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Abstract

Background: Cells adapt to endoplasmic reticulum (ER)-stress by arresting global protein synthesis while simultaneously
activating specific transcription factors and their downstream targets. These processes are mediated in part by the
phosphorylation-dependent inactivation of the translation initiation factor eIF2a. Following restoration of homeostasis
protein synthesis is resumed when the serine/threonine-protein phosphatase PP1 dephosphorylates and reactivates eIF2a.
Proteasome inhibitors, used to treat multiple myeloma patients evoke ER-stress and apoptosis by blocking the ER-
associated degradation of misfolded proteins (ERAD), however, the role of eIF2a phosphorylation in leukemic cells under
conditions of proteasome inhibitor-mediated ER stress is currently unclear.

Methodology and Principal Findings: Bcr-Abl-positive and negative leukemic cell lines were used to investigate the
functional implications of PP1-related phosphatase activities on eIF2a phosphorylation in proteasome inhibitor-mediated ER
stress and apoptosis. Rather unexpectedly, salubrinal, a recently identified PP1 inhibitor capable to protect against ER stress
in various model systems, strongly synergized with proteasome inhibitors to augment apoptotic death of different leukemic
cell lines. Salubrinal treatment did not affect the phosphorlyation status of eIF2a. Furthermore, the proapoptotic effect of
salubrinal occurred independently from the chemical nature of the proteasome inhibitor, was recapitulated by a second
unrelated phosphatase inhibitor and was unaffected by overexpression of a dominant negative eIF2a S51A variant that can
not be phosphorylated. Salubrinal further aggravated ER-stress and proteotoxicity inflicted by the proteasome inhibitors on
the leukemic cells since characteristic ER stress responses, such as ATF4 and CHOP synthesis, XBP1 splicing, activation of
MAP kinases and eventually apoptosis were efficiently abrogated by the translational inhibitor cycloheximide.

Conclusions: Although PP1 activity does not play a major role in regulating the ER stress response in leukemic cells,
phosphatase signaling nevertheless significantly limits proteasome inhibitor-mediated ER-stress and apoptosis. Inclusion of
specific phosphatase inhibitors might therefore represent an option to improve current proteasome inhibitor-based
treatment modalities for hematological cancers.

Citation: Drexler HCA (2009) Synergistic Apoptosis Induction in Leukemic Cells by the Phosphatase Inhibitor Salubrinal and Proteasome Inhibitors. PLoS ONE 4(1):
e4161. doi:10.1371/journal.pone.0004161

Editor: Andreas Bergmann, UT MD Anderson Cancer Center, United States of America

Received October 22, 2008; Accepted December 6, 2008; Published January 8, 2009

Copyright: � 2009 Drexler. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by the Max Planck Society. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: hannes.drexler@mpi-muenster.mpg.de

Introduction

In the presence of a functionally intact ubiquitin-proteasome

system, newly synthesized proteins that remain unfolded in the

ER, are retro-translocated back into the cytosol and immediately

targeted to proteasomal degradation [1,2]. This mechanism

known as ERAD plays an important role in reducing the amount

of unfolded proteins in the ER. Blocking the proteolytic activity of

the proteasome by either pharmacological inhibitors such as

bortezomib/PS-341 or by polyglutamine repeat containing

polypeptides severely compromises ERAD, induces accumulation

of misfolded proteins within the ER lumen and imposes ER stress

[3–5].

In order to maintain ER homeostasis and eventually viability, a

specific signaling circuitry has evolved in the ER, which, when

engaged, is described as the unfolded protein response (UPR) [6–

8]. By triggering this defense mechanism, cells attempt to reduce

the surplus of accumulating proteins in the ER by 1. elevating the

folding capacity of the ER through upregulation of ER resident

chaperones, 2. by increasing the capacity of the ER-associated

degradative machinery, 3. by reducing protein synthesis on a

global level via curtailed translation initiation, and 4. by the

translation of specific mRNAs encoding proteins involved in the

regulation of redox status, amino acid metabolism and eventually

cell death.

In the ER the transmembrane proteins PERK, IRE1a and

ATF6 act as sentinels, which sense increasing stress and signal into

the cytoplasm and nucleus [8]. Upon activation, IRE1 e.g.

unleashes an intrinsic endoribonuclease activity, which leads to

alternative splicing of precursor XBP1 mRNA to yield the mature

XBP1 transcription factor that is required for the synthesis of ER-

resident chaperones and other genes important for ER function
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[9]. ATF6 is eventually translocated to the Golgi, where it is

proteolytically processed to become an activated transcription

factor that is involved in the upregulation of XBP1 mRNA and

other UPR genes [10]. PERK and related kinases in contrast

phosphorylate the translation initiation factor eIF2a at a critical

serine residue (Ser51) leading to inactivation of eIF2a and the

subsequent global inhibition of protein synthesis [11]. In parallel,

expression of the transcription factor ATF4 is selectively

enhanced along with the expression of downstream target genes

such as GADD34, CHOP/GADD153 and others, which

participate in the control of cellular redox status and cell death

[12].

The block in general protein synthesis imposed by eIF2a
phosphorylation is reversed by the activity of the type I Ser/Thr

specific protein phosphatase PP1a/GADD34 complex [13]. This

complex apparently dephosphorylates eIF2a again when ER-

homeostasis is restored and allows the cell to resume protein

synthesis. Salubrinal, a low molecular weight compound, has been

demonstrated to inhibit the PP1a/GADD34 complex and to

protect neuronal cells against ER stress [13], probably by

extending the period, in which the prolonged reduction of de-

novo protein synthesis can help the cell to regain protein folding

capacity, to degrade the surplus of unfolded proteins and to

recover from ER stress.

Here I report that salubrinal did not protect Bcr-Abl –positive

or negative leukemic cells from proteasome inhibitor-mediated ER

stress and toxicity but in contrast synergistically enhanced

apoptotic cell death by further boosting ER-stress, a finding,

which may have impact on the future design of treatment

modalities for hematological cancers.

Materials and Methods

Chemicals
Phosphatase inhibitors salubrinal and cantharidine were

purchased from Calbiochem; sodium valproate was obtained from

Sigma (Deisenhofen, Germany). Proteasome inhibitors PSI (N-

carbobenzoxy-L-isoleucyl-L-g-t-butyl-L-glutamyl-L-alanyl-L-leuc-

inal) and MG132 (N-carbobenzoxy-L-leucyl-L-leucyl-L-leucinal)

were purchased from the Peptide Institute (Osaka, Japan) and

bortezomib (Velcade) from Janssen-Cilag (Neuss, Germany). The

caspase 3 assay was obtained from Promega, the caspase 8

substrate Acetyl-Ile-Glu-Pro-Asp-AMC (Ac-IEID-AMC) was pur-

chased from Bachem (Heidelberg, Germany). Inhibitors and

substrates (except VPA) were dissolved in DMSO as 10006 or

1006 stock solutions and diluted into cell culture medium as

indicated; VPA was prepared as a 2 mM stock solution in sterile

water.

Plasmids, cells and transfections
Cell lines were obtained from the German Collection of

Microorganisms and Cell Cultures (DMSZ; K562 and KCL-22) or

from ATCC (K562, Jurkat, HL60); MM1.S cells were a kind gift

of S. Rosen. Cells were cultivated in RPMI1640 medium

supplemented with 10% fetal calf serum, penicillin, streptomycin

and L-glutamine. Ulf R. Rapp provided human BCL-xL in

pBABEpuro; the expression vector pEF-FLAGpGKpuro contain-

ing FLAG-tagged crmA was a gift of D. Vaux (EMBO J. 18: 330–

338 (1999)) and the ER-stress reporter constructs 59-ATF4.GFP

and CHOP::GFP were kindly provided by D. Ron. The pEF6-

eIF2a-S51A-Myc-His expression vector was obtained from the

BCCM/LMBP plasmid collection of the University of Ghent [14].

Transfections of K562 cells were achieved by nucleofection

(Amaxa) according to the manufacturers instructions. Individual

stably expressing clones were selected by transferring cells 24–48

hrs post transfection into selection medium, growth for 10–14 days

and limiting dilution.

Apoptosis Assay and determination of caspase activities
Apoptosis induction was quantified by the determination of

apoptotic cells with a sub G1 DNA content as described [15,16].

The combined caspase 3 and 7 activities were determined using

the ApoOne reagent (Promega, Heidelberg) according to the

manufacturers instructions. Briefly, 2.56104 K562 cells/well (96

well plate; 200 ml total volume) were challenged for 18 h with

5 nM PSI, 10 mM salubrinal and 2 mM VPA as indicated and the

fluorescence signal determined at 350 nmex/450 nmem from 50 ml

aliquots following incubation with the caspase substrate solution.

Caspase-8 activities were assessed from 56104 K562 cells/well

treated as described above by incubation of 100 ml cell suspension

with an equal volume of assay buffer (20 mM Tris HCL pH 7.5,

100 mM NaCl, 1 mM EDTA, 10 mM DTT, 5% glycerol, 0.2%

CHAPS) supplemented with 100 mM Ac-IETD-AMC as substrate

for 4 hrs at 37uC and measurement of the fluorescence at

360 nmex/460 nmem. Results were expressed as relative fluores-

cence units (RFU; mean6SD).

Dose combination effects
The interaction between PSI and salubrinal was analyzed using

the method by Chou and Talalay [17] and the CalcuSyn program

(Biosoft, Ferguson, MO). Results from the apoptosis assays in

which the sub G1 DNA content of cells had been determined were

expressed as the fraction of cells affected (FA) in drug-treated

versus untreated cells. A constant ratio of 1:2000 between PSI and

salubrinal was maintained when testing combinations of both

drugs.

Cell Cycle Analysis. Cells were incubated with inhibitors as

indicated for 8, 16, 24 and 36 hours and analyzed for apoptosis

induction as described above. The remaining healthy cells with

unfragmented chromatin (DNA content $2) were selected by gating

and subjected to cell cycle analysis using the ModFit program

(Becton Dickinson). All experiments were performed in triplicate.

Reporter gene expression
Stably transfected K562 cells sorted for inducible ATF4.GFP or

CHOP::GFP expression upon exposure to ER stress (Thapsigargin

1.5 mM, 24 hrs) were distributed onto 24 well plates (16105/1 ml)

and exposed to PSI (5 nM) for 15 hrs, either alone or in

combination with salubrinal (10 mM) or VPA (2 mM) respectively.

During the last 30 min of the treatment CMXRos was added

(100 nM, Molecular Probes) to monitor breakdown of the

mitochondrial transmembrane potential. Cells were harvested by

centrifugation, resuspended in PBS and immediately subjected to

FACS analysis. All experiments were performed in triplicate.

WST-Proliferation Assay
Cellular viability was assessed by the WST-1 colorimetric assay

(Roche Molecular Biochemicals, Mannheim, Germany) according

to the manufacturers instructions. Assays were performed on 96

well plates with 26104 K562 cells/well in triplicate with salubrinal

concentrations ranging from 5–75 mM (total volume of 200 ml,

18 hrs). Untreated cells served as negative control sample.

PP2A and PP1c phosphatase activities
Phosphatase activities were determined on immunoprecipitates

of the phosphatases. Briefly, 26106 K562 cells were treated for

18 hr with salubrinal (20 mM), PSI (10 nM), the combination of
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both drugs or okadaic acid (100 nM). After washing with PBS, cells

were lysed for 15 min on ice either in PP1LB (for determination of

PP1c-activity; 20 mM Tris-HCl, pH 7.5, 1% Triton X-100, 10%

glycerol, 132 mM NaCl, Roche complete protease inhibitor ) or in

RIPA (for PP2A), supplemented with Roche complete protease

inhibitor). Cell lysates containing 500 mg (PP1c) or 300 mg (PP2A)

protein were immunoprecipitated overnight at 4uC with 2–3 mg of

the appropriate antibodies (anti-PP1c: Santa Cruz sc-6108; anti-

PP2A: Upstate, clone 1D6) and then incubated with Protein A-

Sepharose. Immunoprecipitates were washed three times in lysis

buffer, followed by resuspension in phosphatase assay buffer (PP2A:

20 mM Tris-HCl, pH7.5, 0.1 mM CaCl2; PP1c: 50 mM Tris HCl

pH 7.0, 0.2 mM MnCl2, 0.1 mM CaCl2, 125 mg/ml BSA, 0.05%

Tween 20), supplemented with 100 mM 6,8-difluoro-4-methyl-

umbelliferyl phosphate (DiFMUP; Invitrogen/Molecular Probes).

Precipitates were allowed to react with substrate for 1 hr at 37uC on

an Eppendorf Thermoshaker, centrifuged and DiFMU fluorescence

was measured on a BioTek Lambda Fluoro 320 microplate reader

(360 nmEx/460 nmEm). Phosphatase activities are given as percent

change relative to the control (DMSO treated cells).

RNA extraction and RT-PCR analysis of XBP1 transcripts
XBP1 mRNA splicing was detected according to published

protocols [9]. Total RNA was extracted from 3.56106 K562 cells

incubated for 15 hrs with or without inhibitors by using the Illustra

mini RNA isolation kit (GE Healthcare). RT-PCR for XBP1 was

performed in a one-tube reaction (RobusT I, Finnzymes) with

1 mg total RNA, cDNA synthesis at 48uC for 60 min and the

primers XBP1spliceF 59-CCTTGTAGTTGAGAACCAGG-39

and XBP1spliceR 59-GGGGCTTGGTATATATGTGG-39.

PCR products were separated on a 2% metaphor agarose gel,

which yielded a 442 bp product for unspliced and a 416 bp

fragment for spliced XBP1 mRNA. A hybrid XBP1 was

denominated XBP1H. RT-PCR for ß-actin was performed under

the same conditions with primers 59-TGTGATGGTGG-

GAATGGGTCAG-39 and 59-TTTGATGTCACGCAC-

Figure 1. Salubrinal synergistically interacts with the proteasome inhibitor PSI to induce cell death in K562 chronic myeloid
leukemia cells. (A) K562 cells were exposed to 5 nM PSI for 18 h either alone or in combination with 2 mM valproic acid and 5 or 10 mM salubrinal
as indicated. The protein synthesis inhibitor cycloheximide (CHX) was used at 1 mg/ml. Apoptosis induction was assessed by propidium iodide
staining and fluorescence-activated cell sorting of cells with a subdiploid (G,2N) DNA content. Results shown are the mean6SD of three
determinations. (B) Whole-cell lysates were prepared from cells treated with PSI, VPA and salubrinal as in (A), separated by SDS-Page and analyzed by
Western blotting for PARP-cleavage. ß-actin served as loading control. Numbers in parenthesis below the Western blot for PARP indicate the ratio of
cleaved to uncleaved PARP. Shown is one representative blot obtained from at least three independent experiments with similar results. (C) K562
cells were incubated with increasing concentrations of PSI (5–20 nM), salubrinal (10–40 mM) or the combination of PSI and salubrinal at a constant
ratio of 1:2000 for 18 h and apoptosis was determined as in (A). (D) Using the values obtained in (C) combination index values in relation to the
fraction affected (FA) were determined by median dose effect analysis. CI values less than 1 indicate a synergistic interaction, CI values below 0.3 a
strong synergism. Data are representative of at least three independent experiments, each performed in triplicate.
doi:10.1371/journal.pone.0004161.g001
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GATTTCC-39, except that PCR products were separated on

conventional agarose gels.

Global inhibition of protein synthesis
Nascent proteins were labeled with the methionine analog L-

azidohomoalanine (AHA) and a Click chemistry approach

(Invitrogen/Molecular Probes). Briefly, cells were grown for

45 min in serum- and methionine-free medium followed by

growth for 4 h in methionine-free medium supplemented with

100 mM AHA in the presence or absence of CHX (1 mg/ml) or

PSI (5 nM). Following cell lysis in lysis buffer (1%SDS, 50 mM

Tris HCl pH 7.5; 1 mM vanadate; 10 mM NaF; 10 mM ß-

glycerophosphate; 10 mM Na2P4O7; 5 mM cantharidine and

Roche Complete protease inhibitor cocktail) azide-labeled proteins

(100 mg/sample ) were reacted with a biotin alkyne, and

precipitated by addition of methanol/CHCl3. Air-dried pellets

were then dissolved in 100 ml 26Laemmli buffer and subjected to

SDS-PAGE and western blotting. Labeled proteins were detected

using horseradish peroxidase-coupled streptavidin and chemolu-

minescence.

Western Blotting
Cells were washed once in PBS and lysed in RIPA buffer

(150 mM NaCl, 1% Triton X100, 0.5% sodium deoxycholate,

0.1% SDS in 50 mM Tris-HCl pH 7.5) supplemented with

10 mM ß-glycerophosphate, 10 mM sodium pyrophosphate,

10 mM sodium fluoride, 1 mM sodium orthovanadate, 3 mM

benzamide, 5 mM cantharidine and complete protease inhibitor

cocktail (Roche, Mannheim). Insoluble debris was removed by

centrifugation for 5 min at 14000 rpm in a microcentrifuge.

Protein concentration of all samples was determined by a

Coomassie protein assay (Pierce). Electrophoretic separations

Figure 2. Acceleration of cell death induction by salubrinal is inhibited by the pan-caspase-inhibitor Q-VD-OPH. (A, B) K562 cells were
exposed to 5 nM PSI in conjunction with 10 mM salubrinal and/or 2 mM VPA for the indicated intervals after which cells were monitored for apoptosis
by FACS analysis. The pan-caspase inhibitor Q-VD-OPH was added simultaneously with the other compounds (5 mM final concentration). Data
represent the means6SD of an assay performed in triplicate out of two independent experiments with similar results. DMSO control (open circles),
PSI 5 nM (open squares), salubrinal 10 mM open triangles), PSI+salubrinal (filled triangles), PSI+salubrinal+Q-VD-OPH (filled inverted triangles),
PSI+VPA 2 mM (filled squares), PSI+VPA+salubrinal (diamonds), PSI+VPA+salubrinal+QVD-OPH (filled circles); (C) Whole-cell lysates were prepared
from cells incubated with 5 nM PSI, 2 mM VPA and 10 mM salubrinal as indicated, separated by SDS-Page and transferred to nitrocellulose
membranes. The membranes were sequentially probed for PARP, polyubiquitylated proteins and ß-tubulin.
doi:10.1371/journal.pone.0004161.g002
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(20–50 mg protein/lane) were carried out on 10 or 12%

polyacrylamide gels. Proteins were subsequently transferred to

nitrocellulose membranes, membranes were blocked with TBST/

4% non fat dry milk powder and incubated with primary

antibodies at 4uC overnight. Primary antibodies were purchased

from Alexis (caspase 8), Becton Dickinson (Bad), Biomol (PARP

C2-10), Cell Signaling (cleaved caspase 3, cleaved caspase 9),

Santa Cruz Biotechnology (eIF2a, phosph-eIF2a, GADD34,

ATF6, Bak, Bax, Mcl-1, p21Waf-1/Cip1, ß-actin), Sigma (Bim, ß-

tubulin, Flag M2), StressGen (KDEL), Transduction Laboratories

(caspase 3, p27Kip1, Bcl-xL), and Zymed Laboratories (ubiquitin).

Blots were developed by incubating membranes for 1 h with

horseradish peroxidase conjugated secondary antibodies (Dianova)

followed by enhanced chemoluminescence. Films were scanned

into Photoshop (Adobe) using a flatbed scanner and adjusted for

brightness and contrast.

Statistical analysis
Where indicated statistical significance was ascertained by

performing unpaired Student’s T-tests. Significant differences were

indicated by * (p#0.05), ** (p#0.01) or *** (p#0.001); n.s. non-

significant.

Results

Salubrinal enhanced PSI- or PSI/VPA-mediated apoptosis
and cell cycle arrest of K562 cells

Treatment with proteasome inhibitors results in the generation

of ER stress and the induction of apoptosis [3,4,18]. On the other

hand salubrinal was reported to protect against ER stress [13]. It

was therefore first tested whether salubrinal could protect K562

CML cells exposed to the proteasome inhibitor PSI or a

combination of PSI and the histone deacetylase inhibitor VPA,

which synergistically enhances the proapoptotic effect of PSI

[16,19]. HDAC inhibitors such as VPA are thought to relieve the

transcriptional repression observed in various leukemic cell types

that is caused by an aberrantly low level of histone acetylation and

thereby prevents differentiation, cell cycle arrrest and eventually

apoptosis. Unexpectedly, coadministration of salubrinal and PSI

did not block or reduce the cytotoxic effect of either PSI alone or

the PSI/VPA combination but further stimulated apoptosis

induction under both conditions (Fig. 1A). In contrast, coadmin-

istration of salubrinal and VPA in the absence of PSI was not toxic

(Fig. 1A), suggesting that salubrinal primarily boosted the effect of

the proteasome inhibitor.

Induction of apoptosis was abrogated by coadministration of the

translational inhibitor CHX, even when apoptosis was extensive

(e.g. in the sample treated with PSI, VPA and Sa), demonstrating

that cell death of K562 cells by PSI or combinations of PSI and

VPA and/or salubrinal appeared to be dependent on continuous

synthesis of new protein(s) and in addition correlated well with the

inhibition of PARP processing (Fig. 1B), a hallmark event of

apoptotic cell death.

The increase in apoptosis was more than additive for the drug

combinations containing PSI and salubrinal, raising the possibility

that salubrinal and PSI could act synergistically. Therefore, a dose-

effect analysis according to Chou and Talalay [17] using a

constant ratio combination design was carried out (Fig. 1C,D).

The calculated combination index (CI) values in fact indicated

robust synergism between PSI and salubrinal (Fig. 1D). Salubrinal

significantly accelerated the process of apoptosis induction by PSI

(Fig. 2A) and by the combination of PSI/VPA (Fig. 2B) and could

be delayed markedly by the pan-caspase inhibitor Q-VD-OPH in

both instances (Fig. 2A, B). Efficient inhibition by Q-VD-OPH of

apoptosis enhanced by salubrinal was also reflected by reduced

levels of PARP cleavage (Fig. 2C). Western blotting experiments in

Figure 3. The amplification of PSI-mediated apoptosis by salubrinal is associated with activation of caspase-3 and 8 and
simultaneous upregulation of Bim and Mcl-1. (A) Combined caspase 3 and 7 activities in K562 cells treated with 5 nM PSI, 10 mM salubrinal and
2 mM VPA as indicated for 18 h. (B) Caspase-8 activities in K562 cell lysates treated as in (A). Results were expressed as relative fluorescence units of
the fluorescence determined at 360 nmex/460 nmem (RFU; mean6SD). (C) Western blot analysis. Whole-cell lysates were prepared from K562 cells
treated with 5 nM PSI, 10 mM salubrinal, 2 mM VPA and 5 mM Q-VD-OPH as pan-caspase inhibitor as indicated, separated by SDS-PAGE and
transferred to nitrocellulose membranes. Membranes were subsequently probed for cleaved caspase-3, 8 and 9 and for PARP. In (D) cell lysates were
analyzed in an analogous fashion by sequential probing with antibodies reacting against epitopes specfic for Bim, Mcl-1, Bax, Bak, Bad and Bcl-xL. ß-
actin and ß-tubulin were used as loading controls.
doi:10.1371/journal.pone.0004161.g003
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addition confirmed that coadministration of salubrinal did not

modulate the extend of polyubiquitination (Fig. 2C). Furthermore,

caspase 3/7 (Fig. 3A) and caspase-8 (Fig. 3B) activities were

significantly stimulated in cells treated with PSI/salubrinal, PSI/

VPA or the PSI/VPA/salubrinal combination; while processing of

these caspases and of caspase-9 was abrogated by. Q-VD-OPH

(Fig. 3C).. Characteristically, Bim and Mcl-1 accumulated

following treatment with proteasome inhibitor (Fig. 3D), while

the levels of other members of the Bcl-2 family (Bax, Bad, Bak and

Bxl-xL) remained unchanged. Finally, overexpression of Bcl-xL or

crmA as demonstrated in Fig. 4A significantly delayed PSI/

salubrinal-mediated cell death (Fig. 4B). In summary, theses results

indicated that salubrinal effectively amplified proteasome inhibi-

tor-mediated cytotoxicity and that death of these cells was still

funneled into a caspase-dependent apoptotic pathway and was not

shifted to other forms of cell death.

Toxicity of salubrinal itself was minimal for K562 cells at the

concentration used in all combination experiments, only at

concentrations exceeding 50 mM was there a non-significant

tendency of reduced cell viability (Fig. 5A). PARP cleavage was

also minimal in the presence of salubrinal only, whereas the bona

fide ER-stress inducer thapsigargin led to extensive PARP

cleavage and cell death (Fig. 5B). Furthermore, salubrinal only

marginally increased the phosphorylation level of eIF2a on Ser51

and the expression of downstream effectors such as CHOP, and

GADD34, whereas relative protein levels of ATF6 effectors

grp78/Bip and grp94 were not affected at all by salubrinal

(Fig. 5B). This result showed that salubrinal at 10 mM did not

affect the PP1/Gadd34 phosphatase activity and the phosphory-

lation status of eIF2a in K562 cells, which is in contrast to previous

observations for PC12 neuronal cells, where strong and persistent

phosphorylation of eIF2a by salubrinal was accompanied by the

upregulation of GADD34 and CHOP for more than 36 hours

[13]. To further characterize the effect of salubrinal on K562 cells,

the cell cycle distribution of the viable cell population was

examined. Although salubrinal increased the number of cells in

G2/M phase of the cell cycle at the expense of cells in G1/G0 and

S-phase (Fig. 5C), the G2/M arrest mediated by PSI was much

more pronounced, confirming previous observations for PSI and

other proteasome inhibitors and was not further enhanced by VPA

or salubrinal (Fig. 5C). These results were also supported by

western analysis of the cyclin dependent kinase inhibitors p21Cip1

and p27Kip1. Accumulation of both proteins occurred as a

consequence of PSI/VPA administration, but was not further

enhanced by salubrinal (data not shown). Salubrinal thus appeared

to be non-toxic for K562 CML cells, but slightly impeded cell

cycle progression and synergistically enhanced the cytotoxicity of

the proteasome inhibitor PSI.

Salubrinal enhanced apoptosis of proteasome inhibitors
MG-132 and bortezomib

To exclude the possibility that the observed effects of salubrinal

were specific for the tetrapeptide aldehyde inhibitor PSI only, two

other inhibitors, MG132 and bortezomib, were also evaluated. A

nearly identical cytotoxicity profile was obtained for MG132

assayed in combination with salubrinal and/or VPA (Fig. 6A),

albeit higher concentrations of MG132 were required. Similar

results were also obtained when bortezomib/PS-341 was used

instead of PSI (Fig. 6B), except that CHX was not as effective in

reducing the extent of bortezomib-induced cell death, suggesting

that bortezomib could engage slightly different signaling pathways,

compared to the other two proteasome inhibitors [20]. Regardless

of this possibility, salubrinal did not protect against MG132 or

bortezomib/PS341 toxicity and enhanced K562 apoptosis inde-

pendently from the chemical nature of the proteasome inhibitor.

Furthermore, the salubrinal-mediated enhancement of protea-

some inhibitor-related toxicity was not restricted to K562 cells, but

was also observed in Bcr-Abl positive KCL-22 cells as well as in

Bcr-Abl negative leukemic cell lines (HL-60, Jurkat, MM1.S; data

not shown).

The phosphatase inhibitor cantharidin replicated the
effects of salubrinal

Since salubrinal preferentially seems to target the PP1/

GADD34 complex [13], it was of interest to examine whether

the effect of salubrinal could also be recapitulated by another

inhibitor of this phosphatase. For this purpose cantharidin, was

selected, which is less toxic than okadaic acid, but which also

blocks PP1 (IC50 = 1.7 mM) activities [21]. Cypermethrin was also

tested for comparison, which is a specific inhibitor of calcineurin/

PP2B (IC50 = 40 pM). Neither cantharidin nor okadaic acid can

inhibit activities of this phosphatase.

Only the co-administration of 0.5 mM cantharidin (Fig. 6C)

but not of 10 mM cypermethrin (Fig. 6D) increased the PSI or

PSI/VPA-related toxicity. This concentration of cantharidin is

well below the reported IC50 for growth inhibition of various

tumor cell lines [22]. Like salubrinal both phosphatase inhibitors

were non-toxic when applied alone at these concentrations

(Fig. 6C,D) and did not notably alter phosphorylation levels of

Figure 4. Stimulation of PSI-mediated apoptosis is delayed by
overexpression of Bcl-xL and Flag-crmA. (A) Whole-cell lysates
prepared from K562 cells (ATCC) stably expressing either Flag-crmA or
Bcl-xL was subjected to Western blot analysis using antibodies reacting
against Bcl-xL or the Flag epitope. ß-tubulin: loading control. (B)
Control, Flag-crmA and Bcl-xL overexpressing K562 cells were exposed
for 24 h to 20 nM PSI and 20 mM salubrinal as indicated after which
apoptosis induction was determined as described in Materials and
Methods (mean6SD of 3 determinations).
doi:10.1371/journal.pone.0004161.g004
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eIF2a or cause upregulation of Gadd34 (Fig. 6E). In contrast,

thapsigargin (T) induced eIF2a phosphorylation at Ser51,

upregulation of grp94 and grp78, extensive cell death and PARP

cleavage (Fig. 6E). From these experiments it is concluded that

the salubrinal-mediated increase in PSI toxicity could be

recapitulated by a second phosphatase inhibitor that supposedly

targets PP1. When determined from lysates of K562 cells,

however, PP1 activity was not reduced in response to treatment

with salubrinal, PSI or the combination of PSI and salubrinal

(Fig. 7A), indicating that PP1 activity did not represent the

primary target of salubrinal in K562 cells. Other phosphatases

such as PP2A (Fig. 7B), PP4 and PP5 could have served as

alternative targets instead [23].

Salubrinal enhanced thapsigargin-related toxicity in K562
cells

Thapsigargin, an inhibitor of the ER calcium pump, is a

genuine ER stresser, capable of activating all three UPR pathways

and of inducing cell death [24]. In contrast, although proteasome

inhibitor treatment has been associated with ER stress and the

UPR, the specific contribution of proteasome inhibitors to ER

stress-mediated cell death may be obscured by the multifaceted

additional impact of these inhibitors on other regulatory pathways.

It was of interest therefore to determine, whether salubrinal would

also prevent classical, thapsigargin-mediated ER stress mediated

cell death in K562 cells or whether the response to salubrinal

would instead reflect cell type specific differences. As demonstrated

Figure 5. Salubrinal is nontoxic, but elicits a G2/M arrest in K562 cells. (A) K562 cells in a 96 well plate were exposed to variable
concentrations of salubrinal for 15 h after which viability of cells was assessed by incubation with WST-1 reagent. Soluble formazan formation was
determined by absorption measurement at 450 nm. Cells incubated with DMSO served as solvent control; incubation with 5 nM PSI and 2 mM VPA
was a control for effective apoptosis induction. Data are presented as means6SD (n = 3); (B) Whole-cell lysates were prepared from cells that were
treated with increasing concentrations of salubrinal, separated by SDS-PAGE and transferred to nitrocellulose membranes. Membranes were
sequentially probed for P-eIF2a, eIF2a, CHOP, PARP, KDEL, GADD34 and ß-tubulin. Incubation with 2 mM thapsigargin served as positive control for
the induction of ER-stress. The extent of PARP cleavage was determined by densitometry and is provided as fold increase in brakets below the
Western blot for PARP. Shown are representative blots obtained from at least two independent experiments with similar results (C) K562 cells
exposed to 5 nM PSI, 10 mM salubrinal and 2 mM VPA as indicated were stained with propidium iodide and analyzed by fluorescence-activated cell
sorting. Histograms are representative examples. Cell cycle distribution values were derived by gating for viable cells followed by application of
Modfit 3.0 software (Becton Dickinson). Data are presented as means6SD (n = 3).
doi:10.1371/journal.pone.0004161.g005

Salubrinal Enhanced Apoptosis

PLoS ONE | www.plosone.org 7 January 2009 | Volume 4 | Issue 1 | e4161



in Fig. 8, coadministration of salubrinal (10 mm) and of

thapsigargin at low, only mildly toxic concentrations (0.5–

2.0 mM) did not protect K562 cells from thapsigargin-mediated

stress and toxicity and instead led to a marked increase in

apoptosis. This observation suggested that the salubrinal–mediated

effects were independent from the nature of the ER stressor and

Figure 6. The salubrinal-enhanced toxicity is not restricted to PSI and is recapitulated by the PP1/PP2A inhibitor cantharidin. (A)
K562 cells were exposed to 100 nM of the proteasome inhibitor MG132, 10 mM salubrinal and VPA for 18 h as indicated, after which apoptosis
induction was assessed by fluorescence activated cell sorting of cells with a subdiploid (G,2N) DNA content. CHX was used at a concentration of
1 mg/ml. (B) K562 cells were treated as in (A), except that 5 nM bortezomib (PS-341) was used as proteasome inhibitor. (C, D) K562 cells were treated
and analyzed as in (A) except that in (C) salubrinal was substituted by 0.5 mM cantharidin and in (D) by 10 mM cypermethrin. (E) Whole-cell lysates
were analyzed by Western blot experiments, in which membranes were sequentially probed for P- eIF2a, eIF2a, PARP and ß-tubulin or KDEL, GADD34
and ß-tubulin. Each experimental condition was performed in triplicate, and the mean6SD from a representative experiment out of two to three
independent experiments is shown.
doi:10.1371/journal.pone.0004161.g006

Figure 7. PP1c and PP2A phosphatase activities are not affected by salubrinal. Phosphatase activities were determined on
immunoprecipitates of the corresponding phosphatases as described in Materials and Methods. Following treatment phosphatases were
immunoprecipitated and the activities of the corresponding phosphatases measured Phosphatase activities are given as percent change relative to
the control (DMSO treated cells). Results shown are the mean6SEM of 4 independent experiments for each phosphatase.
doi:10.1371/journal.pone.0004161.g007
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rather appeared to be due to intrinsic cell type specific differences

in the ER stress signaling mechanisms between the leukemic cells

examined here and e.g. neural PC-12 cells [13].

Salubrinal reinforces the transcriptional activation of
ATF4 and CHOP reporter genes and promotes XBP1
mRNA splicing

To further address the mechanism by which salubrinal

enhances PSI mediated apoptosis, the transcriptional activation

of the transcription regulator ATF4 and its proapoptotic

downstream target gene CHOP were investigated. Both proteins

are induced following proteasome inhibition, subsequent impair-

ment of ERAD and the initiation of a terminal unfolded protein

response [18,25].

When exposed to ER-stress, K562 reporter cell lines expressing

GFP under the control of the 59-ATF4 or CHOP promoter

[26,27] revealed that salubrinal alone had a weak effect on 59-

ATF4 and CHOP-driven transcription of the GFP reporter when

compared to DMSO-treated control cells (Fig. 9A,B). In contrast,

prominent transcriptional activation of both reporter constructs

was noticed upon incubation with PSI and even more

pronounced, when salubrinal was combined with PSI (Fig. 9A,B).

Figure 8. Salubrinal promotes the cytotoxic effects elicited by
the ER stressor thapsigargin. K562 cells (105/ml) were exposed for
18 h to thapsigargin (0.5–2.0 mM) either alone or in combination with
10 mM salubrinal. Apoptosis was determined by fluorescence activated
cell sorting of cells with a subdiploid (G,2N) DNA content. Results
shown represent the means6SEM of two independent experiments
each performed in triplicate.
doi:10.1371/journal.pone.0004161.g008

Figure 9. Salubrinal increases PSI-mediated transcriptional activation of ATF4 and CHOP, promotes XBP1 mRNA splicing and
reduces cell viability. (A) K562 cells stably expressing a 59ATF4.GFP or CHOP::GFP reporter gene, were challenged for 15 h with 5 nM PSI, 10 mM
salubrinal and 2 mM VPA as indicated. During the last 30 min of the incubation 100 nM mitotracker orange CMXRos was added to determine
mitochondrial transmembrane potential DY. Fluorescence changes were monitored by FACS analysis. The pan-caspase inhibitor Q-VD-OPH was used
at a concentration of 5 mM. Scatter plots are representatives from three independent experiments each performed in triplicate with similar results and
show the distribution of cells with increased GFP fluorescence, indicative for transcriptional activation of ATF4 and CHOP relative to the percentage of
cells with decreased DY, indicative for reduced viability and the onset of apoptosis. (B) Numerical evaluation of results shown in (A); values represent
% cells with increased GFP- and decreased CMXRos–related fluorescence, respectively. Data were obtained from one out of three independent
experiment each performed in triplicate; error bars represent deviation from the mean. (C) XBP1 mRNA splicing by salubrinal and PSI. RT-PCR analysis
with XBP1 or ß-actin specific primers of total RNA extracted from K562 cells, that were incubated with 5 nM PSI, 2 mM VPA and 10 mM salubrinal for
15 h as indicated. XBPH: hybrid XBP1; XBP1U: unspliced XBP1; XBP1S: spliced XBP1.
doi:10.1371/journal.pone.0004161.g009
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Fluorescence intensities were comparable in PSI/VPA-treated

reporter cell lines. In all instances, where inhibitors provoked an

increase in GFP fluorescence due to induction of an ER stress

response, a substantial loss of CMXRos-positive viable cells was

noted that was paralled by an increase in the fraction of (dead) cells

with reduced CMXRos-related fluorescence. Loss of GFP

fluorescence was apparent in cells that had received the most

potent proapoptotic combination of drugs (PSI/VPA/salubrinal),

possibly as a consequence of the partial loss of reporter cells due to

extensive cell death. Coadminstration of the pan-caspase inhibitor

Q-VD-OPH could therefore partially restore the population of

viable cells with high mitochondrial DY and high levels of GFP

fluorescence (Fig. 9A,B).

Activation of the transcription factor XBP1 due to alternative

mRNA splicing by the activated ER resident kinase/endoribonu-

clease IRE1a [9] was then analyzed by RT-PCR. Using primers,

which amplify characteristic fragments of each splice variant, the

smaller ER-stress specific splice variant XBP1S was prominent

only in K562 cells treated with the PSI/salubrinal or the PSI/

VPA-combination for 15 h (Fig. 9C), whereas splicing was absent

(XBP1S) or minimal (XPB1H) in cells receiving the inhibitors

individually (Fig. 9C).

These observations demonstrated that none of the inhibitors

including salubrinal was able to activate XBP on its own. and that

the combination of PSI with salubrinal or VPA was required for

efficient XBP1 splicing. This result also indicated that XBP1

splicing was more closely associated with apoptosis induction than

activation of ATF4, since a low dosage of proteasome inhibitor

(5 nM, 15 h) that was sufficient to stimulate activation of the

ATF4 and CHOP reporters (Fig. 9C) was incapable of eliciting

XBP1-splicing and more extensive apoptosis (compare also with

Fig. 1).

The PSI/salubrinal-mediated apoptosis is dependent on
protein translation

Coadministration of the translational inhibitor CHX effectively

inhibited apoptosis induction by PSI, MG132, bortezomib or by

the combination of proteasome inhibitors with VPA and salubrinal

or cantharidin (Fig. 1, 7). Direct measurements of protein synthesis

revealed that CHX effectively abolished protein synthesis in K562

cells on a global level (Fig. 10A), curbing also the upregulation of

ATF4 and CHOP and the ER chaperones grp78/Bip and grp94

(Fig. 10B). These results suggested that apoptosis inhibition by the

translational inhibitor CHX was due to reducing the load with

newly synthesized proteins, although selective suppression of the

translation of pro-apoptotic factors could not be excluded.

Since ER stress conditions have also been reported to result in

phosphorylation and activation of the stress kinases JNK [5,28,29]

and p38 [8,30,31], it was of interest to determine, whether CHX

could also reduce activation of JNK and p38 in response to PSI and

salubrinal treatment. Salubrinal-enhanced PSI-mediated activation

of JNK, p38 and ERK was in fact greatly diminished by

Figure 10. Exposure to cycloheximide (CHX) results in global inhibition of protein synthesis and abrogation of stress kinase
signaling. (A) Translational inhibition by CHX in K562 cells was monitored by labeling nascent proteins with the methionine analog L-
azidohomoalanine (AHA). Growth in the presence of AHA resulted in extensive labeling of proteins (lane 2), which was completely abrogated by CHX
(lane 3). PSI (5 nM) slightly reduced protein synthesis (lane 4). Proteins from cells grown in the presence of methionine served as control for the
labeling reaction (lane 1). Lower panel: ß-tubulin as loading control. (B, C) Whole cell lysates from K562 exposed to 5 nM PSI, 10 mM salubrinal, 2 mM
VPA and 1 mg/ml CHX were subjected to SDS-PAGE and Western blot analysis as indicated. ß-tubulin or ß-actin antibodies were used to demonstrate
equal loading.
doi:10.1371/journal.pone.0004161.g010
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coadministration of CHX (Fig. 10C). Enhanced phosphorylation of

the MAPK ERK1/2 is consistent with previous reports, in which

ER-stress conditions resulted in the activation of these cytoprotective

kinases [32,33], possibly to counterbalance JNK and p38 activities

[34].Taken together, these observations suggested that salubrinal

promoted proteasome inhibitor mediated apoptosis by exacerbating

the CHX-sensitive upregulation and activation of the crucial ER-

stress regulators ATF4, CHOP and XBP1 and the activation of

several of their immediate downstream signal mediators. This

response appeared to be largely independent from eIF2a phosphor-

ylation and was paralleled by a reciprocal erosion of mitochondrial

functionality and activation of stress kinases.

Discussion

Ever since proteasome inhibitors have come to prominence as

potent inducers of apoptosis in cancer cells and have been

approved for clinical applications, it has been speculated that

proteasome inhibitors kill by a mechanism unrelated to the mode

of action of other more conventional chemotherapeutic drugs.

Several reports have recently indicated a close correlation between

the exposure of tumor cells to proteasome inhibitors, the induction

of ER stress and cell death [3–5] and it was hypothesized that the

sensitization to ER stress could represent the primary effect of

proteasome inhibitors discriminating this class of inhibitors from

other therapeutics. Since conflicting results have been reported

regarding the role of eIF2a phosphorylation during the integrated

stress response, and the series of events ultimately leading to

apoptosis: [4,18]it was of interest to analyze the role of eIF2a

phosphorlyation in proteasome inhibitor-induced apoptosis of

leukemic cells, by employing the recently described eIF2a
dephosphorylation inhibitor salubrinal [13,35]. Consistent with

the observations made by Boyce et al., salubrinal itself was non-

toxic also for K562 CML cells up to concentrations of at least

50 mM [13]. In contrast to the study by Boyce and colleagues,

however, salubrinal clearly lacked a cytoprotective effect against

the ER stress imposed by proteasome inhibitors and instead

synergistically enhanced the cytotoxic effect of three different

proteasome inhibitors in various leukemic cell lines (K562, KCL-

22, HL-60, Jurkat, MM1.S). Furthermore, the observation that

salubrinal also enhanced the toxic effects of thapsigargin, a bona

fide ER stress inducer, excluded the possibility of inhibitor class-

specific effects and instead suggested that there are intrinsic cell

type specific differences in the orchestration of the PERK-eIF2a
signaling cascade. Apoptosis induction by the salubrinal/PSI

combination was similar in range and kinetics to a proteasome/

histone deacetylase inhibitor combination such as PSI and VPA,

which represents a potent stimulus for apoptosis induction in Bcr-

Abl positive and negative tumor cells [16,36–41] and may also

trigger accumulation of unfolded proteins [42].

Synergistic enhancement of PSI cytotoxicity by salubrinal was

largely independent of eIF2a phosphorylation since neither

salubrinal at 10 mM nor the combination of salubrinal with a

proteasome inhibitor blocked PP1 phosphatase activity or led to a

marked increase in eIF2a phosphorylation. This notion is also

supported by the observation that substitution of salubrinal with

subtoxic concentrations of the phosphatase inhibitor cantharidin

induced a comparable increase in PSI-mediated cytotoxicity,

whereas the PP2B/calcineurin inhibitor cypermethrin proved to

be ineffective. Moreover, overexpression of a dominant-negative

eIF2a S51A variant did not affect PSI/salubrinal–mediated

apoptosis (Fig. 11) and upregulation of ATF and CHOP, two

downstream targets of eIF2a occurred in the absence of a marked

increase of eIF2a phosphorylation. These findings are not without

precedent since e.g. in prostate carcinoma cells treated with PS-

341, there was also accumulation of polyubiquitylated proteins

and transcriptional activation of ATF4 and CHOP/GADD153 in

the absence of increased phosphorylation of eIF2a [4]. The

salubrinal/cantharidin-sensitive phosphatase activity nevertheless

seemed to be required to maintain viability in the face of extended

proteasome inhibition and when this activity was blocked, cell

viability was reduced or lost. It will be interesting therefore to find

out, which phosphatase exactly is affected by salubrinal,

cantharidin.and similar inhibitors. PP2A, PP4 or PP5 may have

to be considered as additional targets in the synergistic cooperation

with proteasome inhibitors, since they all are inhibited by

cantharidin, and have been implicated in contributing to apoptosis

regulation [43,44]. The synthesis of a salubrinal-derived affinity

reagent may therefore be critical to pinpoint the exact molecular

target of this inhibitor and to assist in shedding further light on its

mode of action [35]. Identification of the phosphatase(s) targeted

by salubrinal will also help to identify the corresponding

phosphatase substrates and signaling pathways that are partici-

pating in survival regulation [45].

Proteasome inhibitors exert considerable cytostatic and cyto-

toxic effects in particular cancer cells types already as single agents,

but they may be even more useful as sensitizers to apoptosis

induction when delivered in combination with other anticancer

drugs [16,40,41,46–51]. Given the synergistic enhancement of

proteasome inhibitor toxicity by salubrinal in K562 and other

leukemic cells, salubrinal may therefore very well be added to the

growing list of drugs that cooperate with proteasome inhibitor to

kill hemopoietic tumor cells.

Figure 11. Stimulation of PSI-mediated apoptosis is not
inhibited by overexpression of the transdominant eIF2a S51A
mutant (A) Whole-cell lysates from K562 cells (ATCC) stably expressing
myc-tagged eIF2a S51A (clone 3, 8) or a non-expressing control clone
(clone 11) were subjected to Western blot analysis using antibodies
reacting against the myc epitope or full-length eIF2a. ß-tubulin served
as loading control. Myc-tagged eIF2a S51A is marked by an asterisk,
endogenous eIF2a by an arrowhead. (B) Control and eIF2a-overex-
pressing K562 cells were exposed to PSI and salubrinal as indicated and
the extent of apoptosis induction determined as described in Materials
and Methods (mean6SD of 3 measurements).
doi:10.1371/journal.pone.0004161.g011
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It may be speculated that cancer patients receiving proteasome

inhibitor treatment could benefit from the coadministration of

salubrinal also for a second reason: While enhancing the killing of

sensitized leukemic cells, salubrinal may at the same time

ameloriate proteasome inhibitor-mediated toxicity in neuronal

cells [13,52,53], Saveguarding neuronal cells by this means would

be a desirable feature e.g. for myeloma patients receiving

proteasome inhibitor treatment, since development of peripheral

neuropathy is one of the major side effects [54] and could be a

direct consequence of the impairment of the ubiquitin-proteasome

system [55].

Further investigations will reveal, whether salubrinal or

derivatives thereoff can be included in a therapeutic strategy that

is based on the induction of ER stress and maintains a strong and

selective toxicity for the tumor cells on the one hand but confers

protection to neuronal and other non-transformed cells on the

other. These studies will have to consider also the possibility that

salubrinal may exert other side effects [56,57], due to the

pleiotropic nature of phosphatase inhibitors. However, a recent

proteomic study demonstrated that the number of proteins

actually affected by salubrinal treatment appeared to be very

limited [45], suggesting that salubrinal may possess unique features

that renders it interesting enough to further develop it into a

clinically useful compound.

The data presented here in summary support a paradigm shift

on the protective role of the phosphatase inhibitor salubrinal

during ER stress, as this compound can obviously also augment

apoptosis, depending on the specific ER-stress signal and the

cellular system investigated. They also suggest that the concom-

itant targeting of specific phosphatases in a proteasome inhibitor-

based strategy to kill cancer cells could be an attractive option.
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