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Abstract

Antiviral drugs and alcohol abuse-induced organelle stresses have been linked to many disorders 

and the underlying molecular mechanisms are under intense investigations. This brief review 

communicates emerging evidence and research trends on how certain antivirals and alcohol affect 

ER-Golgi trafficking, which potentially impacts the function and integrity of the Golgi apparatus 

contributing to endoplasmic reticulum stress and cellular injury.
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Introduction

Globally, there are 36.7 million people living with HIV and approximately 1.8 million 

acquire HIV infection every year [1]. In the United States, 1.2 million people are living with 

HIV infection and half million with AIDS have died since the HIV epidemic began in the 

1980’s [1–3]. The situation demands development of antiretroviral drugs and access to 

antiretroviral therapies. While anti-HIV vaccines or genome editing are yet to be developed 

and put into practice, antiretroviral agents are effective [4–6]. For instance, HIV protease 

inhibitors (HIV PIs) that inhibit HIV proteinase or protease are used in the highly active 

effective antiretroviral therapies (HAART) and nucleic acid-based anti-HIV compounds are 

developed for further inhibition of intracellular viral targets. The quality of life of HIV/

AIDS patients under anti-HIV therapies is improved significantly. However, there are 

numerous reports indicating that some antivirals singly or in combination increase the risk of 

comorbidities [7–9]. While some side effects of anti-HIV drugs are manageable, some can 

be very serious and fatal. For instance, hepatic injuries have emerged as the major non-

AIDS–related cause of death among HIV/AIDS patients [8,10]. The risk of drug side effects 

gets worse as nearly half of the HIV-infected patients abuse/consume alcohol, which not 

only impairs patients’ adherence to HAART but also worsens anti-HIV drug-induced 

hepatotoxicity leading to greater morbidity and mortality [11,12]. Nonhazardous alcohol use 
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of less than five standard drinks (equivalent to 5 × 14 g of pure alcohol) once a week can 

reduce survival of HIV/AIDS patients by one year and daily hazardous use of five or more 

standard drinks per day reduces survival by more than six years [11–13]. Increase in liver 

injuries such as liver fibrosis or cirrhosis are often seen at all levels of alcohol exposure 

[8,10,11]. To be even complicated, there are 10 million HIV/AIDS patients worldwide co-

infected with hepatitis viruses and/or tuberculosis (TB). Additional drugs against the co-

infections and/or drug abuse could further increase the severity of the hepatoxicities 

[8,14,15]. Therefore, it is of importance to dissect pathogenic mechanisms underlying the 

hepatoxicity caused by the drugs combined with alcohol consumption/abuse, which would 

provide basis for a better management of AIDS patients suffering from liver disease.

Organelle Stress in Antivirals and Alcohol-Induced Liver Disorders

There are a few potential mechanisms underlying the alcohol and drug-induced 

hepatotoxicity/liver injury: (1) direct intrinsic toxicities from individual drugs [16]; (2) 

idiosyncratic hypersensitivity reactions [16]; (3) aberrant immune activities [16,17]; (4) 

metabolic abnormality and cellular stress response [18]. The intrinsic toxicity occurs dose-

dependently at sub-lethal doses and can be influenced by environmental and genetic 

sensitivity factors. The idiosyncratic reactions occur in a minority of patients without 

obvious relationship to drug dose or time of onset. The innate and adaptive immune 

responses are generally known to be involved in the liver toxicity. Detailed characteristics of 

these potential mechanisms are not discussed in this focused review. The stress and 

metabolic abnormality mechanism is the most significant and relevant as cellular stress 

responses in the liver may generate danger signals which co-stimulate the immune system, 

and alcohol and majority of the anti-HIV drugs are metabolized in the liver by the 

cytochrome P450 enzyme system, which is bound to interfere with the metabolism and the 

antiviral therapies in AIDS patients. In fact, alcohol as “the first hit” is reported to affect 

hepatic CYP activities that metabolize protease inhibitors [18–20]. Both alcohol and certain 

antiviral drugs induce organelle stress, such as the induction of unfolded protein 

accumulation in the endoplasmic reticulum (ER) resulting in ER stress and cell death 

[20,21]. Anti-HIV drugs such as ritonavir (RTV), indinavir (IDV), lopinavir (LPV) or 

atazanavir (ATZ) have been reported to induce ER stress in hepatic cells [22]. We initially 

discovered that alcohol induced ER stress in the liver of animal models [23]. The ER stress 

normally triggers protective unfolded protein response (UPR), which involves three ER 

stress sensors: IRE1 (inositol requiring enzyme 1), PERK (PKR-like ER kinase) and ATF6 

(activating transcription factor), to restore ER homeostasis and minimize injuries. However, 

prolonged UPR such as under conditions of chronic alcohol consumption and/or long-term 

anti-HIV therapies induces fat accumulation, inflammation and cell death, which are well 

documented to lead to development of hepatic steatosis, fibrosis and cirrhosis [20–25]. 

Because the ER stress response is a major pathogenesis mechanism, xenobiotics to ensure 

proper ER homeostasis have been developed and tested in a variety of in vitro and in vivo 
model systems. They include: molecular chaperones such as sodium 4-phenylbutyrate (PBA) 

and taurine conjugated ursodeoxycholic acid (TUDCA) that increase the ER protein-folding 

capacity; and compounds such as antioxidants, autophagy inducers, and UPR enhancers (e.g. 

salubrinal/guana benz, trans-4,5-dihydroxy-1,2-dithiane (DTTox), and valproate) that either 
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increase expression of protein chaperones or enhance the protective UPR pathways 

[21,25,26]. However, the xenobiotics for ER homeostasis restoration resulted in partial 

protective effects, suggesting that although the ER stress is involved in the alcohol and drug-

induced liver injuries, there are other cellular targets that either contribute or are upstream of 

the ER stress response.

The organelle that is closely associated with the ER is the Golgi apparatus. The Golgi is part 

of the cellular endomembrane system, in which secretory and membrane proteins from the 

ER receive various modifications such as glycosylation, phosphorylation and sulfation and 

are then packaged into membrane-bound vesicles before trafficking to their destinations. 

Similar to the ER, the structure and capacity of the Golgi can fluctuate according to 

physiological demands or pathological stress conditions. When the protein load and 

modifications exceed the Golgi capacity there is a Golgi stress response (referred to as GSR) 

to increase its capacity [20,27]. Impaired GSR can cause cellular injuries directly or 

indirectly through the ER stress. There are a few factors that may regulate GSR. The first is 

TFE3 (a basic-helix-loop-helix type transcription factor) [28], which regulates 

transcriptional activation of genes encoding vesicular trafficking components or Golgi 

residents such as RAB20, syntaxin 3A (STX3A), protein 60 (GCP60), GM130, giantin, 

sialyltransferase, fucosyltransferase and glycosylation enzymes. Translocation of TFE3 into 

the nucleus depends on the status of its phosphorylation. Upon Golgi stress, TFE3 is 

dephosphorylated and translocated into the nucleus where it activates the GSR genes. The 

second is the CREB3-ARF4 pathway involving both ER and Golgi [29]. CREB3 is a basic 

leucine zipper-containing transcription factor that resides in the ER membrane. ARF4 (ADP-

ribosylation factor 4) is a member of the small GTPase family that regulates Golgi-to-ER 

vesicular trafficking. CREB3 is activated via proteolysis and upregulates the transcription of 

ARF4 in Brefeldin A (BFA) treated cells that are under both ER and Golgi stresses. BFA is 

known to inhibit the function of several guanine nucleotide exchange factors (GEFs) and 

blocks GEF-mediated Golgi-to-ER trafficking [30]. The third pathway involves an ER 

chaperone, HSP47. HSP47 may protect cells from the Golgi stress as expression of HSP47 

is increased under the Golgi stress and suppression of HSP47 by siRNA resulted in 

fragmentation of the Golgi apparatus and cell death [31].

Alcohol consumption/abuse has long been known to induce ultrastructural changes in the 

Golgi. In man and animal, chronic alcohol feeding with nutritionally adequate diets induced 

ultrastructural abnormalities of the intestinal epithelial cells, mammary cells, hepatocytes, 

neurons, and glandular epithelium cells [32–38]. In addition to the morphological changes, 

there is evidence for alcohol-induced functional and metabolic changes. Chronic alcohol 

exposure affects the ER-Golgi trafficking in neuronal dendrites [39]. Alcohol alters glycosyl 

transferase activity in the Golgi of liver cells [40]. Acute ethanol intoxication interferes with 

various steps of protein glycosylation at the Golgi of rat liver [41]. Further, accumulations of 

lipid and carbohydrates and decreased terminal glycosylation were observed in the Golgi of 

isolated hepatocytes treated with alcohol, which was associated with production of 

anticytoplasmic autoantibodies. Significantly, high titers of anti-Golgi antibodies were 

detected in human alcoholics with hepatocellular carcinoma (HCC) [42].
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There is also evidence that either viral infection or antiviral drugs induce the Golgi stress. 

For instance, hepatitis C (HCV) replication requires the guanine nucleotide exchange factor 

1 (GBF1) and its effector ADP ribosylation factor 1 (Arf1) that are known to regulate Golgi 

membrane trafficking and organelle structure in the secretory pathway. HCV infection is 

reported to result in Golgi fragmentations [43]. On the other hand, pegylated interferon 

(Peg-IFN) plus ribavirin, the standard therapy for HCV, induces anti-Golgi antibodies, which 

is associated with liver injury in patients [44].

Emerging Evidence and Hypothesis of Disrupted ER-Golgi Trafficking in 

Drugs and Alcohol-Induced Liver Pathogenesis

Synergistic or additive effects of antivirals combined with alcohol on liver injury have been 

observed recently [8,18,45,46]. Chronic alcohol feeding of animal models resulted in fat 

accumulation, which is associated with distorted morphologies of the ER and Golgi 

organelles visible under electron microscopy (Figure 1). Treating the animals with a 

standard regimen for HIV-infected patients (i.e., ritonavir boosted lopinavir) induced 

moderate dilatation of the ER and dispersed Golgi apparatus. Combination treatments with 

alcohol and the drugs induced severe damages to the hepatocytes. Neither the ER nor the 

Golgi was identifiable and rare myelin-like structures surrounding giant lipid droplets were 

observed for the first time in the liver cells from treated animals. In contrast, the hepatocytes 

from control animals had lamella ER and normal Golgi apparatus.

In pursuing molecular details of the alcohol and drug-induced organelle stress response, we 

found that the three canonical UPR branches, IRE, PERK and ATF6 were differentially 

expressed in HepG2 or primary hepatocytes in response to the RTV boosted LPV treatment 

[18,46]. The ATF6 branch as well as genes/factors downstream of the ATF6 were inactivated 

or not altered while the other two branches of UPR were upregulated. These observations are 

of great interest as the activation of ATF6 is known to require ER-to-Golgi trafficking and 

proteolytic processing that involves both the ER and the Golgi apparatus [47]. In fact, co-

localization of ATF6 and the Golgi was lower in the liver cells treated with the drugs and 

alcohol than in the cells treated with the specific ER stress inducing agent tunicamycin or 

thapsigargin [46]. In parallel to the reduction of ATF6 in the Golgi, marked Golgi 

fragmentation was observed in the RTV and LPV-treated liver cells (Figure 2), which was 

concentration and time dependent. Of note, the Golgi fragmentation was not due to mitosis 

as the drug-induced fragmentation was detected in both HepG2 cells and rarely dividing 

primary hepatocytes and liver tissues [46]. Apoptosis did not cause the fragmentation either 

as increased caspase activities were not detected until hours after the drug treatments and 

pancaspase inhibitors did not show any rescue effects on the drug-induced Golgi 

fragmentation. Moreover, variations in severity of the fragmentation were observed in 

response to other anti-HIV drugs including amprenavir, darunavir and nelfinavir, which were 

correlated with downstream ER stress and cell death and fatty liver injury [46]. All these 

pieces of evidence suggest that Golgi dysfunction and disturbed ER-Golgi trafficking 

contributes to the anti-HIV drugs and/or alcohol-induced liver disorders.
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The ER-Golgi trafficking is bi-directional and responsible for biogenesis and intracellular 

distribution of biomolecules [48]. ER-to-Golgi trafficking or anterograde transportation 

mediated by the COPII complexes moves newly synthesized proteins and lipids to Golgi for 

processing, sorting and redistribution. Meanwhile, Golgi-to-ER trafficking or retrograde 

transportation mediated by the COPI complexes ensures recycling of lipids, fluids and ER 

escaped proteins [48,49]. Impairments of either anterograde or retrograde could eventually 

collapse the whole ER-Golgi trafficking and trigger cellular stress responses leading to 

injury [20,21, 46,48]. Thus, integrity of the ER-Golgi trafficking is essential for maintaining 

Golgi morphology [48–50]. The Golgi fragmentation observed by us indicates that the drugs 

stress the Golgi and disrupt the ER-Golgi trafficking. Indeed, Golgi stress response markers, 

GCP60 and HSP47 were increased in the drug-treated liver cells and knockdown of TFE3 

worsened the drug-induced cell death [46]. Further, the anterograde ER-to-Golgi trafficking 

is likely affected more than the retrograde trafficking by the anti-HIV drugs and alcohol. 

This is because the effects of the drugs on Golgi fragmentation are similar to the effects of 

H89. H89 is a protein kinase A (PKA) inhibitor. PKA is required for the initiation and 

assembly of the COPII complexes [51]. In addition, BFA is known to inhibit specifically the 

assembly of COPI complexes [30] and its effects on the Golgi fragmentation are different 

from the effects of the anti-HIV drugs. Thus, it is conceivable that anti-HIV drugs interfere 

with the ER-Golgi trafficking and Golgi integrity causes Golgi stress and/or ER stress 

(Figure 3). The Golgi stress triggers Golgi stress response, which either restores Golgi 

homeostasis or induces injury depending on stress conditions. Alcohol consumption may 

deteriorate the drug-induced Golgi dysfunction and hepatic injury through interfering with 

the metabolism of the anti-HIV drugs as five to ten-fold increases of the drug concentrations 

were observed in the blood of animals fed alcohol [18,46].

Perspectives

The primary target of antiviral drug and alcohol abuse appears to be the ER-Golgi trafficking 

based on our recent observations, which could explain a few aspects of pathological 

consequences in the hepatocytes that synthesize and secrete large amounts of substances. 

Disruptions in the ER-Golgi trafficking will have impact on the integrity and function of the 

Golgi apparatus. The stressed Golgi either respond to restore its homeostasis that potentially 

involves ARF4, HSP47 and TFE3 or dissemble to generate danger signals to stimulate the 

general immune response that eliminates the cells containing the damaged Golgi. The 

impaired ER-Golgi trafficking could also suspend processing and activation of transcription 

factors such as ATF6 that is involved in maintaining ER homeostasis. Loss of the ER 

homeostasis will stress the ER which is well established to induce cell death and disease 

development. Thus, vicious cycles resulted from the disrupted ER-Golgi trafficking most 

likely occurs in the liver cells that metabolize both the drugs and alcohol.

The question is what specific molecular components of the ER-Golgi traffic machineries are 

affected by the anti-HIV drugs and/or alcohol. The trafficking between ER and Golgi 

mediated by the endomembrane system involves vesicle budding, uncoating, docking and 

fusion that are often through recruitments of effectors such as vesicle tethers, SNAREs, 

membrane and motor proteins. These effectors are regulated by the Rab GTPases that belong 

to a large family of small GTP-binding proteins and accomplish their functions by switching 
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between an inactive GDP bound and an active GTP-bound form. About one third of the 60 

members of the Rab GTPase family found in human cells have been associated with either 

the ER or Golgi complex or the membrane intermediates at their interface. Since majority of 

the Rab proteins and effectors are not well characterized, it is hard to predict specific targets 

of the antiviral drugs. However, considering that the drugs were initially developed to 

prevent viral replication by selectively binding to viral proteases (e.g. HIV-1 protease) and 

blocking proteolytic cleavage of protein precursors required for the virus production, one 

would speculate that the drugs could also have some unintended effects on certain Rab 

proteins or effectors of the ER-Golgi trafficking machinery that require proteolytic cleavage 

for their maturation or functional activation. Future research should be directed to seek these 

unintended targets, which would provide molecular basis for modifications of the current 

anti-HIV drugs so that minimize the side effects of anti-HIV or other virus medicine.
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Figure 1. 
Electron microscope images demonstrating damages of the Golgi apparatus and 

endoplasmic reticulum of hepatocytes from animal models fed alcohol (E) and anti-HIV 

protease inhibitor ritonavir (RTV) and lopinavir (LPV) for one month.

Gg: Golgi Apparatus; ER: Endoplasmic Reticulum; MT: Mitochondria; Lp: Lipid Droplets
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Figure 2. 
Confocal images of primary hepatocytes treated with vehicle DMSO versus ritonavir (RIT) 

and lopinavir (LOP).

Fragmented Golgi apparatus can be seen in the liver cells treated with the anti-HIV drugs
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Figure 3. 
Working model on the role of disrupted ER-Golgi trafficking in anti-HIV drug and alcohol 

abuse-induced liver disorder.

Anti-HIV drugs interfere with the ER-Golgi trafficking and compromise Golgi integrity 

causing Golgi stress and/or ER stress. The Golgi stress triggers Golgi stress response (GSR). 

GSR either restores homeostasis or induces injury under prolonged stress condition, the later 

of which can be worsened by alcohol-induced ER stress and unfolded protein response 

(UPR)
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