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INTRODUCTION 
 

By 2050, more than 130 million people are estimated to 

have dementia worldwide [1]. It is thought that there 

will be nearly 10 million new cases every year [2]. AD, 

the most frequent cause of dementia, is a 

neurodegenerative disease. In AD, the accumulation of 

cerebral amyloid-beta has usually been occurring for 

more than 20 years before the onset of dementia [3]. At 

the dementia stage, neuronal damage progresses 

together with the accumulation of tau protein [3]. The 

necessity of targeting preclinical or prodromal AD in 

clinical trials for preventing dementia due to AD is now 

widely recognized [4, 5]. However, no clear evidence of 

pharmacological treatments or daily life improvement 

for preventing the development of dementia has been 

demonstrated [6, 7]. 

 

In recent years, the role of neuroinflammation in the 

pathogenesis of AD has received attention [8–10]. In 

addition to cells in brain tissue, blood vessels and blood 

cells also have potent effects on neuroinflammation. The 

pursuit of drug targets other than the inhibition of senile 

plaques accumulation or neurodegeneration would be 

hoped [11]. The innate immune system contributes to 

neuroinflammation [9, 12, 13]. It has been shown that 

MPO-mediated inflammatory responses caused by the 

production of HClO radicals play a role in the 

progression of AD [14–18]. In AD patients, it has been 

confirmed that MPO expression increases in brain tissue 
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[14], and it has also been reported that the MPO level 

increases in the blood [18]. In addition, in an Asian 

cohort study, MPO rs2333227 polymorphism was 

positively associated with AD risk and MPO 

accumulation in the plasma [15]. Animal model studies 

have also provided evidence that MPO is involved in the 

development of AD. It has also been reported that MPO 

activity inhibition improves cognitive functions in the 

AD model mice [19, 20]. 

 

Anserine is among the molecular species called histidine-

containing dipeptides [21–25]. They exist at high 

concentrations in the muscle of some vertebrate species 

and are known to have antioxidative activity toward 

HClO radicals [21, 26–28]. The beneficial effects of ACS 

on cognitive functions were demonstrated in previous 

trials, in which the test material derived from the chicken 

extract was used to provide the study subjects 1000 mg 

mixture of anserine and carnosine (approx. 3: 1 weight 

ratio) per day, for 3 - 12 months [29–34]. It was shown 

that ACS suppressed cognitive decline in normal subjects 

[29–31, 33, 34] and might promote reversion to 

cognitive-normal in MCI subjects [32]. Carnosinase, 

present in serum and brain, is thought to degrade 

carnosine quickly when orally taken [21, 35]. Therefore, 

we hypothesized that anserine would function as an 

active compound. In an animal model, anserine alone 

protects against cognitive decline in AD model mice 

[36]. In the present study, we conducted a randomized, 

double-blind, placebo-controlled trial in which the test 

substance was anserine, and the subjects were with MCI. 

 

RESULTS 
 

Study individuals 

 

Of 58 participants, the conditions of 36 individuals were 

diagnosed as MCI, considering their history and presence 

at an interview with the assistance of a psychological test 

battery. Both the active arm and placebo arm registered 

18 after randomization, as shown in Figure 1. Among 

them, 30 individuals completed the examinations at 

follow-up (15 in the active arm and 15 in the placebo 

arm). Table 1 shows the characteristics. All reported an 

ingestion rate of over 90% on their self adherence 

records. The amounts of anserine and carnosine intake 

from daily meals estimated from a dietary survey were 

found to be equivalents between the two arms. 

 

Test formulae 

 

The test formula for the active arm contains purified 

anserine (> 93%) from salmon meat. The active arm's 

supplement consisted of anserine powder, dextrin, 

maltose, sweeteners (stevia and sucralose), flavor, 

vitamin C, citric acid, and ferulic acid. Table 2 shows the 

amounts contained in a package. The anserine in the 

active food was replaced by dextrin in the food in the 

 

 

Figure 1. Flow diagram showing the number of subjects during the study. Baseline test: The test at the start of the intervention. 

Follow-up test: The test at twelve weeks after the start. 
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Table 1. Characteristics of the study subjects who completed the study at baseline. 

 Active group Placebo group p value 

Age  74.5±4.6 a 72.0±5.2 0.17 

Gender (M/F) 11/4 8/7 0.26 

BMI 21.9±2.2 21.4±2.1 0.49 

Years of education 15.4±2.5 15.0±1.9 0.62 

Daily anserine (mg) 335±55 368±42 0.71 

Daily carnosine (mg) 162±33 171±20 0.86 

aAverage ± Standard Deviation. 

 

Table 2. Test Formulae. 

Ingredient Active Placebo 

Anserine 250 mg 0 mg 

Ferulic Acid (FA) 15 mg 15 mg 

Vitamin C (VC) 75 mg 75 mg 

Citric Acid 200 mg 200 mg 

Maltose 500 mg 500 mg 

Sweeteners 11 mg 11 mg 

Flavor 7 mg 7 mg 

Dextrin 942 mg 1192 mg 

Total 2000 mg 2000 mg 

 

placebo arm. The supplement provided for both arms 

was indistinguishable by sight, smell, or taste. In an 

antioxidant assay, anserine was shown to be a potent 

HClO scavenger. It specifically removed the toxicity of 

HClO (Figure 2). Ferulic acid scavenged the toxicity of 

OH radicals, and vitamin C did that of ONOO radicals. 

We provided two packages a day so that the active arm 

subjects would ingest 500 mg of anserine per day, 250 

mg both in the morning and the evening. 

 

Analysis of efficacy on cognitive functions in subjects 

 

Table 3 shows the results of the MMSE. We detected a 

significant difference between the active arm and the 

 

 
 

Figure 2. Anserine as a scavenger for hypochlorous acid, HClO. HClO (5.0mM), HO · (10mM), ONOO · (5.0mM). R: Reference protein, 
C: Control, A: Anserine, F: FA, V: VC, M: Mixture. 
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Table 3. MMSE psychometric test data for the participants who completed the trial. 
 

Baseline Follow-up Change (Time x Treatment) 

Active Placebo Active Placebo Active Placebo p value 

MMSE 25.5±2.1 26.9±2.8 27.3±1.8 26.9±3.0 1.8±2.0 0±2.5 0.036* 

ap value less than 0.05 is shown by *. 

 

placebo arm in the primary outcome, the change value of 

MMSE scores (Two-way repeated ANOVA (Time x 

Treatment), F(1,28) = 4.8462, p = 0.036). As shown in 

Figure 3, no subject in the active arm deteriorated the 

score of MMSE. In the placebo arm, two subjects fell 

below the cutoff score for dementia (23/24) of MMSE, 

and both of them reported symptoms that did not 

contradict the onset of dementia. We did not detect any 

difference in the change score of ADAScog between the 

two arms (p = 0.92). The score change of the active arm 

was -0.4 ± 3.2, and that of the placebo arm was -0.3 ± 

2.6. To evaluate the contribution of daily intake of 

anserine or carnosine to the score change of MMSE, we 

performed a multiple regression analysis (Table 4; 

regression variation, p = 0.0014). A negative effect of 

the daily anserine intake (partial regression coefficient = 

-0.0109, p = 0.0209) and a positive effect of the daily 

carnosine intake were found on the improvement of the 

MMSE scores in the twelve weeks of anserine 

supplementation. The greater benefit of anserine 

supplementation was suggested in individuals taking less 

anserine from daily meals. 

Clinical safety 

 

A participant in the active arm had felt like heatstroke 

before the tests at baseline and rescheduled the 

participation, then scarcely ingested the test food and 

dropped out due to dizziness in the way. Four 

participants, comprised of two in the active arm and two 

in the placebo arm, dropped out due to unknown reasons 

during the intervention. No cause-and-effect relationship 

about adverse effects was reported or suggested. 

 

Effect of anserine treatment on the blood CRP-level 

 

To investigate the mechanism of the anserine’s action in 

the brain, we tested fourteen elderly volunteers from the 

participants of the above-mentioned RCT for blood 

before and after the seven days of oral anserine 

supplementation. We noted a significant decrease in the 

blood CRP (p = 0.036, after the paired t-test). We did 

not observe significant differences in the level of MPO 

and the tau-P 181 after the anserine treatment (data not 

shown). 

 

 
 

Figure 3. The distribution of the MMSE scores change. A dot shows the points of individual improvement. A bar shows the average in 

the placebo-administered subjects or the anserine-administered subjects and ± Standard Deviation. 
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Table 4. Multiple regression analysis of the change score of MMSE with the amount of anserine and carnosine. 

Variable 
Partial regression 

coefficient 

Standard 

error 

Standard partial 

regression coefficient 
F value t value p valuea 

Active/Placebo (1/0) 1.5710 0.6214 0.4426 6.3915 2.5281 0.0176* 

Anserine (mg/day) -0.0109 0.0045 -1.8426 6.0140 -2.4524 0.0209* 

Carnosine (mg/day) 0.0240 0.0087 2.0279 7.5088 2.7402 0.0107* 

ap value less than 0.05 is shown by*. 

 

In an independent study, elderly volunteers ingested 750 

mg of anserine and 250 mg of carnosine and provided us 

venous blood samples. The plasma samples obtained 

before, 20 min, 40 min, 60 min, 80 min, and 120 min 

after the ingestion were tested for the anserine and 

carnosine levels. The maximum anserine concentration 

was reached between 40 and 60 minutes, and the half-

life of anserine's blood concentration was shown to be 

about an hour (Figure 4), while the transfer of carnosine 

from the digestive system to the blood was not detected. 

We investigated the relationship between anserine's 

blood concentration and the change value of the serum 

CRP in the subjects of the anserine administration for a 

week (Figure 5). A significant correlation was detected 

between the blood anserine level and the decrease in 

CRP level (ΔCRP = -0.004 x (plasma anserine 

concentration) – 0.0665; n = 14, R2 = 0.79, p < 0.05). 

 

DISCUSSION 
 

In the present study, we have shown for the first time 

that the effect of anserine, a natural HClO-scavenger, on 

the cognitive function in persons with MCI. Previous 

studies from our laboratory and others showed that 

anserine/carnosine supplementation at a dose of 1000 

mg per day (anserine 750mg and carnosine 250mg) 

helps preserve cognitive function and keeps brain blood 

 

 
 

Figure 4. The concentration of blood anserine after 
ingestion. Dots and bars show the average ± Standard Deviation. 

flow [29–34]. In our last trial [32], MMSE was used to 

evaluate the effect of anserine supplementation at a dose 

of 750 mg per day for 12 weeks. In the present trial, a 

lower dose of the possible active compound, anserine, 

was challenged. As a result, we detected a significant 

improvement with anserine (500 mg/day), as the change 

in the MMSE scores was 1.8 ± 2.0 in the active arm, 0 ± 

2.5 in the placebo arm. Besides, daily anserine intake 

was found to affect the benefit of anserine 

supplementation. Very recently, in the Hisayama cohort, 

Hata et al. have demonstrated an inverse correlation 

between the risk of dementia onset and the serum level 

of beta-alanine, a metabolite of anserine [37]. In line 

with these observations, Toh et al. have revealed that 

anserine's daily consumption has favorable cognitive 

effects, especially in the memory domain, in a meta-

analysis [38]. Therefore, it can be reasonably postulated 

that oral anserine supplementation benefits elderly 

individuals with the risk of dementia. 

 

Neuroinflammation in the pathogenesis of AD has been 

attracting attention [8–10]. We have demonstrated that 

imidazoledipeptides control microglia appearing near the 

damaged brain tissues and take part in regulating 

inflammatory responses in a transgenic AD mouse 

model [36, 39]. However, the mechanism of controlling 

 

 
 

Figure 5. The concentration of blood CRP (C-Reactive 
Protein) after the anserine treatment. Dots show the data of 

the individuals. Bars show the average ± Standard Deviation. 
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microglia had been unresolved. In a transgenic AD 

mouse model, it was well shown that the innate immune 

system, including neutrophils, contributes to the 

neuroinflammation and the memory decline in the AD 

mice [40, 41]. Zenaro et al. have reported that 

neutrophils adhered to vascular walls and enter brain 

tissue toward the senile plaques in the brain of AD 

model mice and AD patients. They found the 

accumulation of MPO around neutrophil extracellular 

traps (NETs) in the brain of AD model mice and AD 

patients. Very interestingly, they also demonstrated that 

the administration of antibodies against LFA-1, a 

molecule involved in the adsorption of neutrophils to the 

vascular walls, reduced the accumulation of senile 

plaques in brain tissue, subsided the activation of 

microglia, and improved memory function in the AD 

model mice [40]. Recently, Cruz Hernández et al. have 

reported transient clogging of micro-capillaries observed 

in AD model mouse brain through two-photon live 

imaging. Neutrophils, in collaboration with erythrocytes 

and platelets, were involved in this clogging. The 

administration of antibodies for one of the neutrophils' 

surface markers, Ly6g, improved the clogging and 

memory function shortly [41]. 

 

The facts of cognitive improvement by suppressing MPO 

activity in AD model mice considered together [19, 20], 

reasonable speculation could be that in the progression of 

AD, neutrophils adhere to neurovascular walls to release 

MPO, and MPO produces HClO radicals to generate 

neuroinflammation. In our previous studies, carnosine 

supplementation recovered the blood-vessel abnormality 

in these mice [39]. Anserine supplementation in AD 

model mice significantly prevented damage in brain 

microvascular pericytes [36]. Anserine has specific 

antioxidative activity against HClO radicals [42], as 

shown in Figure 2. In our previous study utilizing an 

MRI method, Arterial Spin Labeling (ASL), the ingestion 

of imidazole dipeptides for 3-12 months improved 

cerebral blood flow in the healthy elderly subjects [29, 

30]. It has also been suggested that erythrocytes [43–45] 

or platelets [46] take in anserine, though the anserine 

level in the plasma just transiently increases after every 

oral intake [47, 48]. In our preliminary test of 1000 mg 

anserine supplementation per day with four adult healthy 

volunteers, the elevation of anserine concentration in 

platelets was observed by a high-spec LCmsms method, 

45 min after the ingestion (CL, HL, TH; unpublished 

observation). Besides, several reports are suggesting that 

neutrophils take in imidazole dipeptides, anserine and 

carnosine, through PEPT2 [49], which transports the 

ligand of Nucleotide-binding Oligomerization Domain 

(NOD) receptor such as MurNAc-L-Ala-D-isoGlu 
(MDP) [50–52]. There are also a series of reports 

showing that imidazole dipeptides repel the toxicity of 

HClO generated by MPO [21, 42, 45, 53]. Therefore, we 

could reasonably speculate as follows; neutrophils, 

erythrocytes, or platelets take in anserine, then the 

anserine in these blood cells scavenges the HClO radicals 

produced by MPO from neutrophils in the brain 

capillaries, thereby suppressing blood flow stagnation to 

protect cognitive functions. 

 

In line with our findings on anserine for AD, Peters et al. 

have very recently demonstrated that anserine 

ameliorated diabetic nephropathy and halved proteinuria 

in diabetic mice (db/db) [54]. They also reported that 

anserine has more vigorous antioxidative activity than 

carnosine [54, 55], which was consistent with the 

treatments for diabetic nephropathy with carnosine or its 

derivative [56–58]. In addition to AD and diabetes, 

imidazole dipeptides exert antioxidative effects against 

inflammation in various diseases such as renal 

nephropathy, retinal degeneration, or pneumonia [21, 59]. 

Their pathogenesis involves neutrophil-mediated MPO 

activities [60, 61]. Our pilot monitoring for the present 

trial revealed statistically significant improvement in the 

blood creatinine level among the ten healthy adult 

volunteers administered 500 mg of the anserine 

supplementation every day for 12 weeks (data not 

shown). It suggested a potential effect of anserine on 

renal microvasculature. Also, virus-induced acute lung 

injury and MPO-mediated septic shock were relieved 

with imidazole dipeptides in rodent models [62–64]. 

Evidence of anserine against acute or chronic 

inflammation may support the notion that oral anserine 

intake is useful for protecting against the harm of 

endogenous HClO. 

 

In this communication, we have proposed that daily 

intake of anserine supplementation at a dose of 500 mg 

per day helps preserve cognitive functions in elderly 

individuals with MCI by suppressing HClO radicals' 

actions. There may be some complementary beneficial 

effects by the additives adopted, vitamin c or ferulic acids, 

to reinforce the inhibition of MPO-HClO-mediated 

inflammation by anserine. There are reports that both 

vitamin c and ferulic acid provide favorable effects for 

AD patients [65–68]. Their antioxidative activity against 

HClO may synergize with anserine since vitamin c 

removes ONOO- radicals and ferulic acids do HO- 

radicals (Figure 2). 

 

Accordingly, in the brain of elderly individuals who may 

be apt to aggravate cognitive declines due to AD, the 

production of HClO radicals from NETs in the brain 

parenchyma surrounding senile plaques presumably 

damages not only astrocytes but also microglia to 

promote neuroinflammation. Before the penetration of 
neutrophils into the affected brain parenchyma, anserine 

in the intracellular spaces of neutrophils, platelets, and 

erythrocytes in the brain micro-capillaries may remove 
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the harmful effect of HClO [69–72]. This study proposes 

the molecular strategy to control MPO-HClO-NETs 

cascade, leading to brain micro-capillaries' damage and 

the cognitive declines associated with AD dementia, by 

a natural antioxidant, anserine, that is a potent scavenger 

for HClO radicals. 

 

Limitations 

 

In this study, the subject individuals were selected 

utilizing a cutoff value of the MoCA test [73], which is 

often used as a reference to diagnose MCI. However, 

we did not thoroughly examine the subtypes of MCI. 

There is a lack of experimental data regarding the 

incorporation of anserine into neutrophils after oral 

intake. In the present study, the efficacy of anserine was 

examined in three months. We would like to know how 

long this beneficial effect on cognitive functions will 

last. Long-term observation is awaited. 

 

CONCLUDING REMARKS 
 

In this communication, we noted that anserine has a 

cognitive improvement effect in persons with MCI, 

probably through a mechanism in which anserine 

scavenges HClO radicals generated by MPO released 

from neutrophils in the brain microcapillaries. 

 

MATERIALS AND METHODS 
 

Study design 

 

This study is a randomized, double-blind, placebo-

controlled trial conducted to evaluate anserine's effects 

on community-dwelling individuals with MCI and in 

generally healthy physical condition. This study was 

approved by the Ethics Committee of The University of 

Tokyo (ID 17-218). This study was registered in the 

UMIN Clinical Trials Registry (UMIN000032319). The 

protocol of this study was in accordance with the 

Declaration of Helsinki and the Ethical Guidelines for 

Medical and Health Research Involving Human subjects. 

The participants were enrolled in the present trial by a 

responsible doctor. The randomizing allocation was 

planned to include equal numbers of subjects in the 

active arm and the placebo arm. To detect 1.5 point 

difference for the MMSE score with a type1 error 

protection of 0.05 and 80 % of power assuming a 

standard deviation (SD) of 1.5 from the results of the 

previous studies [32, 74], we performed a calculation to 

get a result that the number of necessary subjects in the 

present trial was 30. All of the study subjects and the 

clinical staff were blinded about the allocation through 
the follow-up test. The assignment to the two arms was 

performed by a third party (Imepro Inc., Tokyo, Japan), 

who also delivered the test formula to the participants. 

Participants 

 

The present trial included 12 weeks for intervention that 

started in July 2018. The study participants were 

expected to be generally healthy and not demented. 

They walked to the cognitive testing site in the suburb 

of the Tokyo Metro Area. We invited some of the 

present trial participants because they had scored 25 or 

less on the Montreal cognitive assessment (MoCA) 

[73], more than a month previously. All the participants 

received a detailed explanation of the present study's 

purpose and procedure and provided written informed 

consent. The inclusion criteria were as follows: (1)  

the MoCA score is 25 or less at baseline [73], (2)  

a responsible doctor contradicted the diagnosis of 

dementia. The exclusion criteria were as follows: (1) 

acute or sub-acute illness of local brain lesion due to head 

injury, brain ischemia, or brain tumor, (2) the usage of 

donepezil, galantamine, rivastigmine, memantine, or 

imidazole dipeptides in the previous six months, (3) a 

history of a severe psychiatric illness or any obvious 

symptom or sign of psychiatric disorder at present, (4) 

the use of psychopharmaceuticals at present, other than 

sleep medication in the night, (5) allergy to salmon, (6) 

inability to walk to the test site, (7) participation or a plan 

to participate in another trial, (8) judgment of inadequacy 

to enroll by a responsible doctor [32]. 

 

Inventory of anserine and carnosine in the everyday 

diet 

 

A dietary survey was conducted using a semi-quantitative 

method reported elsewhere to estimate anserine and 

carnosine intake from the usual diet, as described 

previously [32]. At the baseline and follow-up, 

participants filled out a self-administered questionnaire on 

the frequency of animal meat (chicken, pork, and beef) or 

fish (divided into salmon, red-meat fish represented by 

tuna, white fish, blue-back fish represented by mackerel, 

and eel) in their diet during the previous 12 weeks. 

 

Test formulae 

 

We started by considering the effects of 

imidazoledipeptides ingestion on their blood 

concentration. In an independent assay, elderly volunteers 

ingested 750 mg of anserine and 250 mg of carnosine. We 

sampled the plasma of venous blood before and after the 

ingestion. The plasma was deproteinized with 

trichloroacetic acid (final concentration 5%) and filtered 

through a 0.45 μm filter to prepare HPLC samples. The 

method by Dunnett and Harris was partially modified and 

applied to quantify histidine-related compounds [75]. 
Carnosine was hardly absorbed into the vascular system 

or rapidly disappeared from the blood after ingestion 

comparatively to anserine, described in Figure 4. 
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Therefore, we tried to prepare a test food that includes 

anserine only as an imidazoledipeptide for planning the 

present trial. Salmon was chosen as the raw material as it 

is free of carnosine, but abundant in anserine [21]. 

Purification of the processed material through a cation-

exchanger and nano-filtration unit, utilized in the previous 

study [32], enabled us to remove creatinine, as well as 

odors specific to fish products, from anserine powder. For 

evaluating antioxidative activities toward radicals, HClO 

radicals were prepared by diluting sodium hypochlorite 

solution with Dulbecco’s buffered saline pH 7.2 (Wako). 

OH radicals were prepared just before the protein 

degradation assay by modification of the Fenton reaction. 

Briefly, 1ml of 130mM H2O2 was added to 100 μl each of 

100mM EDTA, 100mM FeCl3 · 2H2O. ONOO radicals 

were prepared by the quench reactor method, as described 

before [42]. For protein degradation assay to evaluate the 

antioxidative activities of each ingredient, egg white 

protein (Ovalbumin, Sigma Chemicals, St. Louis, MO) 

dissolved in buffered saline at a concentration of 2.5 

mg/ml was used as the target protein. A 200-μl aliquot of 

protein solution was placed in a 1-ml centrifugal tube and 

mixed with 25μl of the solution containing each 

antioxidant. The final concentrations of the active 

ingredients were 5mM for anserine (Ans) and vitamin C 

(VC), and 0.5mM for ferulic acid (FA). 

 

Cognitive tests 

 

To evaluate the cognitive function of participants, we 

utilized MMSE as a primary neuropsychological test. We 

obtained MMSE scores from every subject before and 

after the intervention period. We also obtained ADAS 

scores [30] to evaluate cognitive declines' progression 

related to dementia to apply the exclusion criteria. 

 

Safety evaluation 

 

In the previous randomized controlled trial conducted 

for 12 weeks with MCI individuals [32], we observed no 

adverse effect considered to have a cause-and-effect 

relationship with anserine administration of more than 

500 mg per day. Besides, we have preliminarily 

monitored ten healthy adult volunteers who ingested the 

active supplement containing 500 mg of anserine, the 

same amount as in the present trial, every day for 12 

weeks. There was no adverse effect or significant 

exacerbation in the items of blood biochemistry tests. In 

the present study, a responsible doctor interviewed the 

individuals who came to the follow-up test concerning 

any symptoms they could have. 

 

Statistical analysis 

 

To examine the effects of anserine supplementation on 

cognitive function, we performed a two-way repeated 

ANOVA (Time [baseline or follow-up] x Treatment [the 

active (anserine) or placebo]. A p value of less than 0.05 

was defined as statistically significant. Data are shown 

as mean ± standard deviation (SD). 
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