. 1 The volcano plots and heatmap for differentially expressed mRNAs between osteosarcoma sample and normal sample. A The volcano plots in current
study; the X-axis represented the value of log2 fold change, while the Y-axis represented the value of −log10; the red node represented upregulated genes,
while the blue node represented the downregulated gene. B The heatmap in current study; the red block represented osteosarcoma samples, while green
block represented normal samples

Fig. 2 The GO/KEGG pathway enrichment cluster interaction analysis of the differentially expressed mRNAs. A The GO functions assembled by upregulated
mRNAs. B The KEGG pathways enriched by upregulated mRNAs. C The GO functions assembled by downregulated mRNAs. D The KEGG pathways enriched
by downregulated mRNAs. X-axis represented the gene ratio (−log10); Y-axis represented the different items of functions or pathways. The deeper the red, the
more significant the p value. The bigger the node, the more number the genes enriched in item
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Furthermore, the GSVA analysis on the KEGG path-
way revealed that a totally 40 outstanding pathways
showed the difference between OS and normal samples,
such as vascular endothelial growth factor (VEGF) sig-
naling pathway, cell adhesion molecules, and chemokine
signaling pathway (Fig. 3).

Feature gene investigation and survival analysis
A PPI network was constructed in the current study
based on 843 protein interactions and 23 genes. The de-
tailed information for the current PPI network was
showed in Fig. 4. Based on genes in the PPI network,
CTD database (26355 genes and 3919 compounds) and
GeneCards database (26355 genes), the feature genes for
OS were explored using VENN plot analysis. The result
showed that there were 38 intersected genes (feature
genes) in the current study (Figure S2). Then, the sur-
vival analysis was performed on all feature genes (Table
S1). Finally, a total of 8 feature genes was revealed as
prognostic genes. Detailly, expression of genes including
CXCL12, CCAAT enhancer-binding protein alpha
(CEBPA), SPARC like 1 (SPARCL1), catalase (CAT),
tubulin alpha 1a (TUBA1A), and aldehyde dehydrogen-
ase 1 family member A1 (ALDH1A1) were positively
correlated with overall survival of patients, while CASP8
and FADD-like apoptosis regulator (CFLAR) and

stanniocalcin 2 (STC2) were negatively correlated with
overall survival of patients (Fig. 5).

Verification for prognostic genes expression by qRT-PCR
The qRT-PCR was performed to further investigate the
expression of 8 prognostic genes in cells (Fig. 6). The re-
sults showed that the relative expression of CXCL12,
CEBPA, and TUBA1A in tumor cells was significantly
lower than that in normal cells (all P < 0.05). Meanwhile,
the relative expression of CFLAR and STC2 in tumor
cells was significantly higher than that in normal cells
(all P < 0.05).

Disease-metabolic network investigation
As described in methods, a total of 45 compound-gene in-
teractions involving 10 compounds and 8 prognostic
genes were obtained from the CTD database (Table S2).
Then, using the “Compound ID Conversion” tool pro-
vided by MetaboAnalyst database, 5 KEGG metabolite ID
corresponding to these 10 compounds were obtained, in-
cluding C06911, C01692, C13624, C07888, and C01661
(Table S3). These 5 metabolites were OS-associated
metabolites.
Then, a metabolic network was constructed with

10976 nodes and 32242 interactions. Among the 5
OS-associated metabolites, only C13624 and C07888

Fig. 3 The heatmap of gene set variation analysis for KEGG pathways between osteosarcoma samples and normal samples. The green bar on the
top represented samples in normal group, while the red bar on the top represented samples in osteosarcoma group. The color from yellow to
black indicated high to low representation value
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Fig. 4 Protein–protein interaction network in current study. The blue circle represented downregulated gene, while the orange triangle represented
upregulated gene. The larger the node, the bigger the degree

Fig. 5 The survival analysis for 8 feature genes. The X-axis represented the survival time (month), while Y-axis represented survival probability
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were matched to the network. With P < 0.05, totally,
19 nodes in the metabolic network were retained,
then the DEG-compound interactions were added to
the network to generate a disease-metabolic network.
The result showed there were 11 reactions, 5 metabo-
lites, 2 disease-metabolites [including C13624 (Bisphe-
nol A, BPA) and C07888 (Cyclophosphamide)], 1
enzyme and 6 DEGs (5 downregulated and 1 upregu-
lated), and 27 interactions in the current disease-
metabolic network (Fig. 7, Table 2). Among the
disease-metabolite network, C13624 (BPA) showed

interactions with all the 6 DEGs was considered as
the key OS-associated metabolite.

Discussion
In this study, we screened 357 genes that differentially
expressed in human OS cell lines and human normal
bone tissue samples. These genes were considered as the
key genes involved in the development of OS. Functional
enrichment analysis showed that the downregulated
genes were mainly enriched in various immune-related
functions (such as leukocyte migration and neutrophil

Fig. 6 The expression of prognostic genes in tumor cells (143B) and normal cells (MC3T3) detected by qRT-PCR. The X-axis represented different
cell lines (groups), while the Y-axis represented the relative expression of different genes. *P < 0.05 when compared with normal

Fig. 7 The disease-metabolic network in current study. Green hexagon represented enzyme, pink diamond represented reaction, yellow square
represented metabolite, yellow triangle represented disease metabolite, blue inverted triangle represented down regulated gene, and orange
circle represented upregulated mRNAs. The line between two nodes represented interaction
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activation involved in immune response), while the up-
regulated genes were mainly enriched in various biosyn-
thetic processes. Similarly, GSVA revealed that various
pathways, such as B/T cell receptor signaling pathway,
VEGF signaling pathway, cell adhesion molecules path-
way, and chemokine signaling pathways showed signifi-
cant differences between these two groups. The bone
shows a highly specialized immune environment, and
various immune-related processes and pathways are in-
volved in bone homeostasis. The success of mifamotide,
an innate immune stimulator, in adjuvant therapy for
non-metastatic OS demonstrates the potential for
immune-based therapy to improve the prognosis of pa-
tients with OS [24, 25]. Miao et al. suggested that
leukocyte recruitment-associated myokines were down-
regulated in OS, indicating escaping from the host im-
mune system would contribute to the development of
OS [26]. Chemokines and their receptors play important
roles in the regulation of tumor-mediated immune re-
sponse in tumors. For example, CXCL1 together with its
receptor CXCR2 were implicated in assisting with the
homing of neutrophils into the tumor microenvironment
in OS [27]. Chemokine receptor CXCR3 expression was
found to positively correlated with the abundance of
tumor-infiltrating immune cells, such as macrophages
M1, CD8 T cells, and activated NK cells in OS [28].
VEGF is an important angiogenesis-promoting factor in
various tumors, that has been reported to contribute to

the growth and aggressive behavior in OS [29, 30], pro-
mote angiogenesis, and inhibit cell apoptosis [31]. Con-
sidering these studies, we speculated that the DEGs were
involved in the development of OS by regulating path-
ways associated with immune, chemokines, and VEGF
signalings.
In order to screen most valuable DEGs, Venn analysis

was performed on genes in the PPI network, and OS-
related genes from CTD and Genecards databases, and
38 overlapped genes were identified, among which, 8
genes associated with survival of patients were consid-
ered as most valuable genes, including STC2, SPARC1,
ALDH1A1, CFLAR, CEBPA, CAT, TUBA1A, and
CXCL12. STC2 is a secretory glycoprotein hormone that
can regulate cell proliferation and cancer cell lesions
[32]. A previous study shows that STC2 is an outstand-
ing immune-related gene during the progression of OS
[33]. A recent study indicates that 20 genes including
STC2 signatures are identified related to OS, which can
be helpful for predicting prognosis of patients with OS
[34]. SPARC1 protein can affect osteoblast differenti-
ation, tumorigenesis and tumor metastasis [35]. A previ-
ous study indicates that SPARCL1 can block the
metastasis of human OS by the upregulation of canon-
ical signaling [36]. As an aldehyde dehydrogenase,
ALDH1A1 has been found to be differentially expressed
between low and highly metastatic OS [37]. Qi et al.
proved that ALDH1A1 was upregulated in the

Table 2 Detail information for nodes in current disease-metabolic network

KEGG ID Entry type KEGG name P score

1.14.14.1 Enzyme Unspecific monooxygenase 4.17E−03

R05285 Reaction 2-Chloroethanol:cytochrome c oxidoreductase 1.00E−06

R05286 Reaction Chloroacetaldehyde:NAD+ oxidoreductase 1.00E−06

R06883 Reaction Bisphenol A + NADH + H+ + Oxygen <=> 1,2-Bis(4-hydroxyphenyl)-2-propanol + NAD+ + H2O 1.00E−06

R06885 Reaction 1,2-Bis(4-hydroxyphenyl)-2-propanol <=> 4,4'-Dihydroxy-alpha-methylstilbene + H2O 1.00E−06

R08275 Reaction Cyclophosphamide + NADPH + H+ + Oxygen <=> 4-Hydroxycyclophosphamide + NADP+ + H2O 1.00E−06

R08276 Reaction Cyclophosphamide <=> Dechloroethylcyclophosphamide + Chloroacetaldehyde 1.00E−06

R08277 Reaction 4-Hydroxycyclophosphamide <=> 4-Ketocyclophosphamide 3.23E−02

R08278 Reaction 4-Hydroxycyclophosphamide <=> Aldophosphamide 2.08E−03

R08286 Reaction Ifosfamide <=> Dechloroethylcyclophosphamide + Chloroacetaldehyde 1.00E−06

R08287 Reaction Ifosfamide <=> 2-Dechloroethylifosfamide + Chloroacetaldehyde 1.54E−05

R09128 Reaction 2-Chloroethanol:cytochrome c oxidoreductase 1.00E−06

C06754 Compound Chloroacetaldehyde 1.00E−06

C07047 Compound Ifosfamide 5.24E−05

C07643 Compound 4-Hydroxycyclophosphamide 6.18E−04

C07888 Compound Cyclophosphamide 1.00E−06

C13624 Compound Bisphenol A 1.00E−06

C13629 Compound 1,2-Bis(4-hydroxyphenyl)-2-propanol 1.00E−06

C16550 Compound Dechloroethylcyclophosphamide 1.00E−06
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development of OS [38]. In addition, CFLAR is a com-
mon therapeutic target in various human cancers includ-
ing OS [39]. A previous study shows that miR-20a can
be used to suppress OS cell proliferation and invasion
through CFLAR [40]. CAT encodes catalase, which was
found to be involved in regulating the generation of re-
active oxygen species, thereby affecting the cytotoxic ef-
fects of pimozide on OS cells [41] and regulating
apoptosis of p53 null OS MG63 cells [42]. Furthermore,
as a potential target in OS treatment, CXCL12 has been
proved to participate in the progression and metastasis
of bone sarcomas [43]. It is believed that the upregula-
tion of CXCL12 contributes to the positive OS outcome
[44]. Actually, the expression of CXCL12 is commonly
realized via certain biological functions [45]. Gulino
et al. showed that CXCL12 takes part in the variation of
mature polymorphonuclear via altered leukocyte re-
sponse [46]. A previous study indicates that CXCL12
takes part in the trauma and sterile inflammation via
leukocyte migration [47]. These studies emphasized the
important roles of these genes in the development and
progression of OS.
Finally, a disease-metabolic network was constructed

including two disease-associated metabolites BPA and
cyclophosphamide. Among the disease-metabolites net-
work, C13624 (BPA) showed interactions with all the 6
DEGs were considered as the key OS associated-
metabolite. BPA is a widely studied typical endocrine-
disrupting chemical [48]. It is closely associated with the
clinical treatment of OS [49]. A previous study shows
that BPA contributes to the decreasing activity of OS
cells and the inhabitation of cell proliferation [50]. Actu-
ally, BPA is considered as a prioritized effect biomarker
for human biomonitoring [51]. The relationship between
BPA and disease risk prediction has already been investi-
gated in a previous study [52]. Our results revealed that
BPA interacted with multiple prognosis-related genes,
such as CXCL12, STC2, and CFLAR. Thus, we specu-
lated that BPA might be an important metabolite in-
volved in the development of OS by interacting with
different genes.
There were some limitations in the current study.

(1) The selected GEO dataset was generated from 19
human OS cell lines and 4 human normal bone tissue
samples. There might be differences between human
tissue samples and cell lines, and differences among
different cell lines. In addition, the validation qPCR
was performed on the human OS 143B cell line and
murine pre-osteoblast MC3T3 cell line. Therefore, a
study based on human OS tissue samples and
matched adjacent normal samples should be carried
out to eliminate the confounding factors. (2) The
disease-associated metabolites and metabolite-gene in-
teractions were predicted using online databases. To

obtain more reliable results, an integrated analysis
based on metabolomics data and transcriptomics
should be performed to investigate the differential
metabolites and their roles in the development of OS.
(3) Eight prognosis-related genes were screened. How-
ever, their prognostic value had not been confirmed,
and their clinical value should be further evaluated by
clinical data.

Conclusion
In conclusion, eight prognosis-related genes were identi-
fied in OS. The downregulated CXCL12 might take part
in the progression of OS via participating in the
leukocyte migration function. Moreover, mRNAs includ-
ing CXCL12 and STC2 might be two novel biomarkers
for OS. Furthermore, BPA might be an important me-
tabolite interacting with multiple prognosis-related
genes in OS.
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