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Positron emission tomography (PET) provides simple noninvasive imaging biomarkers for multiple human diseases which can be
used to produce quantitative information from single static images or to monitor dynamic processes. Such kinetic studies often
require the tracer input function (IF) to be measured but, in contrast to direct blood sampling, the image-derived input function
(IDIF) provides a noninvasive alternative technique to estimate the IF. Accurate estimation can, in general, be challenging due to the
partial volume effect (PVE), which is particularly important in preclinical work on small animals. 'e recently proposed hybrid
kernelised ordered subsets expectation maximisation (HKEM) method has been shown to improve accuracy and contrast across a
range of different datasets and count levels and can be used on PET/MR or PET/CTdata. In this work, we apply the method with the
purpose of providing accurate estimates of the aorta IDIF for rabbit PETstudies. In addition, we proposed amethod for the extraction
of the aorta region of interest (ROI) using the MR and the HKEM image, to minimise the PVE within the rabbit aortic region—a
method which can be directly transferred to the clinical setting. A realistic simulation study was performed with ten independent
noise realisations while two, real data, rabbit datasets, acquired with the Biograph Siemens mMR PET/MR scanner, were also
considered. For reference and comparison, the data were reconstructed using OSEM, OSEM with Gaussian postfilter and KEM, as
well as HKEM.'e results across the simulated datasets and different time frames show reduced PVE and accurate IDIF values for the
proposed method, with 5% average bias (0.8% minimum and 16% maximum bias). Consistent results were obtained with the real
datasets.'e results of this study demonstrate that HKEM can be used to accurately estimate the IDIF in preclinical PET/MR studies,
such as rabbit mMR data, as well as in clinical human studies. 'e proposed algorithm is made available as part of an open software
library, and it can be used equally successfully on human or animal data acquired from a variety of PET/MR or PET/CT scanners.

1. Introduction

[18F]-based PET imaging has been successfully used as a
noninvasive imaging biomarker of different human diseases.
[18F]-Sodium fluoride ([18F]-NaF) has been associated
with calcium molecular metabolism, and it has been used to
study benign osseous diseases such as osteoporosis, vascular

calcification, osteoarthritis, and rheumatoid arthritis [1–6].
[18F]-Fluodeoxyglucose ([18F]-FDG) is themost commonly used
in clinical practice and particularly for the detection, quantifi-
cation, staging, and therapy evaluation of cancerous lesions, as
well as in cardiovascular and neurological diseases [7–12].

Accurate and precise quantitative biomarkers can be
obtained by exploiting the pharmacokinetic information in
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the measured data [13]. 'is requires the estimation of the
radiotracer concentration in the arterial blood plasma (input
function). 'e gold standard for such measurement is blood
sampling during the PET acquisition, via arterial cannula-
tion [14]. Unfortunately, this technique is invasive and can
be complicated, as it requires arterial blood samples in
specific quantities and at precise times with corrections for
delay and dispersion to account for the distance between the
sampling site and the regions of interest (ROIs) [15].

A noninvasive technique is the image-derived input
function (IDIF) [16] which uses a region of interest (ROI) to
measure the uptake in the vessel over time. 'e IDIF is a
simple way to calculate activity over time; however, it is
challenging due to image-related issues. Firstly, the choice of
the ROI has a very important impact, and nonaccurate ROIs
will affect the measurement [17, 18]. Other challenges are
related to the use of MR images to extract the ROI because a
potentially inaccurate registration between PET and MR
images can lead to erroneous estimates of the activity in the
chosen arterial ROI. With a hybrid PET/MR scanner, the
problem of coregistration is expected to be minimised.

'e aforementioned problems are mostly related to the
ordered subsets expectation maximisation (OSEM) method
[19] which is usually followed by postreconstruction
Gaussian filtering due to the high noise levels expected for
the very short-time frames used for the IDIF estimation.
OSEM with or without postfiltering has been shown to
produce inaccurate values of IDIF with bias up to 30%
propagating through the kinetic constant calculations [20].
In preclinical experiments, these issues can be even more
challenging [13, 21] because of the smaller size of animal
vessel tissue, such as rabbit aortas, especially when they are
performed with clinical scanners designed for larger human
subjects. In this case, the PVE can be significant, as the
diameter of the rabbit aorta is about 5mmwhich is the same
order of magnitude as the PET resolution.

Different studies have proposed methods for the use of
IDIF by correcting or avoiding PVE [22–26]. Zanotti-
Fregonella et al. [16] have shown in their comparison be-
tween cannulation-based and image-derived input functions
that the use of high-resolution PET images is often not
sufficient to avoid the need of cannulation to obtain a reliable
IDIF. Moreover, the accuracy of the IDIF may vary between
radiotracers and scanners. MR-guided techniques have been
proposed and discussed [15], showing that erroneous regis-
tration between the PET and the MR images, as well as er-
roneousMR segmentation, can introduce an error in the IDIF
estimation. 'e problem of PET/MR misalignment has been
discussed for the kernel by Deidda et al. [27]. In this study, we
apply a PET/MR-guided image reconstruction algorithm,
hybrid kernelised expectation maximisation (HKEM) [28], to
minimise PVE during the reconstruction step so that we can
obtainmore accurate IDIF estimates. In addition, tominimise
the PET/MR misalignment, the HKEM-reconstructed image
at the peak activity frame was used together with the MR
image to extract the ROI to be used for the estimation of the
input function. In this way, only a percentage of the maxi-
mum value is included in the ROI avoiding low-value voxels
outside the carotid in case of PET/MR misalignment.

'e kernel method [29], which was first introduced in
PET image reconstruction by Wang and Qi [30] and
Hutchcroft et al. [31, 32], makes use of only one prior in-
formation image, MR or PET, respectively. Furthermore,
many other studies showing promising performances have
appeared in the literature [33–39]. In contrast, the HKEM
method, which we recently developed in the open-source
STIR library [40], exploits both the PET and the MR cor-
egistered images to derive PET information iteration after
iteration.

'e HKEM algorithm was introduced by Deidda et al.
[28] as a method for improving PET image resolution and
uptake recovery in PET/MR phantom experiments, as well
as contrast and quantification of atherosclerotic plaque le-
sions in carotid arteries in clinical PET/MR studies—which
could also be applied in PET/CT studies. In addition, it is a
robust and stable method which gives consistent results
across different datasets using the same parameter settings.
In this paper, we focus on the quantification of the aorta
IDIF of rabbits using 18F-based radiotracers such as [18F]-
FDG and [18F]-NaF, to extend the applicability and use-
fulness of our novel reconstruction algorithm. Here, we
assume that if HKEM can recover the uptake while retaining
satisfactory noise suppression for low-count PET acquisi-
tions, it will also be capable of providing accurate IDIF
estimates using a wide range of dynamic PET frame
durations.

'e paper is structured as follows: Section 2 describes the
datasets used to study image reconstruction, list mode (LM)
subsampling, and the experimental methodology. Section 3
presents the results of the proposed method and comparison
with different standard algorithms. 'e results are discussed
in Section 4, and conclusions are drawn in Section 5.

2. Methods and Materials

2.1. Simulation. A realistic simulation was created using a
model derived from real [18F]-NaF rabbit data [41] and
utilities implemented in the STIR library. 'e real data were
acquired with the Siemens BiographmMR scanner at Mount
Sinai Hospital, NY, USA. 'e voxel size for the simulated
image was 1.56 × 1.56 × 2.031mm. 'e rabbit was a healthy
subject and was anaesthetised before the scan. It was injected
with [18F]-NaF 170 MBq and scanned for 90 minutes.
Different organs and tissues were segmented from the ac-
quired MR UTE sequence, using 0.07ms echo time. 'e
original voxel size is 1.56 × 1.56 × 1.56mm. It is then aligned
to the PET field of view (FOV) and resliced to match the PET
native voxel size, 1.56 × 1.56 × 2.031mm3, and FOV size, 344
× 344 × 127 voxels. 'e same image is also used for the
calculation of the kernel matrix. In particular, the abdominal
aorta, kidneys, bladder, myocardium, lungs, stomach, and
background were extracted as independent images. Each
tissue type was segmented using a semiautomatic segmen-
tationmethod in ITK-SNAP based on thresholding [39], and
it was then used as a ROI in the real PETdata to estimate the
activity concentration over 45 frames organised as follows:
17 × 6 s, 4 × 15 s, 4 × 30 s, 4 × 60 s, 4 × 180 s, and 12 × 300 s.
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'e measured values were then assigned to every tissue in
the simulation.

In order to create the projection data, each simulated
image is forward projected into the sinogram space. 'e
attenuation sinogram is estimated using the attenuation
coefficient, μ, map obtained from a Dixon MR sequence
[42–45], and the precalculated hardware attenuation co-
efficients for the bed and coils. 'e projection data con-
taining random events were estimated as a uniform
sinogram containing 20% of the total number of events in
the simulated acquisition sinogram. In order to estimate the
scattered events, the Watson single scatter simulation was
applied [46], and a mask obtained from the μ map was used
for the tail fitting. At this point, the random and scatter
sinograms were combined as an additive term in the
emission sinogram to create the modelled prompts pro-
jection data. 'e final step was the simulation of Poisson
noise from the prompts events.

'e above steps were repeated for each simulated frame
image, and 10 noise realisations were created.

2.2. Real Rabbit Data. 'e acquisition was carried out using
the Siemens Biograph mMR at Mount Sinai Hospital, NY,
USA.'e rabbit was a healthy subject and was anaesthetised
during the scan. It was injected with [18F]-NaF 170 MBq for
the first study and [18F]-FDG 133 MBq for the second, both
scanned for 90 minutes. 'e attenuation images were ob-
tained from the scanner, which included the attenuation
coefficient for bed and coils. 'e LM data were divided into
smaller frames, to permit calculation of the input function.
'e tracer was injected during the first seconds of the scan.
'e MR part of the kernel matrix was obtained from a MR
UTE sequence with 0.07ms echo time, and the original voxel
size was 1.56 × 1.56 × 1.56mm. It was then aligned to the
PET field of view (FOV) and resliced tomatch the PETnative
z voxel size, 1.56 × 1.56 × 2.031mm3, and FOV size, 344 ×

344 × 127 voxels.

2.3. Reconstruction Setup. All the datasets were recon-
structed using HKEM with 21 subsets and 10 iterations. 'e
PET image voxel, λj, using the HKEM can be written as

λj � 

Nj

f�1
αfkfj, (1)

where kfj is the fjth element of the kernel, Nj is the number
of feature vectors related to voxel j, and αf is the kernel
coefficient to be estimated iteratively as follows:
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with pij being the system matrix and si the additive term.
'e fjth element of the kernel consists in two components,
and it can be written as follows:
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is the kernel derived from the MR image and
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is the kernel component derived from the updated PET
image. 'e Gaussian kernel functions have been modulated
by the distance between voxels in the image space. 'e
quantity xj is the coordinate of the jth voxel, n is the
subiteration number, z(n)

j and vj are the feature vectors that
are calculated from the nth updated PET image and the MR
image, respectively, and σm, σp, σdm, and σdp are the scaling
parameters for the distances in (4) and (5). Note that the
HKEM uses a voxel-wise kernel. 'is means that the feature
vector assigned for each voxel contains only one nonzero
element with the same voxel value.

'e kernel parameters were chosen in order to obtain the
minimum RMSE in the aorta. 'e values of the kernel
parameters were set as follows: N � 27, σm � 1, σdm � 3,
σp�1, and σdp � 3 (the last two are only used by HKEM).

For comparison, the same datasets have been recon-
structed also with 21 subsets and 10 iterations of OSEM with
and without 3mm FWHM Gaussian postfilter. 'ese
methods are denoted as OSEM+G and OSEM, respectively,
in this study. 'e selected number of subsets and the ap-
plication of the Gaussian post-filter are considered as
standard settings in clinical routine. All datasets were
reconstructed using span 1.

Scatter correction was performed with the method de-
scribed by Tsoumpas et al. [47] and Polycarpou et al. [48].
Randoms were estimated from singles, which were calcu-
lated from delayed events [49]. 'e procedures for these
evaluations, including attenuation and normalisation cor-
rections [50], make use of STIR.

2.4. Image Analysis. 'e comparison was carried out in
terms of the mean value for all of the short frames and
datasets, and the bias was estimated for the simulation to
assess the accuracy of the proposed method. 'e ROI was
obtained using the HKEM-reconstructed image and the MR
image as follows (Figure 1):

(i) 'e aorta was segmented from the MR image using
the semiautomatic segmentation method in ITK-
SNAP based on thresholding [51]

(ii) 'e obtained mask is multiplied with the HKEM-
reconstructed PET image to obtain the segmented
aorta, As, from the the PET image
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(iii) 'e ROI, A, is obtained by taking into account only
the voxels with a value bigger than 75% of the
maximum in order to optimize those affected by
PVE

Ai �
1, As

i ≥ 0.75 · As
max,

0, otherwise,
 (6)

where I is the index of the voxel. Quantitative comparison
between algorithms was performed using the following
figures of merit:

meank � tk �

V
j�1tjk

V
, (7)
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2
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where tk is the mean value of the target ROI at frame k, tjk is
the value of voxel j within the ROI at frame k, and V is the
number of voxels within the ROI. 'e ROIs obtained with
the proposed method are shown for each dataset in Figure 2.

3. Results

3.1. Simulation. 'e IDIF estimates for the simulated rabbit
data and the early and late frames for the IDIF are illustrated

in Figure 3. In the same figure, the reconstructed images with
OSEM, OSEM+G, KEM, and HKEM, at the peak frame
(24–30 s), are shown. Figure 4 presents the line profile of the
aorta estimated for the images, as reconstructed with all
investigated methods, at two different positions (LP1 and
LP2), while Figure 5 reports the median IDIF estimated over
the ten noise realisations using the HKEM. 'e shaded
region is the range of possible values over the 10 simulated
datasets, and the dashed line is the true IDIF. Finally, Table 1
reports the percentage value of the mean, maximum, and
minimum absolute bias over the frames and the noise
realisations.

A voxel-wise analysis example is reported in Figure 6,
where the 10 peak frame images were combined to extract
the bias and the SD images for each algorithm.

3.2. NaF Study. Figure 7 shows the comparison, on the
bottom row, between the initial 200 s of the input function
on the left, and the later section of the IDIF on the right.
Moreover, to give an idea of the image quality, the recon-
structed [18F]-NaF images for the peak time are shown on
the top. Figure 8 reports the line profile of the aorta in two
different positions (LP1 and LP2) for the [18F]-NaF peak
images reconstructed with the investigated methods to il-
lustrate in detail the differences between the images
reconstructed with different techniques. Figure 9 gives an
example of fused PET/MR image quality for all the re-
construction techniques.

3.3. FDG Study. 'e IDIF was estimated for a [18F]-FDG
study in order to assess the method on a different tracer.

Ai =
1, s

0, otherwise.
Ai ≥ 0.75·Amax,s

HKEM PET

ROI: A

MR

MR segmentation

PET segmentation

ROI extraction

Figure 1: Schematic representation of the extraction of the region of interest (ROI), A, of the aorta using the PET and MR images as the
input.
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Figure 10 shows a comparison among the different algo-
rithms in terms of image quality at the [18F]-FDG peak
activity frame, input function values. On the bottom row, we
can see the initial 200 s of the input function on the left and
the remaining part of the IDIF on the right, while on the top,
the reconstructed images for the peak frame are shown.
Figure 11 reports the line profile of the aorta in two different
positions (LP1 and LP2) for the [18F]-FDG peak images
reconstructed with all the investigated methods.

4. Discussion

In this study, we have proposed the use of our recently
developed hybrid kernelised reconstruction algorithm
HKEM, for the estimation of the IDIF in the aorta artery of
rabbits having undergone [18F]-FDG and [18F]-NaF PET/
MR studies using a clinical PET/MR scanner. 'e study was
driven by the fact that many applications, where dynamic
PET is used to extract more accurate and precise kinetic

(a) (b) (c)

Figure 2: Regions of interest (ROIs) chosen for this study, defined by the white regions. 'e target ROIs for the (a) aorta in the simulation,
(b) [18F]-NaF rabbit study, and (c) [18F]-FDG rabbit study. 'e target ROIs are indicated by the white arrows.
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KEM, OSEM, and OSEM+G. On the top, the peak frame (24–30 s) images are also shown.
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imaging biomarkers, rely on the estimation of the IDIF
which is problematic in preclinical studies due to extensive
PVE. As a consequence, it is relevant to propose a method
which provides accurate estimates of IDIF. 'e results in
Figure 3 show that the proposed reconstruction method and
ROI extraction provide accurate results for all time points.
'e mean, maximum, and minimum bias were also calcu-
lated over the frames and the ten noise realisations (Table 1).

We were able to obtain a mean bias of 5% using the HKEM
with the maximum value being 16.1%. Note that due to the
applied threshold in the definition of the ROI, the OSEM
also provided accurate results although the dynamic PET
image frames were very noisy, and thus it becomes chal-
lenging to accurately delineate the appropriate aortic input
function ROI, which is crucial for the IDIF calculation. In
addition, a 52% averaged CoV over noise realisations means
that there is a probability of about 68% that the repeated
measure will have a value within ± 52% around the mean.
As a consequence, values with high bias are very likely with
OSEM.'e results suggest that MR information can provide
substantial improvement in terms of PVE and noise sup-
pression. Nevertheless, the inclusion of the PET functional
information allows better accuracy at similarly low noise
levels (Table 1), compared to KEM. Figure 4 shows the line
profiles in two different points of the carotid for the image
corresponding to the peak. Here, we can notice the better
delineation of the aorta for both the KEM and HKEM MR-
guided techniques, thanks to the broader smoothness ap-
plied in the background tissue regions. It is also important to
highlight that the extraction of the ROI from the OSEM
image in Figure 1 would not be accurate, as the maximum
value was very high due to noise.'us, the 75% thresholding
would only extract very few voxels, therefore causing up to
100% bias in the OSEM IDIF values despite being associated
with high accuracy estimates. Figure 5 illustrates the median
full IDIF estimate over the 10 realisations, and it is possible
to notice the accuracy over time compared to the true values.
A voxel-wise analysis example is reported in Figure 6, where
it can be seen the better image quality of KEM and HKEM,
with lower bias in the aorta and low SD overall. 'e ROI
analysis was also performed on this image. 'e results re-
ported in Table 2 are in agreement with the ROI analysis
performed with all the frames. Due to the optimized ROI,
OSEM gives a similar bias value to HKEM on the peak

M
ea

n 
(a

.u
.)

6

4

2

0
0 500

Time (s)
1000 1500

HKEM
True

Figure 5: Median IDIF estimated over the ten noise realisations
using the HKEM. 'e shaded region is the range of possible values
over the 10 simulated datasets, and the dashed line is the true IDIF.
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Table 1: Absolute bias (%) and CoV (%) estimation over the 45
frames.

Mean
bias

Max.
bias

Min.
bias

Mean
CoV

Max.
CoV

Min.
CoV

OSEM 6.3 20.8 0.1 52.0 75.6 31.5
OSEM+G 23.32 39.2 4.4 16.2 34.9 10.1
KEM 12.8 30.2 7.7 19.3 30.4 10.9
HKEM 5.0 19.3 0.8 19.9 32.8 10.7
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frame; however, the repeatability of the measure is around 3
times worse. When Gaussian filter is applied, the value is
extremely biased with similar CoV to HKEM and KEM.

'e same analysis was applied to two real PET/MR rabbit
datasets acquired with the Biograph mMR scanner, using
[18F]-NaF or [18F]-FDG radiotracers. Figure 7 shows con-
sistent results for the IDIF plots. 'e reconstructed images
using the real data show regions of high uptake only in some
places of the aorta, thereby demonstrating the benefit in
contrast and resolution of exploiting a hybrid PET/MR
kernel matrix. Figure 8 presents the line profiles obtained
with the different methods, showing the good resolution of
the aorta when using the HKEM method and the poor
quality of the postfiltered OSEM which is highly affected by
the PVE. In Figure 9, the fused PET/MR image is illustrated
for each technique, confirming the better alignment of the
aorta region between the PET and the MR images and the
resulting higher PET image resolution and aortic contrast.
Moreover, the comparison between the [18F]-FDG and
[18F]-NaF PET/MR studies allowed to assess the feasibility
and performance of HKEM in estimating the aorta IDIF for

two of the most commonly employed radiotracers in on-
cology and cardiology. From the results in Figure 10, the
benefit of the synergistic PET/MR information encoded in
the kernel matrix is visible especially in the IDIF plot. 'ese
results are also supported by the line profiles in Figure 11
showing a clear definition of the aorta for the proposed
method and minimum spill-out of activity from the aorta. It
is worth noticing that, for the real data, there are two peaks
in the early frames IDIF; this is probably due to the fact that
the injection was not continuous during the scan but there
was a sudden stop making the uptake rate drop down in that
specific time frame. We could show the IDIF with one peak
by summing the frame associated with the first peak and the
frame having low uptake; however, we think it is interesting
to show the effect of a noncontinuous injection on the IDIF
estimation. 'e input function represents a very crucial data
component when estimating kinetic parameters, and its
accurate estimation can become extremely challenging for
small animal imaging due to the very small sizes of the
associated aortic vessels. In this study, we proposed the use
of PET/MR synergistic information for the more accurate
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Figure 9: Comparison between reconstructed images with (a) OSEM, (b) OSEM+G, and (c) KEM using only MR and (d) the proposed
HKEM fused with the MR UTE image for the [18F]-NaF rabbit data.
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and precise extraction of the aortic ROI and IDIF estimation
in the framework of the HKEM method. We demonstrated
that, despite the small size of the rabbit aorta, it is feasible
and promising to employ the HKEM method for the ex-
traction of an aorta IDIF estimate of improved accuracy and
reduced PVE even when using a clinical PET/MR scanner. In
addition, the method described to extract the ROI is easy to
use and implement as it only involves trivial mathematics
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Table 2: Bias (%) and CoV (%) estimation over the 10 noise
realisations at the peak frame.

Bias Mean CoV
OSEM 19.3 15.4
OSEM+G 40.4 3.5
KEM 20.2 4.3
HKEM 19.3 4.6
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between matrices. It is worth mentioning that, although this
study was performed with PET/MR data, it could also work
with PET-CT data especially if the CT image to use as an-
atomical information is a CT angiography image.

5. Conclusion

In this investigation, we demonstrated that the HKEM
method allows the more accurate extraction of the aortic
ROI for improved IDIF estimation even when using a hu-
man hybrid scanner, compared to conventional OSEM or
anatomically guided KEM reconstruction. Our findings were
validated with both 10 simulated [18F]-NaF PET/MR
datasets as well as 2 real rabbit PET/MR studies. Further,
the methodology can be applied to most of the available
radiotracers and with PET-CT without any major modifi-
cation. 'is technique can enhance the use of dynamic PET
in the context of imaging biomarkers with direct pharma-
cokinetic information.

Data Availability

A demonstrative code for the creation of the simulated
study, reconstruction, and ROI extraction is available in
CODE OCEAN at https://doi.org/10.24433/CO.bde84e0c-
4c73-47fa-8ba5-81fb8bd2af77. 'e real rabbit data used to
support the findings of this study, however, have not been
made available because the Translational and Molecular
Imaging Institute Group, who provided the data, retains the
right to publish the data before making them generally
available.
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