
Forensic Science International: Synergy 5 (2022) 100283

Available online 23 August 2022
2589-871X/© 2022 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Human and machine similarity judgments in forensic firearm comparisons 

Maria Cuellar a,*,1, Cleotilde Gonzalez b, Itiel E. Dror c 

a University of Pennsylvania, Department of Criminology and Department of Statistics and Data Science, 3718 Locust Walk, Philadelphia, PA, 19104, USA 
b Carnegie Mellon University, Department of Social and Decision Sciences, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA 
c University College London, 35 Tavistock Square, London, WC1H 9EZ, UK   

A R T I C L E  I N F O   

Keywords: 
Forensic 
Error rate 
Similarity 
Machine learning 
Decision-making 
Identification decisions 
Firearms 

A B S T R A C T   

It is unclear whether humans assess similarity differently than automated algorithms in firearms comparisons. 
Human participants (untrained in firearm examination) were asked to assess the similarity of pairs of images 
(from 0 to 100). A sample of 40 pairs of cartridge casing 2D-images was used. The images were divided into 4 
groups according to their similarity as determined by an algorithm. Humans were able to distinguish between 
matches and non-matches (both when shown the 2 middle groups, as well as when shown all 4 groups). Thus, 
humans are able to make high-quality similarity judgments in firearm comparisons based on two images. The 
humans’ similarity scores were superior to the algorithms’ scores at distinguishing matches and non-matches, but 
inferior in assessing similarity within groups. This suggests that humans do not have the same group thresholds 
as the algorithm, and that a hybrid human-machine approach could provide better identification results than 
humans or algorithms alone.   

1. Introduction 

Forensic pattern-matching methods depend on determining the 
similarities and differences between samples, such as a cartridge case 
from a crime scene and another that was fired by a suspect’s firearm. 
Recently, it has been suggested that for many tasks machine algorithms 
could be utilized to do these comparisons rather than human examiners 
[1]. 

However, it is unknown whether and to what extent humans and 
machine algorithms assess similarity differently [2]. There is a need to 
evaluate the performance ability and accuracy of machine algorithms 
and human examiners in the different stages of a firearm comparison. 
Incorporating machine algorithms into forensic comparisons must be 
sensitive to human strengths and weaknesses. Machines should replace 
humans where algorithms are better, but not where algorithms are 
worse than humans. 

Forensic firearm comparison depends on the ability to assess simi
larity between pieces of evidence, such as pairs of bullet cartridge cases. 
Indeed, according to the Association of Firearm and Tool Mark Exam
iners (AFTE) guidelines, to determine whether the marks on two car
tridges were produced by the same firearm the examiner must decide 
whether the surface contours of the two cartridges are in “sufficient 

agreement” [3]. Thus, it is important to compare humans and machines 
in their performance in assessing similarity in firearms samples. 

The aim of this study is to investigate whether the measures of 
similarity obtained by humans that are not trained in firearm compari
sons (novices) are different than those obtained by a machine algorithm. 
Categorical data conclusions, (e.g., identification, elimination, and 
inconclusive) does not provide the fine-grained information about sim
ilarity rating that can help decide how to best combine human and 
machine in forensic comparisons. Thus, this study uses a fine-grained 
scale from 0 to 100. This study compares similarity ratings of breech 
face 2D images between untrained humans and a machine algorithm. A 
continuous scale was used not only because it is a more sensitive mea
sure than categorical decisions, but also because recently developed 
algorithms rely on slight differences in similarity ratings [4–7]; among 
others). It is unclear to what extent humans can assess similarity on a 
scale of 0–100 rather than reach categorical decisions of “identifica
tion”, “elimination”, or “inconclusive”. 

Furthermore, it is also important to examine performance on difficult 
vs. easy cases. Sometimes true matches may look relatively dissimilar 
while true non-matches look relative similar, which makes some cases 
more difficult. Decisions should be easier when true matches look 
similar, and true non-matches look dissimilar. A machine learning 
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algorithm was used to obtain similarity scores for pairs of cartridge case 
2D images. The knowledge of which pairs were truly a match or a non- 
match (the ‘ground truth’), and the similarity information from the al
gorithm, allowed for splitting the pairs up into easy and difficult groups. 

1.1. Background 

Pattern-matching forensic methods can be subjective or objective. A 
subjective method is one in which key procedures involve significant 
human judgment and discretion, and an objective method is a procedure 
that is standardized and can be performed by either an automated sys
tem or human examiners exercising little or no judgment as it relies on 
objective quantifiable measurements [8]. 

The foundational validity of firearms analysis has been questioned 
[8,9]. PCAST has suggested two directions to strengthen the scientific 
underpinnings of the discipline: the first is to perform black-box studies 
to determine error rates in the way firearm comparisons are currently 
performed, and the second is to develop and test image analysis algo
rithms for comparing the similarity of tool marks on bullets. 

PCAST’s guidance about the two directions are being followed by 
researchers. In the spirit of the first direction, recent black-box studies 
have found a false positive rate of about 2% in comparisons [10] – 
although estimates like these have recently come into question because 
of their treatment of “inconclusives” [11–13]. Following PCAST’s sec
ond direction, new algorithms (e.g. Refs. [4,14], have been proposed to 
improve the accuracy of the classification decisions. 

However, it is not clear how these two directions relate to one 
another i.e., how to optimize the division and collaboration between 
human and machine so they best complement each other (e.g., Ref. [2]. 
For example, PCAST gives no clear guidance on when algorithms should 
replace human examiners altogether, and when certain parts of the 
analysis should be performed by machine algorithms. PCAST only makes 
it clear that to strengthen pattern-matching disciplines, “Objective 
methods are, in general, preferable to subjective methods” (page 47). 

The push for developing more objective methods and machine al
gorithms for forensic disciplines has been fueled by the susceptibility of 
expert decisions to noise and bias, and lack in transparency [15,16]. The 
2009 NAS report recommends making “scientific investigations as 
objective as possible so the results do not depend on the investigator,” 
and the 2016 PCAST report states that to strengthen the scientific un
derpinnings of the discipline we should “convert firearms analysis from 
a subjective method to an objective method.” [8] Recent research has 
even shown that an algorithm outperforms trained human examiners 
when evaluating the same samples, specifically in that the algorithm 
does not have the same problems with inconclusive results as firearm 
examiners [17]. 

But subjective methods do have strengths (e.g., [18,19]). There is 
evidence that humans perform better than algorithms in a variety of 
tasks [20]. Researchers found that some forensic algorithm methods can 
be improved: “In specific instances where the algorithm had difficulty in 
assessing a particular comparison pair, results obtained during the 
collaborative study with professional examiners suggest ways in which 
algorithm performance may be improved” [6] ([21,22]; and [23] also 
research this area). While they do not directly compare algorithms to 
human examiners, they do discuss how the algorithms perform on the 
same proficiency tests examiners take and discuss how algorithms can be 
integrated into the field. Furthermore, forensic examiners learn a wealth 
of information about class characteristics, such as what type of firearm 
or ammunition was used. 

A hybrid approach of ‘distributed cognition’ [2] in which some parts 
of the analysis are carried out by human examiners and some by the 
algorithm, in a collaborative and complementing fashion could utilize 
the best of both perspectives. This can only be achieved with better 
understanding of the relative strengths and weaknesses of the human 
and machine. It is thus important to study which parts of the analysis 
humans outperform algorithms, and vice versa. This will allow a 

knowledge-based hybrid process to be developed. Its performance 
should be compared to the examiner-only and algorithm-only ap
proaches to see if it is better. Note that even if we replace subjective 
methods altogether, we still want to know why they should be replaced. 
Not just that they have higher error rates according to a black box study 
or compared to an algorithm. This type of evaluation will tell us about 
more specific strengths and weaknesses of the different methods. As new 
algorithms are developed, this process should be repeated to ensure that 
the best method, or combination of methods, is used. 

In what follows, there is a brief review of the research in psychology, 
forensic science, and firearm analysis. This literature presents the main 
arguments regarding the importance of understanding the similarity 
judgments made by humans and their relationship to those made by 
machine algorithms. Next, the image dataset, the machine learning al
gorithm, and the similarity rating results are described. 

1.2. Cognitive science issues in firearm analysis 

The concept of similarity has been studied for decades (e.g., 
[24–29].). Making similarity judgments underpins many cognitive 
processes and plays a major role in learning and making decisions in 
naturalistic complex tasks [20]. Particularly interesting and important 
are similarity judgments used by experts in domains that do not have an 
objective and quantifiable decision thresholds, where experts often have 
to rely on subjective similarity judgments. For example, many forensic 
science domains rely on making a subjective judgment of whether two 
patterns are “similar enough” to conclude that they both come from the 
same source [8,9,30]. 

There has not been a unified method to assess the difficulty or 
complexity of a comparison. Examiners might consider a comparison 
complex or difficult, but this is subjective rather than based on data or 
empirical studies. Researchers have found that, in fingerprints, the 
quality of a latent print (and thus the difficulty of comparing it to other 
prints) is usually assessed qualitatively and subjectively by the exam
iner. There are scales based on points that evaluate the amount of 
contrast and clarity of features (see [31]; Section 2). Assessing the dif
ficulty of a comparison is challenging because it depends on the stimuli 
itself and the person doing the comparison, and their interaction, for 
example, the great variability in the quality of the samples, the exam
iners’ capabilities, and the procedures used in the agencies [32]. We 
propose to operationalize the difficulty of a comparison using the sim
ilarity between two prints as determined by a machine algorithm and 
relative to whether they were actually matches or non-matches (i.e., 
similar matches and dissimilar non-matches are classified as ‘easy’, 
whereas relative similar non-matches and relative non-similar matches 
are classified as ‘difficult’). 

In forensic science evidence found in the crime scene is sometimes 
compared to the known pattern of the suspect. This can be a pattern of 
handwriting, fiber, or marks left by teeth, shoe, or tire marks. Even the 
most used forensic domain, fingerprinting, requires that human analysts 
compare a latent print from the crime scene with a fingerprint of the 
suspect. These two patterns are compared, and the human examiner 
subjectively decides if they are “sufficiently similar” to conclude that 
they come from the same source (i.e., they are a “match”). Even DNA 
mixture interpretation requires subjective judgments [33]. Furthermore, 
even the more objective forensic domains, such as toxicology and drug 
analysis, require subjective decisions [16]. Hence, the ability to make 
accurate subjective judgments underpins many of the forensic decision 
making. In the widely used forensic domain of firearms identification, 
there has been very little research to explain how such similarity judg
ments are made. 

There are two important research issues we address in the study 
reported here. First, forensic science and other disciplines must be better 
informed regarding the ability of humans to make similarity judgments. 
We need to understand how humans make judgments in forensic firearm 
identification, and how these may vary by the difficulty. The questions 
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that we aim to address our study are how well humans can make simi
larity judgments in difficult firearm cases, and how much expertise is 
needed to make such judgments (i.e., can novices with no knowledge of 
firearm analysis make such judgments accurately?). 

The second issue pertains to the use of computerized systems. This is 
critical, as it can determine if and to what extent machine learning al
gorithms are able to do forensic firearm identification in the absence of 
human intervention, and how best can they work in collaboration with 
humans. In the context of text documents, examined similarity assess
ments of machine algorithms vs. humans found that the algorithms (n- 
grams and latent semantic analysis or LSA) did not perform as well as 
humans [34]. In fingerprint identifications, AFIS (Automated Finger
print Identification Systems) are widely used in combination with 
human conclusions. AFIS systems require the human to mark minutiae 
in the print, and submit their results to the algorithm, which then pro
vides a list of the most similar matches to the submission. Fingerprint 
algorithms’ ability to work with human examiners has been researched, 
examining when they can support the human by offloading some of the 
initial search of databases onto the algorithms, when they can collabo
rate and distribute cognition as partners, and when the algorithms can 
take over and replace the human [2]. Of course, the quality of the al
gorithm matters with regards to whether a human can outperform the 
algorithm. A high-quality algorithm is more likely to outperform a 
human than a low-quality algorithm, and the quality can be defined in 
different ways. Nevertheless, given some high-quality algorithm it is 
important to know whether a human could outperform it. This type of 
research and analysis has yet to be conducted in the firearms domain. 

2. Image dataset 

The bullet casing images of the breech faces collected and analyzed 
in [35]; shown in Fig. 1, are used. The image dataset consists of images 
of cartridge breechfaces, from 12 firearms of 3 different types (Ruger 
P95D, Smith & Wesson 9VE, and Sig Sauer P226 pistols), with 3 different 
types of ammunition (PMC, Remington and Winchester), and 3 itera
tions each, for a total of 108 images. The casings were re-imaged by the 
National Institute of Standards and Technology (NIST), and the data 
were made available as part of the Ballistics Toolmark Research Data
base, an open-access research database of fired bullet and cartridge 
reference data. These images are referred to as the NIST Ballistics 

Imaging Database Evaluation (NBIDE) dataset.2 Every pair of images 
was compared by the algorithm [4], to produce a total of 11,556 com
parisons. This is twice 5778 (which is 108 choose 2, or in other words, 
these are all the pairwise comparisons with none repeated between 
pairs) because the algorithm gives different results if you compare A to B 
and B to A. The Tai and Eddy’s algorithm produces small differences 
when comparing A to B vs. B to A because one image is aligned to match 
the other in the comparison, for example for A-B, B is rotated to match A, 
and for B-A, A is rotated to match B, and the results of the correlation 
between A and B are not identical between the two orders. However, the 
differences between the two correlations are very small, between 0.0001 
and 0.001. So we selected only the A to B comparisons for our analysis. 

3. Similarity algorithm 

This project uses the algorithm written by Tai and Eddy [4]; which 
was inspired by an algorithm written by the National Institute of Stan
dards and Technology (NIST). NIST created an algorithm to provide a 
similarity score for a pair of breech face images, but this algorithm is not 
publicly available. Research groups have attempted to develop similar 
algorithms that can serve for evaluation and development of decision 
support tools for firearm analysts. For example, a research group at 
Michigan State University [14], implemented an algorithm that was not 
identical to the one written by NIST, but it was “the authors’ best guess 
about what the algo-rithm does based on descriptions written by NIST” 
[35]. [4] obtained the code from [14] and modified it to improve it in 
several ways described below. 

The measure of similarity produced by Tai and Eddy’s algorithm is 
the maximum cross-correlation function (CCFmax). This algorithm 
performed all possible pairwise comparisons in the NBIDE dataset, 
which resulted in 107 × 108 or 11,556 pairwise comparisons. For each 
pairwise comparison, the algorithm computed a similarity score and the 
probability of obtaining a higher score by chance. 

To perform a pairwise comparison Tai and Eddy’s algorithm per
forms the following activities. 1) Automatically selects breech face 
marks by finding the cartridge primer region and removing it from the 
firing pin impression by applying a Gaussian filter and then using a 
Canny edge detector. 2) Levels the image by fitting a plane and taking 
the residuals, which enables that the resulting image is free from planar 
differences in brightness in case the cartridge was not level. 3) Removes 
the circular symmetry, which occurs, for example, when the surface 
slopes inwards toward the center, and so the center of the image is 
darker than the edges. Circular symmetry is removed by fitting a model 
that captures the symmetry, and then taking the residuals, which will be 
free from circular symmetry. 4) Performs outlier removal and filtering 
by using a method used by the NIST [35]. 5) Maximizes correlation by 
translations and rotations by computing a matrix of correlation values, 
where each entry corresponds to a particular translation and rotation 
angles 2.5◦ apart, and then 0.5◦ apart in the neighborhood of the highest 
correlation. The maximum correlation between two images is known as 
the CCFmax. 6) Computes the probability of obtaining a higher score by 
chance given a known database. Steps 2, 4 and 5 are modified imple
mentations of work by [14,35]. Steps 1, 3, and 6 were added by [4].3 

To use an algorithm to determine whether a new pair is a match or a 
non-match, the algorithm can be trained with experimental data. To do 
this, the similarity between images is calculated, and the distributions of 
the similarity measures of known matches and known non-matches, 
generated by experiments, are calculated, just as in Fig. 2a. Then, the 
similarity of the new pair is located along the x-axis along the distri
butions. Using a score-based likelihood ratio approach, if this new value Fig. 1. Low-resolution representation of the NBIDE dataset from a 2007 NIST 

study of breechface images. 

2 The database created by Ref. [35] can be found online at https://www.nist. 
gov/programs-projects/nist-ballistics-toolmark-database.  

3 The code by Ref. [4] can be found online at https://github.com/xht 
ai/NBIDE-cartridges. 
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is within the area of the known matches, it is more likely to be a match 
itself. If it is within the known non-matches, it is more likely to be a non- 
match. However, if the new pair’s similarity is in an overlap region or in 
a gap between the two distributions along the x-axis, then it is unclear 
whether it is a match or a non-match. The score-based likelihood ratio 
gives information about how likely it is that a pair belongs to one dis
tribution vs. another by assessing the heights of the distribution at a 
point, but the overlap regions leads to less certain conclusions, espe
cially where the distributions have similar heights. 

Fig. 2 shows the distributions of the CCFmax for the match and non- 
match pairs resulting from the Tai and Eddy’s algorithm. The non-match 
similarity scores distribution has a lower mean and standard deviation 
(mean = 0.14, sd = 0.008) than the distribution for matches (mean =
0.4, sd = 0.06). And an independent sample Kruskal-Wallis test shows a 
significant difference across conditions (p = 0.0003). However, there is 
some overlap between the two distributions, shown in Fig. 2b, sug
gesting that some pairs that are true matches are graded as having low 
similarity by the algorithm. In other words, the algorithm is particularly 
inaccurate in distinguishing pairs that match and pairs that do not match 
when their similarity is low. 

This overlap motivates this study’s behavioral research question of 
whether individuals without training in firearm analysis would be able 
to distinguish between these two difficult groups of image pairs. That is, 
would humans be able to judge that matches rated as dissimilar by the 
algorithm are similar? Although further research could help reduce the 
overlap, there is often an overlap with such algorithms so it is important 

to evaluate the performance of human versus machine in the overlap 
area. Note that our reason for selecting novices instead of examiners was 
that this research studies the abilities of humans to assess similarity 
between images, and how they compare to an algorithm. 

To study whether humans could distinguish between matches and 
non-matches in the overlap area, the data was separated into four groups 
(see Fig. 3): high-similarity matches (HM), low-similarity matches (LM), 
high-similarity non-matches (HN), and low-similarity non-matches 
(LN). Within the matches, HM are 75–100% and LM are 0–25% of the 
distribution. Within the non-matches, HN is 75–100% and LN is 0–25% 
of the distribution. Avoiding the values at the boundaries (i.e., 26–74%) 
gives the most extreme pairs, which makes the distinctions between 
groups clearer. 

The distributions of the two extreme groups (HM and LM) do not 
overlap, but those of the other two groups do (LM and HN). Also, the 
standard deviations of the non-match groups are much smaller than for 
the match groups. These were sampled to have equal numbers of items 
for each study group. 

4. Experiment 1: human similarity judgments in overlap region 

The first question of interest was whether human respondents would 
be able to distinguish between the two overlapping cases, the least 
similar matches (LM) and the most similar non-matches (HN). To answer 
this question, a study including only images from the LM and HN groups 
was performed. 

Fig. 2. Algorithm results from Ref. [4] assessing similarity between pairs of breech-face images. The overlap of the known matches and non-matches motivates our 
research about whether humans can distinguish between the two categories in this similarity regime. 

Fig. 3. Algorithm results from Ref. [4] (same as Fig. 2, split up into four groups (the top and bottom quartiles of the known match and known non-match distri
butions). Our research question is whether humans can distinguish between the high-similarity non-matches (bright red) and the low-similarity matches (light green), 
which overlap. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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4.1. Participants 

One hundred and twenty participants were recruited from Amazon 
Mechanical Turk (50 were female and 70 were male). On average, the 
participants were between 31 and 35 years old, and had some years of 
college (with the mode being a 4-year college degree). On average, the 
participants spent about 12 min on the study and had a standard devi
ation of 6.50 min 83 had no visual impairment, and 35 had an impair
ment with correction. None of the participants were trained as firearm 
examiners. Ninety two participants did not own a firearm, 26 did, and 2 
would rather not say. For the ones who owned a firearm, 6 used it very 
infrequently, 14 used it once per month, and 6 used it once per year. 
Thirty one participants had firearm training, 88 did not, and 1 would 
rather not say. The participants were paid $1.50 USD for participating in 
the study and an additional bonus of $0.50 for finishing it, for a 
maximum total payment of $2.00 USD. 

4.2. Stimuli and procedures 

Participants were given instructions, a consent form, and informa
tion about their reward for participating and completing the study. For 
information about the images, they were shown an image of the 
different parts of the bullet casing (breech face, drag marks, firing pin 
impression). Then the respondents were asked to judge the similarity for 
each pair of images on a scale from 0 to 100, as shown in Fig. 4. The 
slider was set at 50 to start, and the respondents could shift it from “Not 
very similar” at 0 to “Very similar” at 100. The responses from the first 
two questions were deleted from the results, since they were considered 
practice for the respondents. 

A random sample of 10 image pairs was selected from each of the two 
groups of images in question LM and HN. Fig. 8 in the Appendix shows 
examples of these. Participants were shown the pairs and asked to assess 
their similarity. Then, participants were shown the same pairs again in 
different order to check for consistency, for a total of 20 image-pair 
judgments. For the purposes of replication, the list of the image labels 
that were included in the study are shown in Table 6 in the Appendix. 

4.3. Results 

Fig. 5 shows the results from Experiment 1, a histogram on the left 
and an equivalent density on the right. The histogram is difficult to read 
because of the small sample size, but it was included here for consistency 
with the previous figures. Table 1 shows the summary statistics by 

group. 
The densities of the high-similarity non-matches (HN) and low- 

similarity matches (LM) mimic the histograms from Fig. 3b, although 
the respondent’s LM have a wider spread farther to the right (i.e., higher 
similarity) than the corresponding distribution in 3b. There is some 
overlap between the HN and LM groups, but qualitatively it looks 
smaller than the overlap in 3b. Finally, there are small peaks in the red 
non-match distributions at similarity values 50 and 80. Whether the 
distributions are different from each other must be tested statistically. 

An independent samples Kruskal-Wallis test found that these distri
butions varied significantly across the two experimental conditions (p < 
0.01). Mann-Whitney tests found that responses in the LM were signif
icantly higher than those in the HN condition (all p < 0.01). Note that 
these tests were used because the usual t-test comparison cannot be 
performed because the distributions are not Normal. Both runs of the 
study had very similar results, although the second run was slightly 
higher. The respondents’ assessments of similarity of pairs in the LM 
group are significantly higher than those in the HN group at the 0.05 
level. This suggests that the survey responses were not just guesses but 
instead they represent the respondents’ beliefs. 

The tests used assume the data are independent. A few of the same 
images in different groups were included when sampling with replace
ment. Second, the same respondent answer questions about the four 
groups (and it is expected that individual respond more similarly to 
themselves than to others). Third, three comparisons were performed 
between the groups, which can lead to an increase in the type-1 error. 
When performing multiple comparisons it is important to adjust the 
level of the test, with a Bonferroni correction or something similar. The 
Bonferroni correction sets the level of the test at 0.05/3 = 0.017, and at 
this level our results are still significant. 

A simple linear regression of the respondents’ assessed similarity 
score regressed on the run (1,2), the group (HN, LM), and the respondent 
ID found that there are significant differences between the different 
runs, between the different groups, and no significant difference be
tween respondents (see Table 2). The diagnostic plots (QQ plot, stdan
dardized residuals vs. fitted values, and leverage) showed that the 
modeling assumptions are satisfied. Informed by these results, the values 
were averaged over the two runs per respondent, for consistency. 

This experiment provides several pieces of evidence supporting the 
fact that, on average, un-trained, novice human respondents can 
distinguish between high-similarity non-matches and low-similarity 
matches, and thus between matches and non-matches. 

5. Experiment 2: human similarity judgments when all 
conditions are present 

It is possible that humans were good at distinguishing between low- 
similarity matches and high-similarity non-matches because those were 
the only two types of image pairs that they were presented with. If other 
types of pairs would have been shown as well, would they have made 
different decisions about the similarity scores in these two groups? To 
deal with this potential issue, we ran another study with all four groups 
of images. This helped us determine whether the respondents could still 
distinguish between the two middle groups (HN and LM) even when 
shown the more extreme groups (LN and HM). 

5.1. Participants 

Experiment 2 was similar to Experiment 1, but with different par
ticipants. Our online study had 120 Amazon Mechanical Turk partici
pants, out of which 49 were female and 71 were male. On average, the 
participants were between 36 and 40 years old, and an educational level 
of some years of college (with the mode being a 4-year college degree). 
On average, the participants spent. 

18.5 min on the survey and had a standard deviation of about 9 min. 
Seventy seven participants had no visual impairment, and 43 had an 

Fig. 4. Sample question. The respondent was asked to move the vertical grey 
marker to a value between 0 and 100 on the line. 
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impairment with correction. 
None of the participants were trained as a firearm examiner. 88 

participants did not own a firearm, 25 did, and 7 would rather not say. 
For the ones who owned a firearm, 7 used it very infrequently (less than 
once a year), 12 used it once per month, and 6 used it once per year. 
Thirty had firearm training, 71 did not, and 4 would rather not say. The 
participants were paid $3 USD for participating in the study and a bonus 
of $0.50 for finishing it, for a maximum total payment of $3.50 USD. We 
ran a small pilot study to make sure the study was running smoothly, and 
then we ran the large study. 

5.2. Stimuli and procedures 

As in Experiment 1, 10 pairs of images were selected at random from 
each of the four groups (Table 6 in the Appendix). The selection of the 
images and the design of the study was the same as in Experiment 1, 
except that in this case participants answered a total of 40 questions, 10 
in each of the four groups (HM, HN, LM, LN) selected randomly. To 
clarify, the second experiment had the same exact images as the first, in 
addition to 20 new images. They did this twice, for a total of 80 
questions. 

5.3. Results 

Fig. 6 show the results from Experiment 2, a histogram on the left and 
an equivalent density on the right displaying the respondents’ similarity 
assessments by group. Table 3 shows the summary statistics by group. It 
is not immediately clear whether the four densities are separate from 
each other, or whether the green matches are separate from the red non- 
matches. 

An independent samples Kruskal-Wallis test found that these distri
butions varied significantly across the four experimental conditions (p 
< 0.01). Further analysis of pairwise comparisons using the Wilcoxon 
rank sum test was performed to compare between the group levels, with 
the Bonferroni correction for multiple testing. This test found the results 
shown in Table 4, that the only pair of groups that is not statistically 
significantly different from each other at the 0.05 level is LN-HN (bright 
red and light red groups). Table 4 shows the pairwise comparison p- 
values. Finally, as in Experiment 1, both runs of the study had very 
similar results, although the second run was slightly higher (see 
Table 5). 

As in the first experiment, a simple linear regression was performed. 
The respondents’ assessed similarity score was regressed on the run 
(1,2), the group (LN, HN, LM, HM), and the respondent ID. The model 
found that there are significant differences between the different runs, 
between the different groups, and no significant difference between 
respondents (see Table 2). The diagnostic plots (QQ plot, stdandardized 
residuals vs. fitted values, and leverage) showed that the modeling as
sumptions are satisfied. Informed by these results, the values were 
averaged over the two runs per respondent, for consistency. 

The linear model shows significant differences between the groups, 
but the nonparametric test shows no difference between LN and HN. 
Since the distributions of the scores are not normal, it is prudent to rely 
on the nonparametric test when comparing differences by group. 
Nevertheless, the model gives information about variability by run and 
respondent. 

This experiment provides evidence that the respondents can 
discriminate between the matches and non-matches, and specifically 
between LM and HN, with a p-value less than 0.05. 

6. Comparison across experiments and against the algorithm 

Experiments 1 and 2 both found that respondents can differentiate 
between high-similarity non-matches (HN) and low-similarity matches 
(LM), or in other words, between matches and non-matches (with p < 
0.01 in the nonparametric tests). These findings of are robust to 
including the two easy groups (LN and HM), because there was not much 
variation in the distributions of LM and HN between the two 

Fig. 5. Respondent’s results from survey only including two groups.  

Table 1 
Experiment 1 summary statistics by group. The values have been averaged over 
the two runs.  

Group Mean Median Std. Deviation 

HN 27.6 20 27.2 
LM 49.0 52 26.4  

Table 2 
Experiment 1 linear model.   

Dependent variable: 

Reported Similarity (0–100) 

Run 2 3.285*** (0.739) 
Group LM 21.392*** (0.736) 
Respondent ID − 0.008 (0.011) 
Constant 26.571*** (0.893) 
Observations 5280 
R2 0.141 
Adjusted R2 0.140 
Residual Std. Error 26.753 (df = 5276) 
F Statistic 288.067*** (df = 3; 5276) 

Note: *p < 0.1; **p < 0.05; ***p < 0.01. 
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experiments. Thus, even when the participants observe pairs of images 
from the HM and LN (“easy”) groups alongside the LM and HN (“diffi
cult”) groups, the results are the same as when they are shown only the 
LM and HN (“difficult”) groups. 

The algorithm categorized the similarity scores for the LM group as 
overlapping with the scores of the HN group (as shown in Fig. 2b), and 
thus the algorithm cannot distinguish between matches and non- 
matches. Instead, the study respondents were able to distinguish be
tween matches and non-matches significantly. Thus, this study finds 

evidence that the novice human participants outperformed the algo
rithm in distinguishing between matches and non-matches. 

7. Discussion 

This study compared the similarity scores of pairs of 2D images of 
cartridge cases given by a machine algorithm versus those given by 
untrained humans. Both the algorithm and the humans were asked to 
give similarity scores from 0 to 100. We were able to divide the pairs into 
true matches and true non-matches. Using the algorithm’s similarity 
score and the knowledge of whether a pair was a true match or non- 
match, the pairs were divided into easy (high-similarity matches, low- 
similarity non-matches) and difficult (low-similarity matches and 
high-similarity non-matches) categories. This allowed the assessment 
human performance at different levels of difficulty. 

The study found that naive human participants outperformed the 
algorithm in the sense that they consistently judged matches to be more 
similar than non-matches, even in the difficult cases (LM, HN). However, 
within the non-matches, the results were not as clear. The human par
ticipants tended to find as much or more similarity in low-similarity non- 
matches, as in high-similarity non-matches. For reasons that cannot be 
fully explained by these results, humans seem to be particularly good at 
detecting differences within relatively similar images and at detecting 
similarities in quite different images. One aspect that should be further 
explored is that the algorithm only used limited parts of the image (the 
breech face) and the humans had access to the entire image, including 
the firing pin impression. Perhaps including all the information to train 
the algorithm could improve the performance of the algorithm. This 
might be an interesting result in psychology, and it is different than how 
one would program an automated algorithm. Thus, it is worth further 
investigation. 

While the results comparing differences between human and ma
chine algorithmic decision-making are interesting in their own right, 
they also have potentially important policy implications. In general, a 
collaborative method that utilizes the strengths of both subjective 
human decisions and objective algorithmic decisions, while avoiding 
their weaknesses, may be preferable to strict human-only or algorithm- 
only approaches. Rather than competing for supremacy, a hybrid 
collaborative approach seems best. However, the best way to combine 
them is a topic for further important research. 

For instance, using only the results from this study, may suggest that 
applying a subjective method to distinguish between “identification” 
and “exclusion” and then employing an objective method to distinguish 
between high- and low-similarity cases within each subgroup maybe 
optimal. This approach is shown in Fig. 7. In contrast, our study suggest 
that using the algorithm first to distinguish between “identification” and 

Fig. 6. Respondent’s results from survey including all four groups.  

Table 3 
Experiment 2 summary statistics by group. The values have been averaged over 
the two runs.  

Group Mean Median Std. Deviation 

HM 65.5 70 26.1 
LM 50.3 55 26.3 
HN 29.6 21 27.7 
LN 28.7 23 24.8  

Table 4 
p-values of pairwise comparisons using the Wilcoxon rank sum test with Bon
ferroni correction. The only pair of groups that is not statistically significantly 
different from each other at the 0.05 level is LN-HN.   

HM HN LM 

HN ~ 0 – – 
LM 0.03232 0.00107 – 
LN ~0 1.00000 0.00012  

Table 5 
Experiment 2 linear model.   

Dependent variable: 

Reported Similarity (0–100) 

Run 2 1.977*** (0.524) 
Group HN − 35.865*** (0.730) 
Group LM − 15.104*** (0.739) 
Group LN − 36.840*** (0.721) 
Respondent ID − 0.005 (0.007) 
Constant 64.964*** (0.722) 
Observations 10,200 
R2 0.261 
Adjusted R2 0.260 
Residual Std. Error 26.192 (df = 10194) 
F Statistic 719.501*** (df = 5; 10194) 

Note: *p < 0.1; **p < 0.05; ***p < 0.01. 
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“exclusion” and then using a subjective method to distinguish between 
high- and low-similarity pairs in each group would be less accurate than 
using an objective or subjective method alone. As the data reflects, un
trained humans are relatively good at correctly distinguishing between 
matches and non-matches, but not as good at assessing similarity within 
the matches and the non-matches. In contrast, the Tai and Eddy [4] 
algorithm distinguishes some of the matches from the non-matches, but 
not all. 

Given that this is the first research to make such comparisons, of 
course, one must be careful in generalizing these results to other forensic 
comparison domains, or even to all firearms analysis. This is because, for 
example, firearm examiners are trained, other disciplines differ from 
bullet casing examination, and the results might be different with other 
algorithms. These results suggest that the hybrid approach used in 
fingerprint algorithms, like AFIS, might be more accurate than either 
only human or only machine approaches. 

This could be the first in a series of studies to compare humans and 
machines in forensics. For instance, the reason for selecting novices 
instead of examiners was that this research studies the abilities of 

humans to assess similarity between images, and how they compare to 
an algorithm. A second study could be performed to compare how 
trained firearms examiners perform in comparison to the novices, and 
this would answer how training affects the human vs. machine com
parison. Other studies could compare trained examiners to different 
types of algorithms, and evaluate hybrid approaches. 

These results suggest that it would be a mistake to pick between 
either human or machine firearms comparison approaches. Instead, 
methods and approaches should be evaluated, and hybrid, combined 
collaborative approaches considered. Hybrid here means distributed 
cognition, whereby the human has an important role and actually makes 
some key decisions and contributions. However, the process by which 
human and machine are combined will need to be determined by further 
empirical research, for specific algorithms, disciplines, human expertise, 
and for the various stages in the comparison. 

Declaration of competing interest 

The authors do not have any conflict of interest to report.  

Appendix  

Table 6 
NBIDE numerical labels of the pairs of images that were randomly selected from each of the four groups. The first entry under HM, 025,100, represents the pair of 
images NBIDE025 and NBIDE100. Recall that HM = high-similarity match, LM = low-similarity match, HN = high-similarity non-match, LN = low-similarity 
non-match. See Section 2 for more information about how the groups were created.  

HM  LM  HN  LN  

025 100 032 079 017 043 036 090 
022 055 006 127 034 142 006 035 
091 100 029 112 010 027 041 128 
130 138 030 040 090 092 023 055 
118 134 063 084 060 134 127 136 
078 102 042 056 060 090 097 102 
054 075 023 079 017 029 007 040 
022 096 032 066 008 117 023 051 
053 120 023 061 078 119 049 119 
055 096 032 128 060 110 031 057 
053 067 027 062 015 100 051 103  

Table 6 shows the labels of the images that were randomly selected from each group to be included in the experiment. This list can be used to 
replicate the experiment. 

Fig. 7. Decision tree for the optimal decision-making according to our study results. This does not generalize to all firearm comparisons, but shows the results from 
our experiment. It illustrates the importance of combining subjective and objective decision-making processes in the order determined by empirical analysis. 
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Fig. 8. Sample pairs of images from each of the four groups. The pairs are organized from most similar to least similar from left to right, according to the Tai and 
Eddy’s algorithm, with no particular order from top to bottom. 
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