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Abstract

Motivation

Much effort has been invested in the identification of protein-protein interactions using text

mining and machine learning methods. The extraction of functional relationships between

chemical compounds and proteins from literature has received much less attention, and no

ready-to-use open-source software is so far available for this task.

Method

We created a new benchmark dataset of 2,613 sentences from abstracts containing annota-

tions of proteins, small molecules, and their relationships. Two kernel methods were applied

to classify these relationships as functional or non-functional, named shallow linguistic and all-

paths graph kernel. Furthermore, the benefit of interaction verbs in sentences was evaluated.

Results

The cross-validation of the all-paths graph kernel (AUC value: 84.6%, F1 score: 79.0%)

shows slightly better results than the shallow linguistic kernel (AUC value: 82.5%, F1 score:

77.2%) on our benchmark dataset. Both models achieve state-of-the-art performance in the

research area of relation extraction. Furthermore, the combination of shallow linguistic and

all-paths graph kernel could further increase the overall performance slightly. We used each

of the two kernels to identify functional relationships in all PubMed abstracts (29 million) and

provide the results, including recorded processing time.

Availability

The software for the tested kernels, the benchmark, the processed 29 million PubMed

abstracts, all evaluation scripts, as well as the scripts for processing the complete PubMed

database are freely available at https://github.com/KerstenDoering/CPI-Pipeline.
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Introduction

Interactions of biomolecules are substantial for most cellular processes, involving metabolism,

signaling, regulation, and proliferation [1]. Small molecules (compounds) can serve as sub-

strates by interacting with enzymes, as signal mediators by binding to receptor proteins, or as

drugs by interacting with specific target proteins [2].

Detailed information about compound-protein interactions is provided in several data-

bases. ChEMBL annotates binding affinity and activity data of small molecules derived from

diverse experiments [3]. PDBbind describes binding kinetics of ligands that have been co-crys-

tallized with proteins [4]. DrumPID focuses on drugs and their addressed molecular networks

including main and side-targets [5]. DrugBank, SuperTarget, and Matador host information

mainly on FDA approved but also experimental drugs and related interacting proteins [6, 7].

However, most of this data was extracted from scientific articles. Given that more than 10,000

new articles are added in the literature database PubMed each week, it is obvious that it

requires much effort to extract and annotate these information manually to generate compre-

hensive datasets. Automatic text mining methods may support this process significantly [1, 8].

Today, only a few approaches exist for this specific task. One of them is the Search Tool Inter-

acting Chemicals (STITCH), developed in its 5th version in 2016, which connects several

information sources of compound-protein interactions [2]. This includes experimental data

and data derived from text mining methods based on co-occurrences and natural language

processing [9, 10]. Similar methods have been applied for developing the STRING 11.0 data-

base, which contains mainly protein-protein interactions [11]. OntoGene is a text mining web

service for the detection of proteins, genes, drugs, diseases, chemicals, and their relationships

[12]. The identification methods contain rule-based and machine learning approaches, which

were successfully applied in the BioCreative challenges, e.g. in the triage task in 2012 [13].

Although STITCH and OntoGene deliver broadly beneficial text mining results, it is diffi-

cult to compare their approaches, because no exact statistical measures of their protein-com-

pound interaction prediction methods are reported. Furthermore, no published gold standard

corpus of annotated compound-protein interactions could be found to evaluate text mining

methods for their detection.

Tikk et al. compared 13 kernel methods for protein-protein interaction extraction on sev-

eral text corpora. Out of these methods, the SL kernel and APG kernel consistently achieved

very good results [14]. To detect binary relationships, the APG kernel considers all weighted

syntactic relationships in a sentence based on a dependency graph structure. In contrast, the

SL kernel considers only surface tokens before, between, and after the candidate interaction

partners.

Both kernels have been successfully applied in different domains, including drug-drug

interaction extraction [15], the extraction of neuroanatomical connectivity statements [16],

and the I2B2 relation extraction challenge [17].

If two biomolecules appear together in a text or a sentence, they are referred to as co-occur-

ring. A comparably high number of such pairs of biomolecules can be used as a prediction

method for functional relationship detection, e.g. between proteins or proteins and chemical

compounds [9]. This concept can be refined by requiring interaction words such as specific

verbs in a sentence [1, 18].

So far, it was unclear whether machine learning outperforms a rather naive baseline relying

on co-occurrences (with or without interaction words) for the detection of functional com-

pound-protein relations in texts. Especially for the identification of newly described interac-

tions in texts, that were not described in any other data source, the annotation of a functional

relation is challenging.
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In this publication, we evaluated the usability of two diverse machine learning kernels for

the detection of functional and non-functional compound-protein relationships in texts, inde-

pendent of additional descriptors, such as the frequency of co-occurrences of specific pairs.

Although the ChemProt-benchmark for the training of the classification of functional com-

pound-protein interactions into different groups (e.g. upregulator, antagonist, etc.) was pub-

lished before [19], this benchmark is focusing on validated interactions and is therefore not

suitable for the separation from functionally unrelated compound-protein pairs that are men-

tioned in texts. To achieve the goal of benchmarking the task of extracting these pairs from lit-

erature, we annotated a corpus of protein and compound names in 2,613 sentences and

manually classified their relations as functional and non-functional, i.e. no interaction. Fur-

thermore, the kernels were applied to the large-scale text dataset of PubMed with 29 million

abstracts. The approaches have been implemented in an easy-to-use open source software

available via GitHub.

Both kernels achieved a much better performance on the benchmark dataset than simply

using the concept of co-occurrences. These findings imply that a relatively high classification

threshold can be used to automatically identify and extract functional compound-protein

interactions from publicly available literature with high precision.

Dataset and methods

Generation of the benchmark dataset

Chemical compounds are referred to as small molecules up to a molecular weight of about

1,000 Da, for which a synonym and a related ID are contained in the PubChem database [20].

Similarly, genes and proteins must have UniProt synonyms and were assigned to related Uni-

Prot IDs [21].

PubChem synonyms were automatically annotated with the approach described in the

manuscripts about the web services CIL [22] and prolific [23], by applying the rules described

by Hettne et al. [24]. Proteins were annotated using the web service Whatizit [25]. Synonyms

that were assigned wrongly by the automatic named entity recognition approach were manu-

ally removed.

The complete compound-protein-interaction benchmark dataset (CPI-DS) was generated

from the first 40,000 abstracts of all PubMed articles published in 2009, using PubMedPortable

[26].

All pairs of proteins and compounds co-occurring in a sentence are considered as poten-

tial functionally related or putative positive instances. Pairs with no functional relation

were subsequently annotated as negative instances. Positive instances must be described as

directly interacting, up- or down-regulating each other (directly or indirectly), part of each

other, or as cofactors of the related proteins. If a named entity exists as a long-form synonym

and an abbreviated form in brackets, both terms are considered as individual entities. The

result is a corpus of 2,613 sentences containing at least one compound and protein name

(CPI-pair).

For further manual annotation, all sentences were transferred to an HTML form. Verbs

that belong to a list of defined interaction verbs, defined by Senger et al. [23] and which are

enclosed by a protein-compound pair, were annotated, too. The sentences were annotated by

8 different annotators. All pairs were at least proven by two different annotators. If a pair was

either classified as “unclear” by one of the annotators or both annotators classified a pair differ-

ently, the annotation instructor made the final decision.

PLOS ONE Mining of functional relationships in literature

PLOS ONE | https://doi.org/10.1371/journal.pone.0220925 March 3, 2020 3 / 14

https://doi.org/10.1371/journal.pone.0220925


Interaction verbs

To analyze how much specific verbs, enclosed by a compound and protein name, affect the

precision of functional relationships, we further differentiated between sentences with or with-

out this structure. Fig 1 shows detailed examples.

Kernel methods

Shallow linguistic kernel. Giuliano et al. developed this kernel to perform relation extrac-

tion from biomedical literature [27]. It is defined as the sum of a global and local context ker-

nel. These customized kernels were implemented with the LIBSVM framework [28]. Tikk

et al. adapted the LIBSVM package to compute the distance to the hyperplane, which allowed

us to calculate an area under the curve value.

The global context kernel works on unsorted patterns of words up to a length of n = 3.

These n-grams are implemented using the bag-of-words approach. The method counts the

number of occurrences of every word in a sentence including punctuation, but excludes the

candidate entities. The patterns are computed regarding the phrase structures before-between,

between, and between-after the considered entities.

The local context kernel considers tokens with their part-of-speech tags, capitalisation,

punctuation, and numerals [1, 27]. The left and right ordered word neighborhoods up to win-

dow size of w = 3 are considered in two separated kernels, which are summed up for each rela-

tionship instance.

All-paths graph kernel. The APG kernel is based on dependency graph representations

of sentences, which are gained from dependency trees [29]. In general, the nodes in the depen-

dency graph are the text tokens in the text (including the part-of-speech tag). The edges

Fig 1. a) Direct functional relation with interaction verb. The orange-coloured verb is enclosed by the compound 7-ketocholesterol, shown in blue,

and the protein interleukin-6, shown in green. The pair was annotated as functional. b) Indirect functional relation with interaction verb. Diallyl

sulfide is influencing cyclooxygenase 2 indirectly by inhibiting its expression. The pair was annotated as functional. The compound diallyl sulfide and

the protein IL-1beta enclose an interaction verb, but do not describe a functional relation. c) Direct functional relation without interaction verb. The

molecule cholesterol is metabolised to pregnenolone by CYP11A. This is indicated by the word conversion. The pair was annotated as functional.

https://doi.org/10.1371/journal.pone.0220925.g001
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represent typed dependencies, showing the syntax of a sentence. The highest emphasis is given

to edges which are part of the shortest path connecting the compound-protein pair in

question.

A graph can be represented in an adjacency matrix. The entries in this matrix determine

the weights of the connecting edges. A multiplication of the matrix with itself returns a new

matrix with all summed weights of path length two.

All possible paths of all lengths can be calculated by computing the powers of the matrix.

Matrix addition of all these matrices results in a final adjacency matrix, which consists of the

summed weights of all possible paths [31]. Paths of length zero are removed by subtracting the

identity matrix.

All labels are represented as a feature vector. The feature vector is encoded for every vertex,

containing the value 1 for labels that are presented within this particular node. This results in a

label allocation matrix.

A feature matrix as defined by Gärtner et al. sums up all weighted paths with all presented

labels [30]. This calculation combines the strength of the connection between two nodes with

the encoding of their labels. In general, it can be stated that the dependency weights are higher

the shorter their distance to the shortest path between the candidate entities is [1]. The similar-

ity of two feature matrix representations can be computed by summing up the products of all

their entries [31].

In the implementation used here [1, 31], the regularized least squares classifier algorithm is

applied to classify compound-protein interactions with the APG kernel. This classifier is simi-

lar to a standard support vector machine, but the underlying mathematical problem does not

need to be solved with quadratic programming [31, 32].

Analysis of predictive models

Baseline of the kernel models. We considered co-occurrences as a simple approach to

calculate the baseline in the way that every appearance of a compound and a protein in a sen-

tence is classified as a functional relationship (recall 100%, specificity 0%), taking into account

the number of all true functional relationships.

Benchmark dataset-based analysis

The evaluation was calculated by document-wise 10-fold cross-validation, as an instance-wise

cross-validation leads to overoptimistic performance estimates [33]. Each compound-protein

pair was classified as functionally related or not related using the previously described kernel

methods and resulting in an overall recall, precision, F1 score, and AUC value for a range of

kernel parameters. Furthermore, we have performed a nested-cross validation analysis to

check if the selection of the hyperparameters has an influence of the overall-performance of

both kernels.

Subsequently, the kernels were applied solely to sentences which contain an interaction

verb and sentences containing no interaction verb. The analyses compare each of the three

baselines with the kernel method results.

Combination of the APG and SL kernel

To analyze if the combination of both kernels yields a higher precision and F1 score than each

individual kernel, we combined them by applying majority voting, with the definition that

only those relations were classified as functional for which both kernels predicted a functional

relation. As we are considering the benchmark dataset, the values for recall, specificity, preci-

sion, accuracy, and F1 score could be calculated for the new majority outcome. Based on what
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is known from the AUC analysis, we can identify the classification threshold for which each of

the two kernels reaches the same precision as resulting from the majority voting with default

thresholds. By recalculating the above mentioned parameters for each kernel with the new

classification threshold, we can compare the single kernel performance with the majority vot-

ing outcome.

Large-scale dataset analysis

We applied both kernels on all PubMed abstracts before 2019, including titles. For the annota-

tion of proteins and small molecules the PubTator web service was applied [34, 35]. The web

server annotates genes, proteins, compounds, diseases, and species in uploaded texts. Further-

more, it provides all PubMed abstracts and titles as preprocessed data.

Processing these annotations with PubMedPortable [26] in combination with the CPI pipe-

line, as explained in the GitHub project documentation, allows for a complete automatic anno-

tation of functional compound-protein relations in texts.

Results and discussion

Baseline analysis

Within all sentences, a total number of 5,562 CPI-pairs was curated and separated into 2,931

functionally related (positive instances) and 2,631 non-functionally related CPI-pairs (negative

instances). Considering the prediction approach of co-occurrences, this results in a precision

(equal to accuracy in this case) of 52.7% and an F1 score of 69.0% (Table 1).

Shallow linguistic kernel

All parameter combinations in the range 1-3 for n-gram and window size of the SL kernel

were evaluated. The selection of n-gram 3 and window size 1 shows the best AUC value and

the highest precision in comparison to all other models. In general, a lower value of window

size leads to a higher precision and a lower recall (Table 2).

All-paths graph kernel

We evaluated the APG kernel using the same cross-validation splits as for the SL kernel.

Results shown in Table 3 indicate that experiments achieve similar performance independent

of the hyperplane optimization parameter c. Mathematically, a larger generalization parameter

c represents a lower risk of overfitting [31, 32].

Both kernels in comparison

In general, the APG kernel achieved slightly better results than the SL kernel in terms of the

resulting AUC value (Fig 2), which is inline with previous findings for other domains, e.g. pro-

tein-protein interactions [1]. Considering the models with the highest AUC and precision

Table 1. Analysis of the CPI benchmark dataset.

DS #Sent. #CPIs #No-CPIs Total Rec. Spec. Prec. F1

CPI-DS 2613 2931 2631 5562 100.0 0.0 52.7 69.0

Baseline results for precision, recall, and F1 score based on simple co-occurrences. Results are shown in percent (DS—dataset, Sent.—sentences, Rec.—recall, Spec.—

specificity, Prec.—precision, F1—F1 score).

https://doi.org/10.1371/journal.pone.0220925.t001
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values for SL (n = 3, w = 1), and APG (c = 0.25) kernel, the results clearly outperform the base-

line approach of simple co-occurrences.

The complete cross-validation procedure for all parameter settings (including linguistic

preprocessing) required almost 5.3 h for the APG kernel and about 34 min for the SL kernel

on an Intel Core i5-3570 (4x 3.40GHz). For the APG kernel, a substantial amount of the time

is required for dependency parsing. This aspect has to be considered within the scenario of

applying a selected model to all PubMed articles (see section Large-scale dataset application).

Both kernels in combination

The combination of both kernels by majority voting yielded a precision of 80.5% and an F1

score of 74.0%. As described in the methods section, the precision was set to the same value

(80.5%) for each individual kernel and the appropriate classification threshold was derived

from the AUC analysis of each kernel. The resulting F1 score was slightly lower for the APG

kernel (73.9%) and considerably lower for the SL kernel (69.4%). This indicates that the com-

bination of both kernels by majority voting leads to a small improvement of the performance

(Table 4).

Functional relationships with and without an enclosed interaction verb

Subsequently, we analyzed the impact of interaction words on the classification of both ker-

nels. The independence of functional relationships and the existence of an interaction verb

Table 2. Shallow linguistic kernel results on the datasets CPI-DS.

n w Rec. Spec. Prec. F1 AUC

1 1 76.6 69.8 74.0 75.2 80.7

1 2 85.1 61.0 71.1 77.4 80.5

1 3 87.2 56.3 69.1 77.0 80.3

2 1 78.5 70.8 75.1 76.7 81.8

2 2 85.6 62.7 72.1 78.2 81.5

2 3 87.0 59.8 70.9 78.1 81.3

3 1 79.5 70.2 75.0 77.2 82.5

3 2 86.6 62.8 72.4 78.8 82.2

3 3 87.3 60.0 71.1 78.3 82.1

nes. cr. val. 82.3 66.2 73.4 77.5 82.2

The first parameter shows the n-gram value, the second represents the window size. Values in percent: Rec.—recall,

Spec.—specificity, Prec.—precision, F1—F1 score, AUC—area under the curve, nes. cr. val.—nested cross validation.

https://doi.org/10.1371/journal.pone.0220925.t002

Table 3. APG kernel results on the datasets CPI-DS.

c Rec. Spec. Prec. F1 AUC

0.25 81.7 71.8 76.6 79.0 84.6

0.50 82.7 70.2 75.8 79.0 84.6

1.00 81.4 72.0 76.6 78.8 84.4

2.00 79.7 73.2 77.0 78.2 84.1

nes. cr. val. 81.7 71.7 76.4 78.9 84.5

c is hyperplane optimization parameter. Values in percent: Rec.—recall, Spec.—specificity, Prec.—precision, F1—F1

score, AUC—area under the curve, nes. cr. val.—nested cross validation.

https://doi.org/10.1371/journal.pone.0220925.t003
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was tested with a chi-squared test. Both characteristic features are not independent from each

other (p<0.01). The fraction of sentences containing an interaction verb is higher in the func-

tionally related CPI-pairs (Fig 3).

To see if and how the two different kernel functions make use of this correlation, we

divided the CPI-DS into two groups, considering compound-protein pairs which contain an

interaction verb (CPI-DS_IV) and pairs of compounds and proteins that do not show this

structure, i.e. no interaction verb enclosed (CPI-DS_NIV). Table 5 shows the baseline results

by using simple co-occurrences. In both datasets, the baseline achieves an F1 score of 71.6%

and 66.2% for APG and SL kernel respectively. Regarding the analyses of the kernels, we recal-

culated the results from the complete CPI-DS cross-validation run on CPI-DS_IV and

CPI-DS_NIV.

Shallow linguistic kernel

For both datasets (CPI-DS_IV and CPI-DS_NIV), the parameter selection n-gram 3 and win-

dow size 1 shows the highest area under the curve value (Table 6). Again, a lower value of win-

dow size leads to a higher precision and a lower recall. The SL kernel performs slightly better

in distinguishing between functional and non-functional relations on dataset CPI-DS NIV but

the overall results between the two datasets are very similar.

Fig 2. SL and APG kernel comparison. Area under the curve (AUC) of SL kernel (n = 3, w = 1) and APG kernel (c = 0.25).

https://doi.org/10.1371/journal.pone.0220925.g002
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All-paths graph kernel

Table 7 shows that experiments within the same dataset achieve similar performances, inde-

pendent of the hyperplane optimization parameter c. For both datasets, the AUC values do not

differ by more than 0.6%, indicating a high robustness of the classifier. Furthermore, the AUC

values of dataset CPI-DS_IV are about 1-2% better than on dataset CPI-DS_NIV, due to

Table 4. Comparison of the combined kernels to each individual kernel. The precision of each kernel was set to the

same level as in the combination by majority voting.

Kernel Rec. Spec. Prec. Acc. F1

SL 61.0 83.6 80.5 71.7 69.4

APG 68.4 81.6 80.5 74.6 73.9

Majority voting 68.5 81.6 80.5 74.7 74.0

Values in percent: Rec.—recall, Spec.—specificity, Prec.—precision, F1—F1 score.

https://doi.org/10.1371/journal.pone.0220925.t004

Fig 3. Ratios of CPI-pairs in sentences with and without interaction verbs.

https://doi.org/10.1371/journal.pone.0220925.g003

Table 5. Basic statistics of the two compound-protein interaction corpora.

DS #Sent. #CPIs #No-CPIs Total Rec. Spec. Prec. F1

CPI-DS_IV 1209 1598 1269 2867 100.0 0.0 55.7 71.6

CPI-DS_NIV 1404 1333 1362 2695 100.0 0.0 49.5 66.2

Baseline results for precision, recall, and F1 score are derived by using co-occurrences. Values in percent (DS—dataset, Sent.—sentences, Rec.—recall, Spec.—specificity,

Prec.—precision, F1—F1 score).

https://doi.org/10.1371/journal.pone.0220925.t005
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clearly higher recall and precision values. Therefore, the APG kernel performes slightly better

in distinguishing between functional and non-functional relations on dataset CPI-DS_IV.

Large-scale dataset application

The kernels have been successfully applied to all PubMed titles and abstracts that were pub-

lished before July 2019, comprising about 29M references to biomedical articles. The dataset

consists of more than 120M sentences, with around 16M containing at least one compound-

protein pair. Table 8 shows that the APG kernel predicts 54.9% of the potential candidate pairs

to be functionally related, while the SL kernel predicts 56.2% as functional. On an Intel Core

i5-3570 (4x 3.40GHz), the total run-time of the SL kernel was moderately less than the one of

the APG kernel.

Conclusion

The SL and APG kernels were already applied in different domains, e.g. protein-protein inter-

actions, drug-drug interactions, and neuroanatomical statements. The approach presented

herein is focusing on the extraction of functional compound-protein relationships from litera-

ture. A benchmark dataset was developed to evaluate both kernels with a range of parameters.

This corpus consists of 2,613 sentences, manually annotated with 5,562 compound-protein

relationships after automatic named entity recognition. Both kernels are dependent on suc-

cessfully recognizing protein and compound names in texts. Considering PubMed articles,

Table 6. SL kernel results on the datasets CPI-DS_IV and CPI-DS_NIV.

Param. CPI-DS_IV CPI-DS_NIV

n w Rec. Spec. Prec. F1 AUC Rec. Spec. Prec. F1 AUC

1 1 77.5 67.4 75.7 76.5 79.4 78.7 70.7 73.1 75.6 80.6

1 2 81.3 65.0 75.3 78.1 79.9 82.2 64.7 70.2 75.6 79.7

1 3 80.6 64.3 74.6 77.4 79.6 84.0 63.0 69.5 75.9 79.2

2 1 78.1 70.0 77.3 77.6 80.8 78.4 71.7 73.9 75.9 81.7

2 2 80.5 66.3 75.6 77.9 80.8 84.0 63.9 70.3 76.4 80.9

2 3 80.2 65.8 75.1 77.5 80.2 85.0 63.7 70.3 76.8 80.4

3 1 77.9 71.1 78.0 77.8 81.3 80.3 70.5 73.4 76.6 82.5

3 2 81.2 66.5 76.0 78.4 81.1 85.7 63.4 70.4 77.2 81.8

3 3 80.1 66.9 75.9 77.8 80.8 86.7 62.0 69.7 77.2 81.4

The first parameter shows the n-gram value, and the second number represents the window size. Values in percent: Rec.—recall, Spec.—specificity, Prec.—precision, F1

—F1 score, AUC—area under the curve.

https://doi.org/10.1371/journal.pone.0220925.t006

Table 7. CPI-DS_IV and CPI-DS_NIV results for the APG kernel pipeline.

Param. CPI-DS_IV CPI-DS_NIV

c Rec. Spec. Prec. F1 AUC Rec. Spec. Prec. F1 AUC

0.25 82.8 70.0 77.9 80.1 84.4 80.4 69.4 73.4 76.4 82.2

0.50 82.0 70.0 78.0 79.8 84.5 77.9 70.6 73.4 75.1 82.4

1.00 81.2 72.0 78.9 79.8 84.3 75.1 74.3 75.1 74.9 82.6

2.00 80.5 71.3 78.7 79.4 83.8 74.9 74.2 74.7 74.6 82.8

Values in percent: Rec.—recall, Prec.—precision, F1—F1 score, AUC—area under the curve.

https://doi.org/10.1371/journal.pone.0220925.t007
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reliable annotations of these entities are provided by PubTator [34], and publications can be

locally processed with PubMedPortable [26].

Cross-validation results with an AUC value of around 82% for the SL kernel and 84% for

the APG kernel represent a remarkable performance within the research area of relation

extraction.

Considering the filtering of specific interaction verbs, the SL kernel performance is almost

the same, while the APG kernel performs slightly better on sentences with an interaction verb.

This seems to be intuitive because the APG kernel uses a dependency graph structure and the

SL kernel evaluates word neighborhoods. However, since the filtering by interaction verbs

does not yield a clearly better precision for both datasets and kernels, this approach can be

ignored for the development of an automatic classification method.

The combination of both kernels could slightly increase the overall performance of the clas-

sification compared to the single APG kernel. Since both kernels are quite different regarding

their classification approach, their combination is supposed to result in a high robustness of

the predictions. For fully automatic methods the classification threshold for both kernels can

be adjusted to a relatively high precision. The models for predicting functional relationships

between compounds and proteins can then be considered e.g. as a filter to decrease the num-

ber of sentences a user has to read for the identification of specific relationships.

The selected procedure of training a model with the SL and APG kernels might also come

into question for the identification of other types of relationships, such as gene-disease or com-

pound-compound relationships.

Recent work on biomedical relation classification using deep learning approaches outper-

formed the overall results of kernel methods for related problems [36–43]. We are looking for-

ward to the deep learning achievements on the presented benchmark data set of functionally

related and unrelated compound-protein pairs and the comparison to the results of the kernel

methods presented here.
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Table 8. Application of CPI-Pipeline on PubMed dataset.

Kernel APG SL

PubMed articles 29M

Number of sentences 125M

Number of sentences with candidate pairs 6.1M

Number of candidate pairs 14.5M

Functional relations 7.9M = 54.9% 8.1M = 56.2%

Non-functional relations 6.5M = 45.1% 6.3M = 43.8%

Number of identical predictions 11M = 76.6%

(43.9% functional, 32.7% non-functional)

Number of predicted distinct functional relations 2.1M

Pre-processing elapsed time 21.0 days 14.4 days

Kernel elapsed time 4.3 days 1.6 days

Total elapsed time 25.3 days 16.0 days

PubMed dataset statistics for the selected APG (c = 0.25) and SL (n = 3, w = 1) models.

https://doi.org/10.1371/journal.pone.0220925.t008
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15. Thomas P, Neves M, Rocktäschel T, Leser U. WBI-DDI: Drug-Drug Interaction Extraction using Majority

Voting. In: Proceedings of the 7th International Workshop on Semantic Evaluation (SemEval 2013),

2013, pp. 628–635.

16. French L, Lane S, Xu L, Siu C, Kwok C, Chen Y, et al. Application and evaluation of automated methods

to extract neuroanatomical connectivity statements from free text. Bioinformatics. 2012; 28(22):2963–

70. https://doi.org/10.1093/bioinformatics/bts542 PMID: 22954628

17. Solt I, Szidarovszky FP, Tikk D. Concept, Assertion and Relation Extraction at the 2010 i2b2 Rela-

tion Extraction Challenge using parsing information and dictionaries. In: Proceedings of the 2010

i2b2/VA Workshop on Challenges in Natural Language Processing for Clinical Data, Boston, MA,

2010.

18. Kabiljo R, Clegg AB, Shepherd AJ. A realistic assessment of methods for extracting gene/protein inter-

actions from free text. BMC Bioinformatics. 2009; 10:233. https://doi.org/10.1186/1471-2105-10-233

PMID: 19635172

19. Krallinger M, Rabal O, Akhondi SA. Overview of the BioCreative VI chemical-protein interaction Track.

In: Proceedings of the sixth BioCreative challenge evaluation workshop (Vol. 1, pp. 141–146).

20. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: improved access to

chemical data. Nucleic Acids Res. 2019; 47(D1):D1102–D9. https://doi.org/10.1093/nar/gky1033

PMID: 30371825

21. The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;

45(D1):D158–D69. https://doi.org/10.1093/nar/gkw1099 PMID: 27899622

22. Grüning BA, Senger C, Erxleben A, Flemming S, Günther S. Compounds In Literature (CIL): screening

for compounds and relatives in PubMed. Bioinformatics. 2011; 27(9):1341–2. https://doi.org/10.1093/

bioinformatics/btr130 PMID: 21414988
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