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and Hua Zhang*

Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China

Inborn errors of metabolism (IEMs) are strongly related to abnormal growth and
development in newborns and can even result in death. In total, 94,648 newborns were
enrolled for expanded newborn screening using tandem mass spectrometry (MS/MS)
from 2016 to 2020 at the Neonatal Disease Screening Center of the Maternal and
Child Health Hospital in Shaoyang City, China. A total of 23 confirmed cases were
detected in our study with an incidence rate of 1:4,115. A total of 10 types of IEM
were identified, and the most common IEMs were phenylalanine hydroxylase deficiency
(PAHD; 1:15,775) and primary carnitine deficiency (PCD; 1:18,930). Mutations in
phenylalanine hydroxylase (PAH) and SLC22A5 were the leading causes of IEMs. To
evaluate the application effect of artificial intelligence (AI) in newborn screening, we used
AI to retrospectively analyze the screening results and found that the false-positive rate
could be decreased by more than 24.9% after using AI. Meanwhile, a missed case with
neonatal intrahepatic cholestasis citrin deficiency (NICCD) was found, the infant had a
normal citrulline level (31 µmol/L; cutoff value of 6–32 µmol/L), indicating that citrulline
may not be the best biomarker of intrahepatic cholestasis citrin deficiency. Our results
indicated that the use of AI in newborn screening could improve efficiency significantly.
Hence, we propose a novel strategy that combines expanded neonatal IEM screening
with AI to reduce the occurrence of false positives and false negatives.

Keywords: artificial intelligence, inborn errors of metabolism, newborn screening, incidence rate, tandem mass
spectrometry

Abbreviations: AADs, amino acid disorders; ASA, argininosuccinate aciduria; BH4D, tetrahydrobiopterin deficiency;
BKD, beta-ketothiolase deficiency; CACTD, carnitine/acylcarnitine translocase deficiency; CIT-I, citrullinemia type I; CPT-
ID, Carnitine palmitoyltransferase I deficiency; EE, ethylmalonic encephalopathy; FAODs, fatty acid oxidation disorders;
GA-I, glutaric acidemia type I; H-ARG, arginemia; HCSD, holocarboxylase synthetase deficiency; HCY, homocystinuria;
HHHS, hyperornithinemia-hyperammonemia-homocitrullinuria syndrome; H-MET, hypermethioninemia; H-ORN,
hyperornithinemia; H-PRO, hyperprolinuria; H-TYR, tyrosinemia; IBDD, isobutyryl-CoA dehydrogenase deficiency; IEMs,
inborn errors of metabolism; IVA, isovaleric acidemia; MADD, multiple acyl-CoA dehydrogenase deficiency. MAL,
malonic acidemia; MCADD, medium-chain acyl-CoA dehydrogenase deficiency; MMA, methylmalonic acidemia; MMA-
HCY, methylmalonic aciduria combined with homocystinuria; MS/MS, tandem mass spectrometry; MSUD, maple syrup
urine disease; NICCD, neonatal intrahepatic cholestasis citrin deficiency; OADs, organic acid disorders; PA, propionic
acidemia; PAHD, phenylalanine hydroxylase deficiency; PCD, primary carnitine deficiency; SCADD, short-chain acyl-CoA
dehydrogenase deficiency; TYR-III, tyrosinemia type III; VLCADD, very-long-chain acyl-CoA dehydrogenase deficiency;
2-MBDD, 2-methylbutryl-CoA dehydrogenase deficiency; 3-HMGD, 3-hydroxy-3-methylglutaryl-CoA lyase deficiency;
3-MCCD, 3-methylcrotonyl-CoA carboxylase deficiency.
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INTRODUCTION

Inborn errors of metabolism (IEMs) refer to a class of diseases
in which genetic mutations cause enzyme defects, membrane
dysfunction, or receptor defects, leading to a series of clinical
symptoms caused by the accumulation of intermediate, bypass
metabolites, or terminal metabolite deficiency (1–4). To date,
more than 1,400 IEMs have been described (5). The prevalence
of individual IEM is low, but the overall incidence rate is high.
IEMs pose a great threat to the development of individuals,
families, and society (6). Therefore, early presymptomatic
screening, diagnosis, and treatment are important to reduce the
incidence of IEMs.

The application of tandem mass spectrometry (MS/MS) in
newborn screening enabled a robust increase in the screening
and detection of IEMs and made it a highly efficient and
economical program. Nowadays, newborn screening for IEMs
by MS/MS is being widely performed worldwide; however,
many problems remain. First, the level of metabolites in
neonatal blood is affected by many factors, such as the neonatal
physiological state, maternal factors, the time of day when
the blood is collected, and sample quality. Moreover, neonatal
screening is complicated due to the complex disease-specific
indicators and different criteria used by doctors. All these
factors increase the risk of false positives and false negatives
in newborn screening (7–11). Screening results for primary
carnitine deficiency (PCD; OMIM# 212,140) and methylmalonic
acidemia (MMA; OMIM #251,000, 277,400, 277,410, 251,100,
251,110, 277,380, 309,541, 613,646, 614,265, and 614,857) have
a high false-positive rate that necessitate recall and follow-up
with suspected positives, which can be difficult (12, 13). Some
screening indicators of IEMs such as citrulline, an indicator
of neonatal intrahepatic cholestasis citrin deficiency (NICCD;
OMIM #605,814), have a lower specificity and higher false-
positive rates (14). Thus, there is an urgent clinical need to
improve the neonatal screening efficiency of IEMs, researchers
are making efforts to this end, and some gratifying research
results have been achieved. Yosuke developed a second-tier
liquid chromatography- (LC-) MS/MS analysis method to
minimize false-positive cases in newborn screening by MS/MS
(15). Their works could effectively decrease the false-positive
rate of glutaric acidemia type I (GA-I), 3-methylcrotonyl-
CoA carboxylase deficiency (3-MCCD), and were useful for
differential diagnosis in cases positive for C5-OHacylcarnitine
or C5-acylcarnitine. In another research reported by Lin et al.
(16), they designed a high-throughput iPLEX genotyping assay
to detect NICCD in the Chinese population. Newborns with
citrulline levels between 1/2 cutoff and cutoff values of the
upper limit were recruited for this assay (29,364 out of 237,630),
and five missed cases were finally found. Combining newborn
metabolic screening with genetic screening could greatly improve
the performance of the current newborn screening program.
Although a number of researchers have proposed effective
protocols to improve screening efficiency, the protocols need an
additional test, which would increase reporting time and the cost
for parents. We applied an artificial intelligence (AI) disease risk
assessment model to neonatal IEMs to explore a new strategy

to reduce the occurrence of false positives and false negatives in
newborn screening.

MATERIALS AND METHODS

Clinical Data
A retrospective study was conducted on 94,648 neonates and 23
confirmed cases from 2016 to 2020 at the Maternal and Child
Health Hospital of Shaoyang City, China.

Blood Collection
Blood samples were collected via heel prick from breastfed
newborns 72 h after birth, blotted on specialized filter papers,
dried at low temperatures, and delivered to the Shaoyang
Neonatal Screening Center.

Newborn Screening by Tandem Mass
Spectrometry
Dried blood spots were pretreated according to the NeoBaseTM

non-derivatized MS/MS kit (PerkinElmer, Turku, Finland)
with an organic solvent containing the internal amino acid
and carnitine standards. All samples were analyzed using
a Waters ACQUITY TQD MS/MS screening system. After
passing internal quality control, data analysis, and report
distribution were performed.

Genetic Testing
Genomic DNA was extracted from peripheral blood (or dried
blood spots) of presumptive patients using the Qiagen Mini
Blood DNA kit (Hilden, Germany). The capture probes of genes
related to IEMs were customized by Agilent (Palo Alto, CA,
United States), and targeted genomic DNA region sequences
were enriched by multiple probe hybridization. After extraction
and library preparation of the targeted region sequences,
DNA samples of probands were sequenced on the HiSeq2500
(Illumina, San Diego, CA, United States) platform. All identified
variants were validated using Sanger sequencing on an ABI
3500XL (SCIEX, Boston, MA, United States).

Data Collection and Standardization
The following data were collected:

(1) Laboratory background information included instrument
model, reagent type, quality control type, laboratory quality
control rules, punched spot size, filter paper type, cold
chain transportation, blood collection needle type, cutoff
value range, and positive rules.

(2) Quality control data included quality control number,
quality control type, batch number, amino acid internal
standard number, acylcarnitine internal standard batch
number, delivery time, test time, and test value of the
quality control analyte.

(3) Screening test data included screening number, the age
of mother, gestational week, gestational number, fetal
age, hyperthyroidism, consuming antithyroid medication
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or not, lactation mode, residence of mother, breast-
feed times, sex, birth date, birth weight, initial screening
result, reexamined result, sample number, screening times,
blood collection time, delivery date, experiment date,
experimental method, quality control number, and the
concentration of analytes.

(4) Confirmed cases included the screening number,
confirmed disorder, urine organic acid test result,
blood ammonia test result, blood gas analysis result,
blood routine test result, liver function test result, vitamin
B12 detection result, imaging, gene detection result, and
other test results.

(5) Standardized median multiple (multiple of the
medium, MoM) methods were applied in which the
median of the original concentration divided by the
biochemical indicators were applied to the detection
indicators to eliminate the influence of regional and
laboratory differences. We then trained the disease
model by combining the MoM, gestational week,
neonatal blood collection interval, neonatal weight, and
corresponding IEMs.

The Artificial Intelligence Disease Risk
Assessment Model of Inborn Errors of
Metabolism
The AI disease risk assessment model for IEMs was developed by
Zhejiang Biosan Biochemical Technologies Co., Ltd. (17, 18), and
the construction process of AI model was as follows:

(1) Construction and selection of model indicators:
core indicators were selected by information gain
and correlation coefficient, and combined feature
construction is performed.

(2) Model selection and training: the model training phase
divides the screening data into the training set and test set
in the ratio of 8:2, and the best performing model is selected
by integrating learning models such as random forest,
gradient boosting tree algorithm, and artificial neural
network algorithm for training.

(3) Model evaluation: the model firstly satisfied the
identification rate of 100% for positive cases, and then
the false-positive rate was compared to select the optimal
training model. In addition, in the risk judgment process,
the machine learning model performed risk prediction for
the test samples, predicted the risk of samples suffering
from different inherited metabolic diseases, converted
them into scores from 0 to 100 by the risk value mapping
algorithm, and set different risk judgment cutoff values
according to the risk value scores and the prevalence of the
disease at each location.

After standardization and selection, approximately 3.67
million screening samples and more than 3,000 confirmed cases
were used to train the model. The random forest algorithm
performed the best in the evaluation, and the AI model was
constructed by the random forest algorithm finally. The AI
disease panel is presented in Table 1.

TABLE 1 | Panel of the artificial intelligence (AI) disease risk assessment model.

IEMs (OMIM code) Abbreviation IEMs (OMIM code) Abbreviation

Argininosuccinic
aciduria (#207,900)

ASA Methylmalonic acidemia
(#251,000, #251,100,
#251,110, #613, 646, and
#614, 265)

MMA

Beta-ketothiolase
deficiency (#203,750)

BKD Methylmalonic aciduria
combined with
homocystinuria (#277,400,
#277,410, #277,380,
#309,541 and #614, 857)

MMA-HCY

Carnitine
palmitoyltransferase I
deficiency (#255,120)

CPT-ID Neonatal intrahepatic
cholestasis citrin deficiency
(#605,814)

NICCD

Citrullinemia type I
(#215,700)

CIT-I Ornithine transcarbamylase
deficiency (#311,250)

OTCD

Glutaric acidemia I
(#231,670)

GA-I Phenylalanine hydroxylase
deficiency (#261,600)

PAHD

Multiple acyl-CoA
dehydrogenase
deficiency (#231,680)

MADD Primary carnitine deficiency
(#212,140)

PCD

Holocarboxylase
synthetase deficiency
(#253, 270)

HCSD Propionic acidemia
(#606,054)

PA

Homocystinuria
(#236,200)

HCY Short-chain acyl-CoA
dehydrogenase deficiency
(#201,470)

SCADD

Hypermethioninemia
(#250,850)

H-MET Tetrahydrobiopterin
deficiency (#233,910,
#261,640, #612,716,
#264,070, and #261,630)

BH4D

Hyperprolinuria
(#239,500)

H-PRO Very-long-chain acyl-CoA
dehydrogenase deficiency
(#201,475)

VLCADD

Isobutyryl-CoA
dehydrogenase
deficiency (#611,283)

IBDD 3-hydroxy-3-methylglutaryl-
CoA lyase deficiency
(#246,450)

3-HMGD

Isovaleric acidemia
(#243,500)

IVA 2-methylbutyryl-CoA
dehydrogenase deficiency
(#610,006)

2-MBDD

Maple syrup urine
disease (#248,600)

MSUD 3-methylcrotonyl-CoA
carboxylase deficiency
(#210,200 and #210,210)

3-MCCD

Medium-chain
acyl-CoA
dehydrogenase
deficiency (#201,450)

MCADD

Risk Assessment and Artificial
Intelligence Disease Model Verification
Preliminary screening data were imported into the system as
training data for model learning, according to the standard
screening data, outputted to the high- and low-risk sample lists,
and then compared with the initial screening results judged by the
clinician. The performance of the AI disease model was evaluated
through the comparison results between AI and physicians. The
flow diagram is shown in Figure 1.

During the risk determination process, the machine learning
model performed risk prediction on the test samples to develop
different IEMs, converted them into scores from 0 to 100
using the risk value mapping algorithm, and set different risk
determination cutoff values according to the risk value scores and
the incidence of IEMs. In addition, the sample input machine
learning model directly output the probability value of IEM
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FIGURE 1 | Flow diagram explaining artificial intelligence (AI) disease model applied in neonatal screening.

through the probability value of the analogy model and the actual
population risk value to guarantee the rationality of the risk cutoff
value. The probability value of the sample was mapped to the risk
value of the model population in the sample risk prediction, and
the quantile of the sample probability value in the population
was calculated. A higher quantile indicates a higher risk of the
disorder, so the IEM AI diagnosis platform was judged by the risk
of different IEMs.

Ethics Statements
The study was reviewed and approved by the Ethics Committee
of the Maternal and Child Health Hospital in Shaoyang City.

Written informed consent to participate in this study was
provided by the participant’s legal guardian/next of kin.

RESULTS

Newborn Screening
A total of 94,648 newborns were screened in the Shaoyang region
from 2016 to 2020, of which 1,988 were initially screened positive
with a recall rate of 2.1%, and 23 were confirmed positive (10
men and 13 women; Table 2 and Figure 2). Out of the 23
confirmed cases, one patient was found to have both NICCD
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TABLE 2 | Newborn screening of the Shaoyang area from 2016 to 2020.

Year Number of
screenings

Suspected
positive cases

Confirmed
cases

Frequency

2016 5,016 90 3 1:1,672

2017 10,717 201 4 1:2,679

2018 18,743 378 4 1:4,686

2019 22,447 522 5 1:4,489

2020 37,725 797 7 1:5,389

Total 94,648 1,988 23 1:4,115

FIGURE 2 | Proportion of inborn errors of metabolism (IEMs) in Shaoyang
area from 2016 to 2020.

and citrullinemia type I (CIT-I). The overall incidence rate was
1:4,115 (Table 2).

Laboratory Test and Gene Analysis of
Children With Positive Diagnosis
There were six cases of phenylalanine hydroxylase deficiency
(PAHD, OMIM# 261,600), five cases of PCD, four cases
of NICCD (one case was found by the AI disease model,
which was missed by the initial screen), two cases of
tyrosinemia type III (TYR-III; OMIM #276,710), one case
each of CIT-I (OMIM #215,700), methylmalonic aciduria

combined with homocystinuria (MMA-HCY; OMIM#277,400),
short-chain acyl-CoA dehydrogenase deficiency (SCAD; OMIM#
201,470), isovaleric acidemia (IVA; OMIM #243,500), 3-
MCCD (OMIM #243,500), and very-long-chain acyl-CoA
dehydrogenase deficiency (VLCADD; OMIM #201,475; Table 3).

Of the 94,648 newborn screening samples, 10 types of IEM
were identified in 23 cases, including four types (13 cases) of
amino acid disorder (AAD), which accounted for 56.52%, with an
incidence rate of 1:7,281; three types (three cases) of organic acid
disorder (OAD), which accounted for 13.04%, with an incidence
rate of 1:31,549; and three types (seven cases) of fatty acid
oxidation disorder (FAOD), which accounted for 30.43%, with
an incidence rate of 1:13,521 (Figure 2 and Table 3). The highest
incidence rates of IEMs were PAHD (1:15,775), PCD (1:18,930),
and NICCD (1:23,662). The incidence of each disorder is shown
in Table 3. The genetic diagnosis results of 23 confirmed cases
are shown in Table 4, in which the mutation loci of disorders
such as PAHD and PCD were relatively abundant. A total of
10 types of mutations were found in PAH (OMIM ∗612,349),
which accounted for 23.91% of all mutations, and the most
common mutation c.852-855del in SLC25A13 (OMIM ∗603,859)
accounted for 10.87% of all mutations.

Artificial Intelligence Disease Model
Verification Results
A total of 1,988 cases were screened as positive for the first time,
with a rate of 2.1%. However, the AI disease risk assessment
model showed that out of the 94,684 analyzed samples, 1,058
samples were positive, with a rate of 1.12%. The number of
samples with positive results concurrently indicated by the
physician and the AI disease model was 614, while the number

TABLE 3 | Incidence rate of inborn errors of metabolism (IEMs).

Disorders (OMIM code) Confirmed
cases

Frequency

Amino acid disorders 13 1:7,281

Phenylalanine hydroxylase deficiency (#261,600) 6 1:15,775

Citrullinemia type I (#215,700) 1 1:94,648

Neonatal intrahepatic cholestasis citrin deficiency
(#605,814)

4 1:23,662

Tyrosinemia type III (#276,710) 2 1:47,324

Organic acid disorders 3 1:31,549

Isovaleric acidemia (#243,500) 1 1:94,648

Methylmalonic aciduria combined with
homocystinuria (#277,400)

1 1:94,648

3-methylcrotonyl-CoA carboxylase deficiency
(#210,200)

1 1:94,648

Fatty acid oxidation disorders 7 1:13,521

Primary carnitine deficiency (#212,140) 5 1:18,930

Short-chain acyl-CoA dehydrogenase deficiency
(#201,470)

1 1:94,648

Very-long-chain acyl-CoA dehydrogenase
deficiency (#201,475)

1 1:94,648

Total 23 1:4,115

The bold values mean all the IEMs are classified as amino acid disorders, organic
acid disorders, and fatty acid oxidation disorders.
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TABLE 4 | Mutations detected in patients with IEMs identified by tandem mass spectrometry (MS/MS).

Disorders (OMIM code) Affected gene (OMIM
code)

Nucleotide variant Mutation alleles
number

Relative
frequency (%)

Portion of total
mutations (%)

Phenylalanine hydroxylase deficiency
(#261,600)

PAH (*612,349) 11 23.91

c.721C > T 2 18.18 4.35

c.208_210del 1 9.09 2.17

c.826A > G 1 9.09 2.17

c.969 + 2dup 1 9.09 2.17

c.158G > A 1 9.09 2.17

c.1174T > A 1 9.09 2.17

C.728G > A 1 9.09 2.17

c.440C > T 1 9.09 2.17

C.498C > G 1 9.09 2.17

5’UTR-exon1del 1 9.09 2.17

Neonatal intrahepatic cholestasis citrin
deficiency (#605,814)

SLC25A13 (*603,859) 8 17.39

c.852-855del 5 62.50 10.87

c.762T > A 1 12.50 2.17

c.955C > T 1 12.50 2.17

c.1638_1660dup 1 12.50 2.17

Citrullinemia type I (#215,700) ASS1 (*603,470) 3 6.52

c.1048C > T 2 66.67 4.35

c.649_651del 1 33.33 2.17

Tyrosinemia type III (#276,710) HPD (*609,695) 4 8.70

c.893A > C 1 25.00 2.17

c.109T > G 1 25.00 2.17

c.217T > C 1 25.00 2.17

C.460G > A 1 25.00 2.17

Short-chain acyl-CoA dehydrogenase
deficiency (#201,470)

ACADS (*606,885) 2 4.35

c.1031A > G 2 100.00 4.35

Isovaleric acidemia (#243,500) IVD (*607,036) 2 4.35

c.433C > T 1 50.00 2.17

c.865G > C 1 50.00 2.17

Methylmalonic aciduria combined with
homocystinuria (#277,400)

MMACHC (*609831) 3 6.52

c.457C > T 1 33.33 2.17

c.481C > T 1 33.33 2.17

c.482G > A 1 33.33 2.17

3-methylcrotonyl-CoA carboxylase
deficiency (#210,200)

MCCC1 (*609,010) 2 4.35

c.1331G > A 1 50.00 2.17

c.2035G > A 1 50.00 2.17

Primary carnitine deficiency (#212,140) SLC22A5 (*603,377) 9 19.57

c.51C > G 2 22.22 4.35

c.338G > A 1 11.11 2.17

c.760C > T 2 22.22 4.35

c.884 > T 1 11.11 2.17

c.893C > T 1 11.11 2.17

c.1340A>T 1 11.11 2.17

c.1400C > G 1 11.11 2.17

Very-long-chain acyl-CoA
dehydrogenase deficiency (#201,475)

ACADVL (*609,575) 2 4.35

c.1280G > A 2 100.00 4.35

of samples with negative initial screening results (determined by
the physician) and positive results determined by the AI disease
model was 444. However, because some samples were at high risk
for multiple IEMs (determined by the AI disease model), the total
positive numbers for each IEM would be higher than the overall

number of high-risk samples. Moreover, 21 confirmed cases of
IEMs (TYR-III was not included in the panel of the AI disease
model) were detected by the AI disease model that we screened
from 2016 to 2020. The positive rates of each IEM are listed in
Table 5.
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TABLE 5 | Comparison of interpretation results by AI and physician.

Disorders (OMIM code) Positive
by AI

Positive
by

physician

Positive by AI
but first

screening
negative

Consistent
rate between

AI and
physician (%)

Positive rate
of AI disease

model (%)

Positive rate
of physician

(%)

Reducing
false-positive

rate (%)

Primary carnitine deficiency (#212,140) 238 474 66 36.29 0.25 0.50 49.79

Methylmalonic acidemia (#251,000, #251,100,
#251,110, #613,646, and #614,265), methylmalonic
aciduria combined with homocystinuria (#277,400,
#277,410, #277,380, #309,541 and #614,857),
propionic acidemia (#606,054)

65 289 21 15.22 0.07 0.31 77.51

3-methylcrotonyl-CoA carboxylase deficiency
(#210,200 and #210,210), beta-ketothiolase deficiency
(#203,750), holocarboxylase synthetase deficiency
(#253,270)

148 73 113 47.95 0.16 0.08 -102.74

Phenylalanine hydroxylase deficiency (#261,600),
tetrahydrobiopterin deficiency (#233,910, #261,640,
#612,716, #264,070, and #261,630)

131 83 64 80.72 0.14 0.09 -57.83

Short-chain acyl-CoA dehydrogenase deficiency
(#201,470), isobutyryl-CoA dehydrogenase deficiency
(#611,283)

139 78 79 76.92 0.15 0.08 -78.21

Hypermethioninemia (#250,850), homocystinuria
(#236,200)

118 81 76 51.85 0.12 0.09 -45.68

Isovaleric acidemia (#243,500), 2-methylbutyryl-CoA
dehydrogenase deficiency (#610,006)

96 111 36 54.05 0.10 0.12 13.51

Neonatal intrahepatic cholestasis citrin deficiency
(#605,814), citrullinemia type I (#215,700),
argininosuccinic aciduria (#207,900)

125 64 61 100.00 0.13 0.07 -95.31

Hyperprolinuria (#239,500) 6 14 6 0.00 0.01 0.01 57.14

Very-long-chain acyl-CoA dehydrogenase deficiency
(#201,475)

38 28 10 100.00 0.04 0.03 -35.71

Carnitine palmitoyltransferase I deficiency (#255,120) 43 12 31 100.00 0.05 0.01 -258.33

Medium-chain acyl-CoA dehydrogenase deficiency
(#201,450)

2 23 1 4.35 0.00 0.02 91.30

Ornithine transcarbamylase deficiency (#311,250) 15 192 3 6.25 0.02 0.20 92.19

Maple syrup urine disease (#248,600) 2 8 0 25.00 0.00 0.01 75.00

Glutaric acidemia I (#231,670) 10 45 3 15.56 0.01 0.05 77.78

Multiple acyl-CoA dehydrogenase deficiency (#231,680) 28 17 13 88.24 0.03 0.02 -64.71

Negative numbers mean the efficiency of physician is better than the AI disease model.

Of the 1,988 suspected positive cases, 579 were suspected of
having IEMs that were not in the AI disease panel. Consequently,
excluding the data of these 579 newborns, compared with
the 1,058 suspected positives determined by the AI disease
model, AI-based analysis of all metabolites decreased the rate
of false positives by more than 24.9%. Without changing the
sensitivity for detecting IEMs in the first screening, false-positive
results were significantly reduced. There were 11 types of
disorders that had significantly different determination results
between the AI model and physicians: multiple acyl-CoA
dehydrogenase deficiency (MCADD), OTCD, MMA, MMA-
HCY, propionic acidemia (PA), GA-I, maple syrup urine disease
(MSUD), PCD, 3-MCCD, β-ketothiolase deficiency (BKD), and
holocarboxylase synthetase deficiency (HCSD; Table 5). The
best performance of the AI disease model for IEMs was
OTCD, which reduced the number of false-positives by 92.19%,
followed by MCADD by 91.30%, GA-I by 77.78%, MMA, MMA-
HCY, and PA by 77.51%, MUSD by 75%, and hyperprolinuria
(H-PRO) by 57.14%.

We followed up the 444 samples, 157 samples were lost during
a follow-up. In the follow-up results of the other 287 cases,
we found one patient who had been previously diagnosed with
NICCD in another hospital. Interestingly, the primary screening
result of this sample was normal, which was detected in our
laboratory once, with a citrulline test result of 31 µmol/L (a
citrulline value of 6–32 µmol/L is considered normal). Analysis
of this patient found two mutations in the SLC25A13 gene
(c.1638_1660dup and c.852_855del). This suggests that our AI
disease model can be used as a complementary tool for MS/MS
screening for IEMs to reduce the risk of missed conditions with
current screening.

DISCUSSION

We screened 94,648 newborns and found that 22 cases were
confirmed with IEMs, one additional case of NICCD was found
by using the AI disease model, the incidence of IEMs in Shaoyang
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was 1:4,115, which was consistent with the rate reported in the
United States (1:4,480) (19), but higher than in Japan (1:9,330)
and Korea (1:13,205) (20). In China, the incidence of IEMs was
reported to be higher in Suzhou (1:3,163) (21) and Quanzhou
(1:2,804) (16) than what we found in the Shaoyang area. The
incidence rates of IEMs vary greatly between countries and
regions (the data are shown in Table 6).

The most common disorder among AADs was PAHD
(26.09%), with an incidence rate of 1:15,775, which was higher
than that reported by Lin et al. (16) in Quanzhou (1:26,039).
Although c.158G > A and c.728G > A were reported to
be the most common genetic mutations in PAH in the
Chinese population (22), we identified 11 mutations with similar
frequencies (23.91% of all mutations), with the most common
mutation being c.721C > T, which was detected two times in
Shaoyang (Table 4). NICCD was the second most common
disorder in the region; four cases were detected (17.39% of all
disorders), with an incidence rate of 1:23,662, which was higher
than that found in Suzhou (1:57,372) and Quanzhou (1:36,455)
(16). The mutation c.852-855del was the most common variant,
accounting for 10.87% of all mutations in this region (Table 4),
which is consistent with the results reported by Zhang et al.
(23). Several studies have indicated that c.852-855del of the
SLC25A13 gene is a hotspot mutation in Chinese patients
with NICCD, but without significant regional differences in
the incidence rate.

Organic acid disorders were the least common IEMs in
Shaoyang, and their incidence was lower than previously reported
(16, 22). IVA, MMA, and 3-MCCD are uncommon in Japan,
Korea, and other Asian regions, as reported by Shibata et al.
(20). The incidence rates of IVA, MMA, and 3-MCCD in Japan
were 1:672,000, 1:120,000, and 1:153,000, respectively, whereas

in Korea, the rates were 1:138,000, 1:246,000, and 1:111,000,
respectively (20).

Moreover, PCD was the most common FAOD in Shaoyang,
with an incidence rate of 1:18,930. The prevalence of PCD
is significantly different between races, with an incidence rate
ranging from 1:37,000 to 1:100,000 in Australia and 1:142,000 in
the United States (24–26). In the Faroe Islands, the incidence of
PCD is significantly high with an incidence rate of 1:297 (27). In
this study, we detected seven mutations in PCD-related genes in
Shaoyang, though c.51C > G was the most common mutation in
the SLC22A5 (OMIM ∗603,377) gene, another hot-pot mutation
c.1400C > G only accounted for 11.11%. There was a major
difference with the frequencies of Suzhou (50%) and Ningbo
(48.84%) (28).

Our research results were consistent with those of Peng et al.
(8), who reported a random forest machine learning classifier
on screening data to improve the prediction of true and false
positives. In their analysis of the performance of the random
forest machine, their model was able to reduce the number of
false positives by 89% for GA-I, 45% for MMA, 98% for OTCD,
and 2% for VLCADD. Although the performance of the random
forest machine developed by Peng et al. (8) was better than that
of our AI disease models for OTCD, GA-I, and VLCADD, the
panel of our AI disease model included 27 disorders compared
with the four disorders of their random forest machine model.
Importantly, our AI model found one case of NICCD that was
missed by physicians, which corroborates our AI disease model
in terms of accuracy. NICCD is a type of citrin deficiency that is
a hereditary IEM caused by SLC25A13 mutations and manifests
as neonatal intrahepatic cholestasis. An interesting report reveals
that the carrier rate of SLC25A13 mutations is 1:45 in the Chinese
population, making it fairly common (14). However, in the

TABLE 6 | The incidence of different regions and countries.

Disorders (OMIM code) Frequency

Shaoyang,
China

Changsha,
China

Suzhou,
China

Quanzhou,
China

Japan Korea United States

Screening numbers 94,648 300,849 401,660 364,545 3.36million 3.44million 11,750,876

Amino acid disorders 1:7,281 1:10,745 1:5,084 1:8,680 1:26,000 1:29,000 1:12,648

Phenylalanine hydroxylase deficiency (#261,600) 1:15,775 1:18,803 1:7,303 1:20,253 1:46,000 1:138,000 1:17,006

Citrullinemia type I (#215,700) 1:94,648 1:150,425 – 1:182,273 1:306,000 1:115,000 1:156,678

Neonatal intrahepatic cholestasis citrin deficiency
(#605,814)

1:23,662 1:60,170 1:57,372 1:36,455 1:96,000 1:3,445,000 –

Tyrosinemia type III (#276,710) 1:47,324 1:300,849 1:200,830 – – – –

Organic acid disorders 1:31,549 1:25,071 1:13,389 1:9,347 1:22,000 1:31,000 1:18,682

Isovaleric acidemia (#243,500) 1:94,648 1:150,425 1:200,830 1:91,136 1:672,000 1:138,000 1:139,891

Methylmalonic aciduria combined with homocystinuria
(#277,400)

1:94,648 – 1:40,166 1:121,515 1:120,000 1:246,000 1:534,131

3-methylcrotonyl-CoA carboxylase deficiency (#210,200) 1:94,648 1:100,283 1:33,412 1:72,909 1:153,000 1:111,000 1:40,105

Fatty acid oxidation disorders 1:13,521 1:9,705 1:9,129 1:7,440 1:30,000 1:111,000 1:11,034

Primary carnitine deficiency (#212,140) 1:18,930 1:13,675 1:26,777 1:10,126 1:199,000 1:345,000 –

Short-chain acyl-CoA dehydrogenase deficiency (#201,470) 1:94,648 1:42,978 1:28,690 1:91,136 – – –

Very-long-chain acyl-CoA dehydrogenase deficiency
(#201,475)

1:94,648 1:300,849 1:66934 1:121,515 1:93,000 1:383,000 1:57,043

Total 1:4,115 1:4,237 1:3,163 1:2,804 1:8,557 1:13,205 1:4,480

The bold values mean all the IEMs are classified as amino acid disorders, organic acid disorders, and fatty acid oxidation disorders.
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traditional MS/MS screening program for IEMs, the total level of
citrulline and its ratio to other metabolites are typically usually
used for NICCD screening, but the sensitivity and accuracy in
detecting NICCD are controversial. Elevated citrulline levels and
ratios such as citrulline/glutamine and citrulline/arginine are not
sensitive or efficient screening indicators. Our AI disease model
had been trained with the data from missed cases in addition to
positive confirmed cases, which enabled it to successfully identify
true positive cases that were false negatives in primary screening.

In the strategies presented previously, new tests were generally
added to reduce the occurrence of false negatives or false
positives. For example, Lin et al. (14) proposed a strategy
to incorporate genetic screening for NICCD into the current
newborn screening program to reduce the occurrence of
false negatives. Likewise, Monostori et al. (29) developed an
assay using MS/MS for the simultaneous determination of the
biomarkers 3-hydroxy propionic acid, methylmalonic acid, and
methylcitric acid in neonatal dried blood spots. In contrast,
we propose a novel strategy that combines MS/MS with AI in
the current newborn screening program, which would be more
efficient without the need for additional tests. The results of the
AI analysis were generated quickly following primary screening.

In conclusion, expanded newborn screening by MS/MS does
not always accurately detect IEMs. We demonstrate a novel
proof-of-concept to optimize the newborn screening procedure,
which combines expanded newborn screening with an AI disease
model to identify IEMs and decrease the occurrence of false
negatives and false positives. However, the AI disease model has
its limitations. The performances for argininosuccinate aciduria
(ASA), carnitine palmitoyltransferase I deficiency (CPT-ID), 3-
MCCD, BKD, H-PRO, HCSD, and CIT-I were not satisfactory
due to insufficient training data. Meanwhile, because some IEMs
have common indicators, the AI model could not precisely
identify these diseases. Hence, an AI model must be continuously
trained, improved, optimized, and verified.
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