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Abstract: Recent developments in localisation systems for autonomous robotic technology have been
a driving factor in the deployment of robots in a wide variety of environments. Estimating sensor
measurement noise is an essential factor when producing uncertainty models for state-of-the-art
robotic positioning systems. In this paper, a surveying grade optical instrument in the form of a
Trimble S7 Robotic Total Station is utilised to dynamically characterise the error of positioning sensors
of a ground based unmanned robot. The error characteristics are used as inputs into the construction
of a Localisation Extended Kalman Filter which fuses Pozyx Ultra-wideband range measurements
with odometry to obtain an optimal position estimation, all whilst using the path generated from
the remote tracking feature of the Robotic Total Station as a ground truth metric. Experiments show
that the proposed method yields an improved positional estimation compared to the Pozyx systems’
native firmware algorithm as well as producing a smoother trajectory.
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1. Introduction

Localisation is a fundamental aspect in the area of mobile robotics. The ability for a robot to
relate itself to an operating environment, a global frame of reference and other robotic systems is a key
challenge in the development and deployment of autonomous systems.

In order to achieve autonomy, a mobile unmanned robot must be equipped with a localisation or
positioning system that consistently and precisely determines robot pose, i.e., position and heading,
as it navigates throughout an environment. Localisation methods and techniques are classified
into two categories, relative and absolute. Relative localisation methods are generally conducted
within the body frame of the platform, through the integration of techniques such as vision based
odometry systems without image georeferencing [1,2], dead reckoning via inertial measurement
units (IMU) [3,4] and wheel odometry (in the case of ground based systems) to determine the
speed of the robotic platform [5,6]. Absolute techniques refer to the localisation of co-ordinate
reference frames that are external to the robot, for example the use of independent landmarks [7,8],
known correspondence reference points [9] or a Global Navigation Satellite System (GNSS) [10].
However, common implementations include the collaboration of relative and absolute positioning
systems [11,12]. This combination is usually integrated within state estimation algorithms such as
Particle Filters (PF) and both linear and nonlinear Kalman Filters, where such multi-sensor fusion
techniques are designed whilst considering motion models and robot idiosyncrasies [13].
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Considering outdoor environments, one notable example and a frequently implemented
localisation technique is the use of GNSS and, when combined with an inertial navigation
system (INS), GNSSs are often implemented as a standard technique for many commercial and
off-the-shelf unmanned systems. For example, GNSS on unmanned aerial vehicles (UAVs) are often
operated in conjunction with high resolution cameras for image georeferencing and photogrammetry
techniques [14]. The implementation of the differential variant of GNSS for 3D light detection and
ranging (LiDAR) systems for point cloud registration and georeferenced map generation has also
been investigated [15]. However, the performance of GNSS in areas of mountainous terrain and
urban locations with abounding tall structures as well as indoor environments have been a reason for
others to explore alternative localisation techniques [16,17]. For this work, an alternative method for
localisation in the form of Ultra-wideband (UWB) is investigated.

1.1. Ultra-Wideband Localisation Systems

UWB is a wireless radio technique that transmits and receives narrow pulses at a nanosecond
rate. Unlike conventional radio frequency identification (RFID) based systems that operate on single
bands, UWB transmits over a broad spectrum of radio frequencies [18]. The ability to transmit over this
extensive bandwidth decreases the power spectral density, therefore enabling UWB based systems to
avoid interfaces with other RF signals [19,20]. Range measurements produced from UWB are achieved
from the accurate resolution of the Time of Arrival (TOA), commonly known as Time of Flight (TOF), of
a pulsed waveform that is traveling between a target node (tag) and set of reference nodes (anchors) [21].
Furthermore, as a result of the large operating bandwidth, the UWB system obtains a high time
resolution; therefore, positioning techniques can provide accurate range estimations [21]. Due to
the aforementioned capabilities, UWB positioning systems have previously been applied to human
tracking [22], sporting scenarios [23] and engineering applications such as the direct geo-referencing of
images from an aerial platform [24]. Static characterisation of range uncertainty behaviour between
two static UWB nodes has been previously investigated [25]. In order to calculate the range uncertainty
for the work carried out in [25], static range readings were taken at various distances between two
nodes and compared to a true distance for error calculations. Although this method allows static based
range error characterisation, the method does not provide a dynamic error reading of the UWB system
under the intended operating conditions of the deployed system. However, to obtain a more accurate
judgment of the expected range error, the system would need to be monitored over various types of
movement in continuous rather than discrete samples.

Deploying robotic systems with a means to make judgments and interact with the surrounding
environment is entirely dependent upon an imperative element of robotics, which is uncertainty [9].
Uncertainty can arise from areas such as unpredictable environments, actuation factors, inaccurate
system modeling and noise due to onboard sensors. However, for the case of this study, the range
uncertainty of an network of sensor nodes from a UWB localisation system is characterised using a
surveying grade optical instrument in the form of a Robotic Total Station (RTS).

1.2. Robotic Total Stations

A Trimble S7 RTS (Sunnyvale, CA, USA) was used as the principal method for uncertainty
estimation and final system appraisal in the experiments. In normal operation, the RTS system is
used in the laying out of building works, inspection of existing and ongoing building works and
surveying of land. The RTS takes measurement readings through the use of an optical and remote
distance sensing unit with an expected accuracy of 2 mm + 2 ppm in standard prism mode and
4 mm + 2 ppm in tracking prism mode depending on the prism in use [26]. In the case of Electronic
Distance Measurement (EDM) devices, the accuracy of a measurement is dependent on a number of
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factors. However, an estimate of the error may be achieved through the use of the stated accuracy
specifications over an example distance of 1 km such [27]:

±(2 mm + (2 ppm× (1× 106 mm)) = ±4 mm. (1)

Therefore, the expected measurement error during this study may be taken as the upper bounding
error found at the maximum operating distance of 20 m. This error may be taken as ±2.04 mm.
The bearing of the target is taken through the use of an absolute encoder whose accuracy may be
defined within DIN 18723, the specification for theodolite accuracy from the German Institute for
Standards, at 1” (arc seconds) or 2.77 × 10−6 degrees standard deviation [26]. The range that the
RTS is capable of tracking over depends on the prism or target in use, but, for the prism used in this
experiment, distances of up to 500 m could be measured.

The main functionality of the UWB system is to dynamically localise the platform that is mounted
with the mobile tag. Therefore, utilising an RTS with active target tracking features provides a
foundation to characterise the range uncertainty of the robot in its intended operating conditions as
opposed to a static based test. Using the RTS as a ground truth comparison metric to dynamically
characterise the uncertainty of a UWB sensor network for state estimation system design is an
unexplored area of research. There has also been little investigation into the use of such techniques
in the field of mobile robot positioning using UWB systems. Work has been conducted that studies
the implementation of an RTS system as a ground truth for the assessment of the validity of other
localisation systems [28]. Another study to note conducted by [29] focuses on using UWB for
position estimation of a large scale laser scanning unit for 3D Building Information Modeling (BIM).
Additionally, a further analysis has been conducted into the viability of using UWB systems to
track operatives in construction sites, and this investigation utilised an RTS for the ground truth [30].
The aforementioned investigations demonstrated the viability in applications; however, the uncertainty
and lack of state estimation made the implementation of such a system inviable for applications
requiring high positional accuracy. Other work carried out using an RTS to actively track unmanned
systems consists of autonomous and remote positioning of a Micro Aerial Vehicle (MAV) using
real-time input from the RTS [31]. An RTS has also been deployed as a substitute for GNSS as a
measurement input source into an Extended Kalman Filter (EKF) for indoor environments [32].

Therefore, this paper seeks to utilise an RTS as a technique to determine the uncertainty of a
UWB positioning system, as well as the uncertainty of a set of quadrature wheel encoders used on a
mobile robotic platform. These uncertainty metrics are used as an input into an EKF for recursive state
estimation to improve the overall position and orientation estimation, otherwise known as the pose of
the robot.

2. State Estimation Formulation

2.1. Problem Formulation

A discrete EKF was used as the sensor fusion object to combine the initial position estimation
from a control input with external range measurement updates acquired from the UWB anchors.
The EKF calculates a linear approximation for a set of nonlinear functions based on the first-order
Taylor expansion [9]. This is achieved through a two-stage iteration process where the future state of
the system is predicted based on the current state and a state transition model. This is then corrected
using a measurement from an external source. The nonlinear state transition and measurement models
for an EKF are described in Equations (2) and (3) where X̂k and Ẑk represent the state and measurement
vector estimations at time k, controlled input into the system is represented as uk and notations wk−1
and vk−1 are the system and measurement noise:

X̂k = f (Xk−1, uk; wk−1), (2)
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Ẑk = h(Xk−1, vk−1). (3)

For the system implemented in this study, the range measurements acquired from the UWB
anchors meant that the system was assessed as a range-based localisation problem. This problem
when concerning mobile robots includes the continuous estimation of the robot’s state in terms of its
planar Cartesian coordinates and heading X = [x,y,φ]T [33], in relation to the reference anchors in the
environment that are assumed to have static positions mapped in MBi = [xBi,yBi], i ∈ [1, ..., NB] and
provide a set of range measurements ZBi = [rBi, i ∈ [1, ..., NBi]] at time k, where NB is the number of
UWB anchors present. The EKF was used to integrate the initial position estimate with the external
range measurements acquired from the UWB beacons. The EKF model used for localisation is based on
that presented by Thrun et al. [9]. In the case of this study, sensor measurements with an initial state
prediction were based on systematic mathematical modeling fused with with a control odometry input,
where quadrature encoders are used to determine the angular displacement of the robots wheels at
time k as well as a time synchronised gyroscope for heading calculation. The designs of the formulation
for the state transition and measurement model are presented below.

2.1.1. State Transition Model

An input odometry model proposed by [13] and also adopted by [25] was chosen to formulate
the state transition of the robot:

X̂−k = f (X̂k−1, uk), (4)

f (X̂k−1, uk) = X̂k−1 +


δDk cos(φk +

δφk
2

)

δDk sin(φk +
δφk
2

)

φk + δφk

 , (5)

where δDk is the linear displacement at time k and is calculated using the radii of the wheels rL, rR and
the angular displacement θLk and θRk acquired from the pulses of the encoders:

δDk =
rLδθLk + rRδθRk

2
. (6)

Therefore, with the state vector defined as X = [x,y,φ]T , the input vector is represented as
uk = [θL,θR,δφ]T , enabling the system and input Jacobians Gx and Gu to be pre-formulated.

Gxk =
∂ f
∂x

(X̂−k , uk), (7)
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Guk =
∂ f
∂u

(X̂−k , uk), (9)
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2.1.2. Measurement Model

The observed sensor measurements collected from UWB devices are range measurements
representing the Euclidean distances between the static reference anchors ABi and the estimated
position of the robot. At each measurement update, six anchors each provided a range measurement
ZBi = [z1, z2...z6], which is represented within the measurement function h below. Uncertainty within
the measurements is represented by noise variance R. An overview of the EKF algorithm is shown
in Algorithm 1:

Algorithm 1 Range based EKF Localisation

Prediction:

1: X̂−k = f (X̂k−1, uk)

2: Gxk =
∂ f
∂x (X̂−k , uk)

3: Guk =
∂ f
∂u (X̂−k , uk)

4: P̂−k = Gxk P̂k−1GT
xk
+ Guk QGT

uk

Correction:

5: ẐBi = h(X̂−k , ABi )

6: Hzk =
∂h
∂x (X̂−k )

7: Kk = P̂−k Hzk (Hzk P̂−k HT
zk
+ R)−1

8: y = ZBi − ẐBi

9: X̂k = X̂−k + Kky

10: P̂k = (I − Kk Hzk )P̂−k
11: if !.measurement_is_available then

12: do Prediction

13: else

14: do Correction

15: end if

ẐBi = h(X̂−k , ABi ), (11)

h(X̂−k , AB) =



√
(xk − xb1)

2 + (yk − yb1)
2√

(xk − xb2)
2 + (yk − yb2)

2√
(xk − xb3)

2 + (yk − yb3)
2√

(xk − xb4)
2 + (yk − yb4)

2√
(xk − xb5)

2 + (yk − yb5)
2√

(xk − xb6)
2 + (yk − yb6)

2



, (12)

and the Jacobian of the measurement model is obtained as:

Hzk =
∂h
∂x

(X̂−k ), (13)
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Hzk =



xk−xb1√
(xk−xb1)

2+(yk−yb1)
2

yk−yb1√
(xk−xb1)

2+(yk−yb1)
2

0

xk−xb2√
(xk−xb2)

2+(yk−yb2)
2

yk−yb2√
(xk−xb2)

2+(yk−yb2)
2

0

xk−xb3√
(xk−xb3)

2+(yk−yb3)
2

yk−yb3√
(xk−xb3)

2+(yk−yb3)
2

0

xk−xb4√
(xk−xb4)

2+(yk−yb4)
2

yk−yb4√
(xk−xb4)

2+(yk−yb4)
2

0

xk−xb5√
(xk−xb5)

2+(yk−yb5)
2

yk−yb5√
(xk−xb5)

2+(yk−yb5)
2

0

xk−xb6√
(xk−xb6)

2+(yk−yb6)
2

yk−yb6√
(xk−xb6)

2+(yk−yb6)
2

0



. (14)

The EKF uses the first-order Taylor expansion to linearly approximate the nonlinear state transition
and measurement models. This is where the Jacobian matrices are utilised to represent the first-order
partial derivatives of these models for linear approximation [9]. The Jacobian matrices and their
inverse (used within the state transition and the measurement models) were generated symbolically
using the MATLAB Symbolic toolbox (R2018a, Mathworks, Natick, MA, USA) prior to implementation.
The three Jacobian matrices were then solved numerically upon each iteration of the filter. The filter
was run offline using the MATLAB Control Systems toolbox.

3. Methodology

The methodology implemented for this work consisted of the configuration and calibration of
the RTS to set a base reference frame, which was consistently used for all sensor systems throughout
the testing procedures. To understand the range error behavior of the UWB system and the linear
displacement error of the quadrature encoders, characterisation procedures were executed using
the RTS as the ground truth. The results were then implemented into the design of the EKF for the
sensor measurement noise and the system input noise variance. Additionally, localisation tests are
then carried out to quantify the variation between localisation accuracy of the RTS, custom UWB
trilateration algorithm specific to the device and the EKF localisation using range measurements.

3.1. Robotic Testing Platform

The testbed employed was a skid steer, ridged chassis, four wheeled remotely operated platform
similar to the design used in [34]. The platform’s chassis was constructed from 10 mm square extruded
aluminium and is driven using four EMG30 DC motors controlled by Quimat DC H-Bridge motor
controllers [35]. The full system is powered by a four-cell lithium polymer battery. The motors include
built-in incremental quadrature encoders mounted to the motors’ extended shaft. The encoders provide
360 pulses per revolution (ppr), or a pulse every 1°.change in angular displacement [35]. The encoders
were used to accurately monitor the wheels’ rotation. The on-board processing for data collection,
platform control and sensor interaction was achieved using a Nvidia Jetson TX1 (Santa Clara, CA,
USA). A Trimble AT360 reflective target was mounted rigidly to the top surface of the platform via a
10 mm extruded aluminium mast allowing for clear line of sight. An image of the robotic platform can
be seen in Figure 1.
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(a) (b)

Figure 1. Experimental setup (a) backsight prism; (b) unmanned developmental platform.

3.2. Robotic Total Station Configuration

The RTS was set up in a static location with calibrated known rectangular Northing, Easting
and Elevation coordinates XRTS = [1996.085, 4977.284, 198.959]T . Regarding the British National Grid
(BNG) frame, this system allows direct Cartesian output while consistently retaining north reference.
The RTS was orientated by taking a back-sight observation measurement to another known point
through a centrally mounted telescope to a 360° prism (the back-sight prism and RTS position are
shown in Figure 1. Once configured, the TSC3 controller was responsible for operating the RTS
through a radio link communication, where the RTS measured both angle and distance to a remote
target and the TSC3 calculates the corresponding coordinates of the point within the established
reference coordinate system. The RTS was then set to acquire an initial lock prior to robot movement.
This enabled a consistent active tracking operation from the RTS using the AT360 target mounted
on the robot. Example trajectories produced from the RTS are shown in Figure 2. In order for the
trajectory analysis of the RTS to be used as a true baseline in comparison to the other sources of
position estimations in this study, it was vital that the real-time NMEA string acquired from the RTS
was time synchronised with the rest of the system. This resulted in the generation of a custom Trimble
RS232 port monitoring program, which was compatible and able to communicate with other software
packages specific to the various implemented localisation systems. This is further covered in Section 3.4
System Level Architecture.
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3.3. UWB System

The UWB system used for this work is known as Pozyx [36]. Pozyx is a small and lightweight time
of flight UWB positioning system that operates using a tag and anchor node network. Each compatible
Pozyx transceiver device possesses its own identification code, therefore allowing the mobile operating
tag to directly relate a range measurement to a specific anchor. Pozyx firmware deploys a lateration
algorithm based on a linear least squares (LLS) method to calculate an estimated location of the tag
in relation to the anchor positions. The system configuration settings are split into four sections that
cover operating channel, bitrate, pulse repetition frequency (PRF) and preamble length [36]. For this
study, the following configuration parameters were used:

• Channel—5,
• Bitrate—110 kbit/s,
• PRF—64 MHz,
• Preamble Length—1024.

The Pozyx firmware positioning algorithm “UWB Positioning Only” was utilised in a 2D mode
for metric comparison against the RTS and the results from the EKF.

3.4. System Level Architecture

The system architecture set to operate on-board the robot was designed around the open source
Robot Operating System (ROS) framework [37]. ROS is a meta-operating system that enables the
integration of multiple sources of information from different devices for the purposes of control.
For this work, comparing the trajectory acquired from an RTS with various other sources required
precise data synchronisation. Utilising the node based message publishing and subscription protocol
that ROS functions through, a custom compatible Trimble software was designed to integrate the
RTS with ROS, thereby time synchronising the RTS with other data sources within the system.
Another beneficial factor considered when using ROS for the operating framework was the ability
to configure a master/slave network that enabled the consistent communication and synchronised
data transfer between two different platforms, in this case, a Jetson TX1 (Ubuntu 16.04) (master) and
a ground station (Ubuntu 16.04) (slave), where the latter was configured to monitor the incoming
pseudo-NMEA GPGAA string acquired from the RTS. Figure 3 shows a graphical overview of the
implemented system level architecture.

Figure 3. System level architecture.



Sensors 2018, 18, 2274 9 of 16

Dynamic tracking using the RTS is achieved via a lock onto a target, either in the traditional sense
using systems such as the Trimble MT1000 (Figure 1a) or aided through high frequency Infrared LED
in the case of the Trimble AT360 target (Figure 1b). Although the RTS is capable of tracking MT1000
targets unaided, the prism is equipped with IRLEDs to allow multiple addressed targets to be used
in the same process. Figure 1 also shows the RTS with a lock onto the target when mounted on the
deployed system. RTS lock is made when a confirmed, stable distance measurement is made to the
AT360 target located on the mast of the robot. Once this lock is confirmed, the robot is instructed to
follow a predefined set of paths. Data from the RTS is actively collected and stored using the ROSBag
functionality of the ROS system along with data collected from the Pozyx and quadrature encoders for
post trajectory comparisons.

3.5. Range Error Characterisation

In order to characterise the range error of the UWB system, the UWB anchors were placed within
a 224 m2 environment and RTS was used to take a static measurement directly to the UWB antenna on
each anchor to acquire six precise positions all within the BNG coordinate frame. The robot, equipped
with the UWB tag and RTS reflective target was then set to execute three paths at a constant speed.
This enabled linear interpolation between the UWB and RTS for error analysis. At each update,
the robot would receive six distance readings from the UWB anchors and a corresponding position
update from the RTS. However, as the true position of the anchors and the RTS are known priors,
the acquisition of the true position of the robot using the RTS enabled the calculation of the true
Euclidean distance dTAik between the robot and anchor i:

dTAik =
√
(xTR − xTAi )

2 + (yTR − yTAi
)2, (15)

where xTRk , yTRk
and xTAi , yTAi

are the true Cartesian positions of the robot at time k and anchor
i, respectively.

3.6. Encoder Error Characterisation

As the encoders were to be used as a control input into the EKF, the noise variance of the input
was a required source in the construction of the EKF. Instead of consistently tuning this variable until
the EKF yielded expected results, the RTS was used to estimate the noise variance of the encoders.
In order to achieve this, the robot was instructed to complete a 10 m track for 10 repetitions. Each 10 m
track was split into 2 m segments based on the displacement across ground given from the RTS.
This was done to account for any possible wheel slippage occurrence. Time parameters were then cross
referenced to identify the displacement estimation given from the encoders at the time corresponding
to when the RTS displacement completed each segment. Time alignment between the two sources
was achieved through linear interpolation as this test was conducted at a constant speed. The encoder
distance and final distance error was then calculated through Equations (16) and (17), respectively:

denc = Nenck Cr, (16)

where Nenc is the number of encoder pulses at time k, C is the constant associated with angular
displacement per pulse of the encoder set in radians at 0.01745 and r is the radius of the wheel:

derr = denc − dRTS. (17)

The 10 repetitions of the 10 m track resulted in the error deviation of 0.1185 m. All encoders were
assumed to have the same error deviation.
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3.7. Localisation

The configuration setup concerning the position of the RTS and UWB anchors for the range
error characterisation was maintained for the localisation experiments. The results gathered from
the EKF localisation algorithm were compared to the trajectory acquired by the RTS and the UWB.
The robot was instructed to navigate various types of trajectories, where one was carried out at a
constant velocity to allow for linear interpolation for metric positional comparison in terms of (x,y)
between the RTS and the resulting estimations from the EKF. The linearity of the data was assessed
to determine its suitability for interpolation. Although the general EKF algorithm performs ideally
in pose estimations within the local body frame of the robot, the relationship to a global frame of
reference is absent without providing an initial state vector. To convert the operating frame of the EKF
to that of the RTS, the initial state vector X0 was set to equal the first global position pose acquired
from the RTS as shown below:

X0 =

RTSx0

RTSy0

RTSφ0

 . (18)

4. Results and Analysis

4.1. Range Error Characterisation Results

Characterising the behavior of the range error for the UWB system was carried out with a main
focus to determine the precision of the sensor. This is due to the variation of the error being a key
input for the EKF. As the robot navigates along the repeated path shown in Figure 4, the distances
between the robot and each anchor alternate, providing the opportunity to analyse how the error
behaves during a dynamic scenario.
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Figure 4. Robot path for Range Error Characterisation.

As each anchor provided a range measurement to the robot, the RTS calculated a corresponding
true distance. The errors for each anchor follow a normal distribution shown by the Gaussian plots
in Figure 5, where the standard deviation is seen to be similar for each anchor. However, due to
the heading of the robot changing, there were notable periods of time where the tag was facing
in a contrasting direction to each anchor creating a non clear line of sight condition (NCLOS).
These periods may produce an extra source of error in the robot’s path and may possibly increase
as larger operating ranges. As the UWB anchor range error is highly dependent upon the
environment [38], re-characterisation would be required for each new anchor setup if specific
uncertainty estimates for each anchor are used. If a system is to be deployed in a similar configuration
and environment, a generalised uncertainty found by taking an average of the specific uncertainties of
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each anchor may be applicable. However, if the anchor configuration and environment have changed,
re-characterisation of the anchors is required. An averaged uncertainty in this form allowed for a
generalised uncertainty implementation.
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Figure 5. Error Distributions of UWB range measurements.

Error results gathered from each anchor during the path were then combined to provide a
generalised error metric. The combined errors are represented in Figure 6. All error statistics for each
single anchor and the dataset containing combined anchor errors are shown in Table 1.
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Figure 6. Error distribution for all anchors.
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Table 1. Range error statistics for each anchor.

Anchor Mean Error (m) Standard Deviation of Error (m)

Anchor 1 0.0301 0.1216
Anchor 2 0.0235 0.1336
Anchor 3 0.0237 0.1287
Anchor 4 0.1014 0.1325
Anchor 5 0.1081 0.1194
Anchor 6 0.0867 0.1256

Combined 0.0622 0.1323

4.2. Localisation Techniques Assessment

Experiments focusing on the localization outcomes for this work can be seen in Figure 7. Both the
EKF and the native UWB system firmware localisation technique produce significantly better results
compared to that of the odometry technique, where wheel slippages are clearly noticeable as the robot
appears to drift in relation to the true path of the RTS. The path generated from the UWB system is
fairly accurate in most areas compared to the ground truth of the RTS. However, in some areas within
the environment enclosed by the anchors, the UWB localisation is seen to be slightly noisy, which
is something that the path generated by the EKF clearly reduces. Overall, the EKF seems to follow
the ground truth trajectory of the RTS in more areas compared to the UWB system. However, it is
noticeable that EKF does drift in areas where the UWB seems to be affected by noise. These noisy
measurements from the UWB may be a factor in the slight drifts in the EKF, showing that the noise
variance of the UWB may in fact be a dynamic variable depending upon the area that the robot is
situated within in relation to the external anchor position and coverage.

Figure 8 shows the results of the EKF acquired from the robot’s path, which was conducted at a
constant speed. Each pose produced from the EKF and UWB as well as corresponding timestamps
were used to apply a linear interpolation process on the Northing and Easting plane of the RTS
path. This was carried out achieve a point-to-point metric comparison. The EKF again is seen to
be less noisy compared to the native UWB localisation algorithm. However, it is also noticeable
that the pose of the EKF is seen to drift slightly when the UWB pose estimation from the system’s
native algorithm also produces a high level of noise. This is observed directly north in relation to the
position of the RTS. This shift in position from the UWB demonstrates again how the variance in noise
may be dynamically changing depending upon the environmental conditions at that specific time.
Final statistical comparison between the UWB and the EKF on a 2D plane can be found in Table 2.
Results show that the EKF achieves a smaller mean error on both the x- and y-plane and with a reduced
error deviation on the y, although it yields a slightly increased deviation on the x-axis.

Table 2. Positional errors in terms of mean and standard deviation (x—Easting, y—Northing).

Axis Mean Error (m) Standard Deviation of Error (m)

UWB (x) 0.0621 0.1478
UWB (y) 0.0718 0.1510
EKF (x) 0.0167 0.1611
EKF (y) 0.0071 0.1326
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Figure 7. Resulting paths from all techniques and RTS active tracking.
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5. Conclusions

In conclusion, this paper demonstrated the effectiveness of utilising a surveying grade optical
instrument, in the form of a robotic total station as a ground truth metric and to dynamically
characterise a generalised range uncertainty of a UWB sensor network, all within an intended
operating environment. The resulting uncertainty was used as an input into an EKF fused with
robot odometry to yield a reduced localisation error metric compared to the UWB system’s native
localisation algorithm. Although the odometry is limited when used standalone, when fused with
the range measurements from the UWB, it produces a less noisy overall trajectory. However, the EKF
is seen to drift in areas within the environment based on the noise increase of the UWB. This has
therefore led to planning future work aimed at the inclusion of a generalised adaptive uncertainty
metric into the EKF which can also be achieved using the active target tracking feature from the RTS.
This is an experiment that cannot be carried out through static tests between two UWB devices as it is
environment dependent. The generalised adaptive uncertainty would be taken as a function of the
range from the robot to anchor locations, the robot’s position within the environment, and combined
with an estimate for the level of obstruction between the robot and anchors dependent upon the
robot’s global heading. Additionally, further experimentation will also be undertaken into a specific
uncertainty characterisation that may lead to a more effective implementation. This uncertainty will
be specific to each individual anchor as opposed to a generalised metric. With this investigation,
a comparison study can be completed that assesses the three uncertainty methods: generalised,
adaptive generalised and specific, in order to observe which method yields the optimal results.
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EDM Electronic Distance Measurement
RFID RADIO Frequency Identification
TOA Time of Arrival
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