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Pathogenic Mechanisms of Idiopathic Nonallergic Rhinitis
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Idiopathic nonallergic rhinitis (iNAR) has been difficult to define
because of the long differential diagnosis of rhinopathy in the
absence of allergic rhinitis. iNAR has traditionally been a diagnosis
of exclusion with no clear unifying pathophysiology. Increased
sensitivity to triggers such has climate changes, cold air, tobacco
smoke, strong odors, and perfumes have been thought to be char-
acteristic, but recent studies do not support this hypersensitivity
hypothesis. New investigations of the local nasal environment and
systemic “functional” syndromes have offered new insights into this
condition. iNAR may be a heterogenous disorder that includes (1)
anatomic abnormalities requiring nasal endoscopy for diagnosis, (2)
incipient, local atopy (entopy), (3) dysfunction of nociceptive nerve
sensor and ion channel proteins, and (4) autonomic dysfunction as
found in chronic fatigue syndrome and other functional disorders.
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INTRODUCTION

Idiopathic nonallergic rhinitis (iNAR) is the diagnosis that
remains after inflammatory, eosinophilic, atopic, infectious,

drug, endocrine, and structural etiologies have been excluded.
iNAR subjects have been presumed to have sensitivity to
inhaled irritants, and symptom complexes polarized to either
(a) sneezing and drip or (b) congestion. Published evidence
suggests that iNAR is a heterogenous disorder that includes
(1) anatomic abnormalities requiring nasal endoscopy for
diagnosis, (2) incipient, “endogenous” atopy (entopy), (3)
nociceptive nerve dysfunction, and (4) autonomic dysfunc-

tion as found in chronic fatigue syndrome and other systemic
“functional” syndromes.

ANATOMY AS DESTINY
“Anatomy as destiny” may hold for people with nasal

deformities and complaints but negative allergy skin tests. De-
viated nasal septums are common findings. The deviations may
cause narrowing of the middle or inferior turbinate on the side of
the deviation, and hypertrophy of the turbinates into the space
vacated on the contralateral side. In general, rhinitis symptoms
are proportional to the degree of list of the septum.1 Collapse of
the nasal tip and fleshy swelling of the alae nasi can obstruct the
anterior nasal valve and increase nasal airflow resistance and is
more prevalent in the elderly.2 However, not all anatomic
changes cause symptoms. Magnetic resonance imaging and CT
scans taken to evaluate neurologic or orbital disease (n � 3000)
revealed high rates for mucosal thickening �4 mm (10%–15%),
asymptomatic air-fluid levels (2.8%–4.6%), and even opacifi-
cation of 1 sinus (2.9%–3.8%).3–6 McAuliffe et al proposed that
nasal turbinate mucosal contact points were responsible for
referred pain.7 Although still a popular notion, retesting at these
points did not confirm any relationship to either pain or rhinopa-
thy.8,9

Turbinate hypertrophy is a frequent cause of nasal ob-
struction leading to turbinectomy or other surgical procedures.
However, very little is known about the pathophysiology of this
condition.10 Hypertrophic turbinate tissue is often used as a
“normal” control for studies of nasal polyps. This is inappropri-
ate because turbinate histology depends on the patient patholo-
gy.11 Septal deviation with compensatory hypertrophy of the
inferior turbinate showed normal glands with some fibrotic areas
around vessels when compared with normal tissues. Perennial
allergic rhinitis tissue had glandular hypertrophy and interstitial
edema. Glandular hypertrophy is also found in chronic rhinosi-
nusitis without nasal polyps.12 The excessive secreted mucus
may cause postnasal drip with throat-clearing cough or thick,
tenacious anterior discharge. This condition will not respond to
vasoconstrictors. The most striking changes were found in “va-
somotor rhinitis” where there was a decrease in the size of
glands and fibrosis of the lamina propria.11 This study requires
prospective confirmation using patients who have been carefully
evaluated preoperatively. Without similar evaluations, studies
using “hypertrophic turbinates” to represent the “normal” state
must be viewed with caution. Intranasal steroids were able to
decrease turbinate hypertrophy measured by CT scan.13 The
tissue structure(s) that were reduced in size were not identifiable
by imaging.

Anatomic abnormalities should be excluded by nasal
endoscopy.
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ENTOPY
Entopy refers to localized nasal allergy without sys-

temic evidence of atopy.14 Cutaneous and blood allergy tests
are negative and eosinophilia is absent. However, subjects
have intermittent “seasonal” (seasonal nonallergic rhinitis,
SNAR) or “persistent” (persistent nonallergic rhinitis,
PNAR) symptoms that suggest waxing and waning allergic
rhinitis. Previously reported glucocorticoid-responsive iNAR
subjects may also have had entopy.15

Evidence of allergic inflammatory cells would support
the concept of entopy. Previous nasal biopsy studies of very
strictly defined perennial nonallergic rhinitis subjects found
no significant elevations of nasal mucosal lymphocytes, an-
tigen-presenting cells, eosinophils, macrophages, monocytes,
mast cells, and other immunoglobulin E (IgE)-positive cells
between iNAR patients and nonrhinitic controls.16,17 Inflam-
mation was unlikely because virtually all referred patients
had been previously treated with intranasal glucocorti-
coids.18,19 Only 2 of 65 had nasal eosinophilia.

In contrast, Powe et al were able to identify immunohis-
tological differences between perennial allergic rhinitis, nonal-
lergic rhinitis, and nonrhinitic control subjects.20 They used full
length inferior nasal turbinate resection tissue and so may have
been able to include patches of densely clustered inflammatory
leukocytes in their cell density measurements. PNAR had sig-
nificantly higher densities of total (CD3�), activated (CD25�),
and allergen-naive (CD45RA�) T lymphocytes in their nasal
mucosa (P � 0.025) than normal controls. However, CD4� and
other lymphocytes had equivalent numbers in IR and PAR that
were higher than those for controls. Some of these lymphocytes
may have distinct T regulatory, interleukin-17, and other phe-
notypes. This remains to be explored. IR had significantly more
CD8� cells than PAR (P � 0.02) and control subjects. PAR
subjects had significantly greater epithelial HLA-DR�� cell
staining than IR (P � 0.007). Mucosal mast cells were elevated
in both PAR and IR groups. Submucosal mast cells were
positively correlated with CD45RA� cells in PAR (P � 0.03).
In contrast, these mast cells were positively correlated with
CD8� cells in IR (P � 0.02). Other studies that have measured
tryptase and histamine in nasal lavage fluids probably lacked the
sensitivity to identify the small magnitude of mast cell changes
that may be present in IR. These studies require follow-up with
quantitative reverse transcriptase-polymerase chain reaction, in
situ hybridization, and other advanced investigations to deter-
mine whether there is a subtle but potentially pathogenic in-
crease in mast cell populations in IR.

Nasal lavage fluid contained low levels of IgE to
Dermatophagoides pteronyssinus in 22% of 50 PNAR sub-
jects.21 Nasal provocation tests with Der p 1 were positive by
acoustic rhinometry in 54% of this PNAR cohort and 100%
of Der p 1 positive skin test PAR subjects. Nasal lavage fluid
from PNAR subjects contained 6.0 � 5.0 �g/L eosinophil
cationic protein, which was significantly higher than that in
nonrhinitic controls (2.1 � 2.2 �g/L). PAR subjects had the
highest levels (15.0 � 17.0 �g/L). The profiles of CD4� and
other leukocyte subsets were equivalent for PNAR and PAR
after challenge, and distinct from nonrhinitic controls. Both
immediate and dual immediate plus late-phase responses

were identified after grass pollen extract in 22/35 PNAR
subjects.22 Nasal IgE to grass was detected in 35% of the
PNAR subjects with positive nasal provocations, suggesting
that the provocation may be more sensitive an indicator than
a radioallergosorbent test or similar IgE tests in lavage fluid.
These studies suggest that 22% to 63% of PNAR subjects
from this population had entopy.

Other studies have not supported the entopy concept.
Provocations with multiple glycerinated extracts identified
4/20 who responded to glycerin alone and so were disquali-
fied as placebo responders.23 Alternatively, these 4 may have
had nociceptive hyperresponsiveness or multiple chemical
sensitivity. Eleven of 20 patients had negative nasal chal-
lenges. Only 5 had positive challenges defined by total
symptom scores. However, repeat provocations were all neg-
ative. These results were in contrast to those of Powe et al and
Rondon et al,20–22 who used single allergens in aqueous
solutions rather than glycerinated stocks. Acoustic rhinom-
etry may be a more sensitive and objective outcome than total
symptom scores and peak nasal inspiratory flow rates,
whereas nasal eosinophil counts would not be expected to
change during the provocation.

Future studies may need to be stratified by positive
allergen nasal provocation or allergen-specific IgE levels in
nasal lavage fluid to determine if entopy is a significant
mechanism in iNAR.

NOCICEPTIVE DYSFUNCTION
The trigeminal nerve innervates the nasal mucosa

through its first ophthalmic and second maxillary branch.24 It
contains fast conducting, myelinated type A� and slow con-
ducting nonmyelinated type C nerve fibers. The distal axons
become highly branched. The deep venous sinusoids and
arteriovenous anastomoses are richly innervated. The submu-
cosal glands and their vessels have a network of fibers
surrounding each acinus. Superficial lamina propria vessels
are relatively poorly innervated. The very fine, smooth nerve
endings are embedded in the tight junctions between epithe-
lial cells. It is not known if these are derived from both A�
and C fibers or only C fibers.

Numerous sensations from the nasal mucosa chemo-
sensory and mechanicosensory afferents are perceived at the
cortical level. Rapidly transmitted (A�) sensations include
heat, burning pain (“First Pain”), and cold.25 These afferents
innervate brainstem systems that regulate the breath-to-breath
work of breathing and rapidly activated systemic avoidance
behaviors. Type C neurons convey the slower onset sensa-
tions of discomfort, paresthesia, and gentle touch. They may
also convey the sensations of mechanical stretch caused by
engorgement of venous sinusoid walls and changes in epi-
thelial cell dimensions when osmotic conditions change in the
epithelial lining fluid.26 Specific classes of chemicals interact
with distinct sensor proteins on epithelial cells and the nerve
endings to induce the neural depolarization.

The collection of sensor proteins on a neuron may be in
constant flux depending on the conditions of inhaled air, desen-
sitization, inflammation, and neurotrophins. Neuroplasticity of
sensors, other modulating receptors, and neurotransmitters is
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controlled in part by leukotriene B4, nerve growth factor and its
TrkA receptor, brain-derived neurotrophic factor and neutrotro-
phin-4 at the TrkB receptor, and neutrotrophin-3 at the TrkC
receptor.27 Mediators such as bradykinin and many other inflam-
matory peptides, histamine and other amines, purines (P2X
receptors), protons (acid-sensing ion channels, ASIC), potas-
sium ion channels, other leukotrienes, and arachidonic acid
metabolites may act in concert on single neurons via “stimula-
tory autoreceptors”. Combinations of these and transient recep-
tor potential (TRP) ion channels may be present on other
neurons.28 One sensor combination that seems to be important
for visceral innervation is the capsaicin receptor (TRP vanilloid
1; TRPV1), ASIC3, and P2X receptors.29,30

At least 30 of the 143 TRP proteins may be present on
nasal mucosal epithelial cells and neurons. These proteins
form homotetramers and heterotetramers, which may fine-
tune the precise conditions that activate them and lead to
neuron depolarization. TRPV3 and TRPV4 are osmorecep-
tors that may respond to mechanical torsion applied by
epithelial cells whose shapes change in response to variations
in the tonicity of the epithelial lining fluid. Evaporation to
humidify cold, dry air leads to a hypertonic fluid, whereas
inhalation of steam with condensation on the mucosa may
decrease the tonicity. These subtle changes may be evaluated
by a “thermocouple” neuron by the changes in energy gained
or lost as heat (enthalpy). TRPV3 and TRPV4 homotetramer-
and heterotetramer-bearing neurons may convey messages of

temperature between about 22°C and 40°C to the central
nervous system (Fig. 1).

TRPV1 is activated by capsaicin, ethanol, H�, local
anesthetics, and temperatures above 42°C. Activation allows
an influx of Ca2� and Na� that depolarizes the neuron. More
dangerous temperatures above 52°C activate TRPV2 ion
channels that depolarize A� nerve fibers. Cool temperatures
below 22°C activate TRP melanostatin 4 and TRPM8.
TRPM4 is also the receptor for mint; its primary function is
likely as a chemoreceptor. TRPM8 is the menthol receptor. A
population of TRPM8� A� nerve fibers are critical for as-
sessing the breath-to-breath evaporation of water from the
epithelial lining fluid and so the cooling of the superficial
mucosa. Greater cooling implies faster airflow, more evapo-
ration, a low resistance for airflow, and so nasal patency.
Cooling also affects the mobility of lysophospholipids in the
plasma membrane. This membrane fluidity is the probable
regulator of TRPM8 activity in vivo.31 The TRPM8 input to
the brain stem helps determine the muscular force required to
inhale air, and so the work of breathing. Dysfunction of this
system may contribute to dyspnea. More extreme cold acti-
vates TRP ankryn 1 ion channels. TRPA1 is the receptor for
garlic and mustard oil isocyanate compounds and tetrahydro-
cannabinol, but does not respond to menthol or
mint.

Topical nasal capsaicin is an effective therapy in
iNAR.32 The capsaicin treatment reduced congestion for as

FIGURE 1. TRP thermometer and aromatherapy. The various TRP ion channels respond to different temperatures, chemicals,
osmolarity, and other physical stimuli. The chemicals include many spices. The channels may respond to a large number of
other chemical structures. Heterotetramers of these TRP proteins may vastly increase the variety of stimuli that can lead to tri-
geminal nerve depolarization.
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long as 6 months. It had no effect in allergic rhinitis. These
data suggest that increased nociceptive nerve function plays a
role in iNAR, and that specific inactivation of TRPV1 has a
role in its treatment.

Nasal neurons are generally polymodal, but some are
relatively monomodal. Itch is mediated in part by a popula-
tion of very thin, slow-conducting neurons that express the
histamine H1 receptor.33 Gastrin-releasing peptide (GRP)
may be the neurotransmitter that relays primary itch messages
to secondary spinothalamic projection interneurons in the
spinal cord dorsal horn. Nasal neurons contain combinations
of tachykinins (substance P and neurokinin A), the potent
vasodilator calcitonin gene-related peptide (CGRP), gluta-
mate, and purines.34 Each combination is likely to convey a
distinct message through the dorsal horn interneurons. The
combinations are subject to change in response to inflamma-
tion, neurotrophins, and possibly other stimuli. These
changes may occur as part of a chronic repatterning of dorsal
horn connections that leads to hyperalgesia (“central sensiti-
zation”).25,35

The function of type C and other types of nerves can be
down-regulated by “inhibitory” autoreceptors that cause
membrane hyperpolarization. These include adrenergic �2
and �2C2, histamine H3, �-aminobutyric acid (GABA)B,
serotonin HTD3, neuropeptide tyrosine Y2, and other G-
protein coupled receptors.24 These actions may be more
important at central synapses and on efferent sympathetic and
parasympathetic neurons. Additional classes of regulatory
proteins may orchestrate depolarization, repolarization, and
hyperpolarization. For example, leucine-rich pentatricopep-
tide motif containing protein is localized to the mitochondria
of nociceptive nerves.36 A mutant isoform causes the loss of
mitochondrial cytochrome c oxidase activity followed by
neurodegeneration. Comparable mutants may lead to periph-
eral and visceral neuropathies and to alterations in the neu-
rotransmission of airway sensations such as “congestion”,
“rhinorrhea”, “sinus pain and headache”, and other iNAR
symptoms.

When sensory neurons are stimulated, a wave of depo-
larization passes throughout the central axon and the exten-
sively branched neural ramifications in the mucosa. This
depolarization is maintained and transmitted by voltage-
dependent sodium channels (Na(v)). The Na(v) family plays
a role in pain transmission.37 Genomic studies have linked
mutation of the Na(v)1.1 protein to familial hemiplegic mi-
graine headaches. A point mutation in Na(v)1.7 (F1449V)
leads to “primary erythermalgia”, a congenital disorder of
severe pain and flushing.38 Na(v)1.7 is expressed in dorsal
root ganglia with Na(v)1.8. The mutant Na(v)1.7 causes a
gain of function phenotype with hyperexcitability of nocicep-
tive nerves.39 In contrast, sympathetic neurons do not coex-
press Na(v)1.8. In these neurons, the mutant Na(v)1.7 leads to
a loss of function and decreased sympathetic activity. The
selectivity of Na(v)1.8 for dorsal root ganglion cells may
explain why its antagonists are highly selective analgesics.
Pharmacological investigation of drugs such as these and
TRPV1 antagonists on nociceptive nerve function in iNAR
are eagerly awaited.

The extensively branched neuronal processes in the
nasal mucosa have efferent functions. They have swellings
called varicosities that secrete neurotransmitters into the in-
terstitial milieu. Release of CGRP leads to vasodilation,
whereas neurokinin A, substance P, and GRP are glandular
secretagogues. This efferent function of afferent type C
nerves is the axon response, and the effects of the released
neurotransmitters are referred to as neurogenic inflammation.
In humans, unilateral hypertonic saline stimulates unilateral
sensations of first and second pain, nasal congestion and
rhinorrhea, the release of substance P into nasal lavage fluid,
and glandular exocytosis.40 There is no vascular component
of either swelling or exudation. In contrast, “chronic fatigue
syndrome” (CFS) subjects who have been found to have a
high prevalence of a form of nonallergic rhinitis41 have
significantly different axon responses. Hypertonic saline na-
sal provocation causes exaggerated pain responses, but flat
glandular secretory responses that are not dose-dependent
(Fig. 2).42 This indicates that the axon response, and so
peripheral type C neuron function, is defective in this subset
of iNAR.

CFS subjects also have greater tenderness of their sinus
regions than normal controls, allergic rhinitis, and acute and
chronic rhinosinusitis subjects.43 This indicates systemic hy-
peralgesia in CFS, with light touch leading to the sensation of
severe pain.

These findings implicate trigeminal hyperresponsive-
ness, hyperalgesia, and allodynia in this subtype of iNAR.
Under normal circumstances, primary trigeminal type C af-
ferent neurons synapse on spinothalamic projection neurons
in the 2 superficial layers of the dorsal horn of the upper
cervical spinal cord. A� and A� fibers project to spinotha-
lamic neurons in deeper laminae. This deeper set of interneu-
rons also projects back to the superficial type C projection
neurons and can increase their ability to convey pain mes-
sages. To prevent inappropriate neurotransmission of pain
signals, these same type A afferents simultaneously stimulate
interneurons that release GABA and inhibit the superficial
projection neuron. This balance may be influenced by de-
scending brain stem antinociceptive aminergic neurons that
also inhibit the superficial neurons. Glial cells communicate
with all of these cells.

Prolonged afferent activation, nerve injury, and neuro-
trophin generation lead to up-regulation of TRPV1 and prob-
ably other sensor proteins on the peripheral, mucosal nerve
endings. These nerves become easier to depolarize in re-
sponse to noxious and other stimuli. This state is termed
“peripheral sensitization”.

Peripheral sensitization leads to increased stimulation
of the type C spinothalamic projection neurons. Easier trans-
mission of pain impulses from type C neurons through these
secondary neurons to cortical centers accounts for hyperal-
gesia. As the spinothalamic and other, regulatory interneu-
rons become overstimulated from peripheral input, they adapt
by becoming more efficient at transmitting the nociceptive
input. This “central sensitization” represents spinal cord
hyperexcitability. Peripheral light touch and potentially cold
input from mechanoreceptive and other A� fibers now
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become perceived as pain (allodynia). Presynaptic opioid
receptors and calcium ion channels and postsynaptic sodium
channels and receptors for glutamate, norepinephrine, 5-HT,
and GABA are induced during central sensitization. Inhibi-
tory interneurons and descending aminergic modulatory con-
trol systems become less effective, permitting disinhibition or
facilitation of spinal cord dorsal horn neurons and worsening
of the central sensitization. Glial cells participate by become
activated and releasing cytokines and glutamate that decrease
the threshold for depolarization (increase the excitability) of
the spinothalamic projection neurons.

With this degree of dysfunction, minimal peripheral
input of any type or even spinal cord neurons can begin to
initiate autonomous messages of pain and discomfort anal-
ogous to phantom limb pain (“phantom nasal conges-
tion”?). When localized to a single organ or limb, this state
is referred to as a chronic regional pain syndrome (for-
merly, reflex sympathetic dystrophy). Generalization of
this mechanism may lead to the widespread chronic pain of
fibromyalgia and CFS. Dysfunction of the spinothalamic
projection neurons may also have detrimental effects on
the reticular and other brain stem systems leading to
autonomic dysfunction and thalamic dysregulation of vis-
ceral and other sensory input.

This spinal cord reprogramming process is consistent
with the dysfunctional rhinitis of CFS and the heightened
trigeminal chemosensitivity found in subjects with sick-
building syndrome and multiple-chemical sensitivity.44 These
supersensitive suffers may have survived natural selection by
serving as vigilant sentinels using their heightened chemical
sensitivity in the hunt for carion, mates, and the avoidance of
predators and brush fires.

The influence of cold, dry air on airway functions is
important for iNAR. Dose-dependent nasal airflow obstruc-
tion follows inhalation of cold, dry air only in nonallergic
rhinitis. Dose dependence is absent in allergic rhinitis and
nonrhinitic subjects.45 This suggests a hyperresponsiveness of
the cold-sensing neural afferents. The mechanism of the nasal

obstruction is unclear, but is presumed to involve swelling of
the deep venous sinusoids. Inhalation of histamine or brady-
kinin does not lead to dose-dependent airflow obstruction in
iNAR.46 Inhalation of cold, dry air with measurement of nasal
airflow resistance or patency by acoustic rhinometry is cur-
rently the consensus standard for objective identification of
iNAR.47

Cold air leads to excessive nasal blockage with copious
discharge in some skiers (“skier’s rhinitis”).48 The rhinorrhea
is due to a hyperactive afferent—cholinergic parasympathetic
reflex arc that can be effectively blocked with intranasal
anticholinergic drugs. This reflex must be distinguished from
the anterior discharge that is produced by the condensation of
water from humidified air being exhaled through the nose.

Indoor exercise also involves heating, cooling, and
humidifying inhaled air. Exercise caused rhinitis symp-
toms that adversely affected performance in 40% of sub-
jects drawn from a community allergy practice and an
exercise facility.49 Allergic rhinitis subjects had more
frequent symptoms both indoors (69% vs 53%; P � 0.04)
and outdoors (72% vs 41%; P � 0.001) compared with
nonallergic individuals. Anterior and posterior rhinorrhea
was the most common single symptom, being present in
half the symptomatic subjects. Nonallergic rhinitis sub-
jects were not specifically identified in this population, but
are implicated as those with negative allergy skin tests and
positive responses to exercise. Aerobic exercise leads to
potent vasoconstriction and a decongestant effect,50 but is
complicated after exercise by rebound rewarming of the
mucosa with congestion and parasympathetic glandular
secretion. This suggests that sympathetic nervous system
hypofunction may also contribute to exercise-related rhi-
norrhea and other complaints. More focused studies will be
required to investigate the mechanism(s) in allergic sub-
jects who have exercise-induced symptoms (“mixed rhini-
tis”) and iNAR subjects (negative allergy skin tests).

In addition to cold air, other climate conditions such as
changes in temperature, humidity, barometric pressure, the

FIGURE 2. Hypertonic saline nasal provocation responses in CFS (thick line), normal (thin dark line), AR, and AS. A, Percep-
tions such as “Drip” (sensation of nasal discharge) were equivalent in CFS, AR, and AS and significantly higher than normal. B,
Whereas the normal group had a significant dose response for axon response-mediated secretion of mucin, there was no dose
dependence for the CFS group. AS indicates acute sinusitis.
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passing of weather fronts through a region, and walking into
or out of air-conditioned settings have been identified as
potential triggers of iNAR symptoms. Other “consensus”
triggers include cigarette smoke, consumption of alcoholic
beverages, stressful or other emotional states, and strong
perfumes and odors including cleaning fluids, photocopier
toner, newsprint, and gasoline. Congestion and rhinorrhea are
the critical elements for distinguishing between groups in
classifications of “runners-sneezers” versus “blockers” and
“wet” versus “dry” iNAR. “Dry” subjects have increased
sensory nerve sensitivity to innocuous stimulation (“cacos-
mia”). Their complaints may represent allodynia with in-
creased pain and discomfort. “Wet” nonallergic rhinitis is
characterized by increased nasal congestion and copious
discharge in response to secretagogues such as methacholine,
nicotine, and capsaicin and nonspecific stimuli such as irri-
tants, bright lights, and spicy foods (“gustatory rhinitis”).51,52

In gustatory rhinitis, eating activates oral trigeminal recep-
tors that recruit parasympathetic cholinergic reflexes and
glandular secretion. At least 69% of survey respondents
(396/571) had gustatory rhinitis symptoms to at least 1
food.53 Foods ranged from hot chili peppers (49%) to bread
(5%). Surprisingly, allergic rhinitis (P � 0.001) and a

history of smoking (P � 0.049) were most highly corre-
lated to gustatory rhinitis. This form of hyperresponsive-
ness may represent an increased sensitivity of sensory
nerves to irritant stimuli with an increased parasympathetic
reflex arc and augmented glandular responses. Curiously,
denervation of rabbit sinus and nasal mucosa leads to
glandular enlargement.54

We developed a questionnaire to determine which of
these triggers provoked the most severe congestion and rhi-
norrhea.55 For congestion, AR (allergic rhinitis) and iNAR
subjects had much higher scores for weather conditions,
tobacco smoke, and odors compared with subjects with low
levels of rhinitis complaints (Fig. 3).56 Weather and cold air
generated the highest rhinorrhea scores. In essence, the level
of rhinitis complaints, but not allergy skin test status, dis-
criminated the high from the low congestion and rhinorrhea
scores for each trigger. One interpretation is that allergy
status is independent of the increased cortical perceptions of
nasal congestion and discharge that are triggered by these
inhaled stimuli. The responses of AR subjects to these “non-
allergic” triggers may provide an explanation for so-called
“mixed rhinitis”. It remains to be determined if the sensor and
neural mechanism(s) are the same in atopy and iNAR.

FIGURE 3. Sensations of congestion (A) and rhinorrhea (B) induced by 8 triggers in NAR (bars with diagonal lines), AR
(white bars), potAt (positive allergy skin tests with minimal symptoms; gray bars), and NoRh (black bars). Mean � 95% CI. CI
indicates confidence interval; NAR, nonallergic rhinitis; NoRh, no rhinitis; potAt, potential atopy.
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AUTONOMIC DYSFUNCTION
Autonomic dysfunction has long been associated with

nonallergic rhinitis.57 The relationship has been examined in
prospective fashion in 78 subjects by Elsheikh and Badran.58

Subjects’ symptom scores were between 3 and 4 of 5 for
rhinorrhea, nasal obstruction, and headache. Self-reported
hyposmia (1.7/5) and sneezing (1.2/5) were less severe com-
plaints. Although PNAR is often broken into “runners and
sneezers” and “blockers”, 71% had watery discharge and
29% had mucoid discharge (total 100%). Only 10% com-
plained of sneezing. Obstruction was unilateral in 29%,
raising the possibility that an anatomic abnormality may have
been found on nasal endoscopy. Half of the subjects reported
simultaneous, bilateral nasal obstruction. Headache may have
had migraine-like qualities, or was consistent with the mid-
facial pain syndrome.59

Mid-facial pain shares many characteristics with ten-
sion-type headaches. Patients describe nasal pressure, heavi-
ness, or tightness and may say that their nostrils feel blocked
even though there is no obstruction to nasal airflow.60 Re-
gions of pain are generally symmetrical and affect the bridge
of the nose, periorbital, and maxillary regions. Symptoms
may begin as intermittent episodes and progress to a contin-
uous ache. There are no clear exacerbating or relieving
factors. Analgesics, antibiotics, and intranasal steroids are
ineffective unless there is a strong, prolonged placebo effect.
A 6-month course of low-dose amitriptylline (20 mg) has
been shown to be beneficial. The mechanism and locus of
action are unknown.

Lightheadedness was also common (67%) in dysauto-
nomic rhinitis, although vertigo was not (17%).58 This symp-
tom may have been more related to orthostatic hypotension
and other cardiovascular and sympathetic nervous system
complaints. Palpitations were present in 72%. Complaints of
bronchospasm not confirmed as asthma (29%), gastroesoph-
ageal reflux (62%), and irritable bowel syndrome (88%)
indicate that nonallergic rhinitis is only 1 part of a larger
pattern of autonomic and other mucosal organ dysfunction
syndromes. Other “allied” “functional” disorders where au-
tonomic dysfunction plays a major role include CFS, fibro-
myalgia (systemic hyperalgesia), Persian Gulf War Illness,
migraines, and interstitial cystitis.61–64 Impaired sympathetic
reflexes have been demonstrated by heart rate variability,65–67

neurally mediated hypotension on tilt table testing,68 and
impaired nasal vasoconstrictor responses to exercise, isomet-
ric muscle contraction, noise, and other stimuli.69–71

The high prevalence of irritable bowel syndrome (IBS)
in iNAR is of importance because of correlations of IBS
subtypes with specific abnormalities in the enteric serotonin
(5-HT) and dopamine systems and central pain, sympathetic
autonomic, and parasympathetic autonomic nervous sys-
tems.72 The molecular defects of these syndromes may pro-
vide insights into potential subsets of iNAR.73,74 Potentiation
of 5-HT release and activation of 5-HT1P or 5-HT3 receptors
have been linked to diarrhea-predominant IBS. Conversely,
reduced release of 5-HT, desensitization of 5-HT4 prokinetic
receptors, and reduced dopaminergic function have been
implicated in constipation-predominant IBS. The latter sub-

type may be related to the development of Parkinson’s
disease in later life.75 Epidemiological relationships between
iNAR and neurodegenerative diseases have not been exam-
ined. Visceral nociception is increased in IBS.76 Intestinal
smooth muscle dysmotility is common to IBS and disorders
of bronchial, esophageal, bladder, and other smooth mus-
cles.77–80 These findings suggest shared mechanisms of dys-
functional peripheral, visceral, and central nociceptive affer-
ent and efferent autonomonic neural systems for iNAR and
these other “functional” disorders. The dysautonomia with
blunted sympathetic responses to stressors and generalized
elevation in parasympathetic influences may be the common
denominator. Drugs that are active in these other illnesses
may be useful for differentiating and treating subtypes of
iNAR.
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