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ABSTRACT

Animal models are important in understanding both the pathogenesis of and immunity to tuberculosis (TB). Unfortunately,
we are beginning to understand that no animal model perfectly recapitulates the human TB syndrome, which encompasses
numerous different stages. Furthermore, Mycobacterium tuberculosis infection is a very heterogeneous event at both the
levels of pathogenesis and immunity. This review seeks to establish the current understanding of TB pathogenesis and
immunity, as validated in the animal models of TB in active use today. We especially focus on the use of modern genomic
approaches in these models to determine the mechanism and the role of specific molecular pathways. Animal models have
significantly enhanced our understanding of TB. Incorporation of contemporary technologies such as single cell
transcriptomics, high-parameter flow cytometric immune profiling, proteomics, proteomic flow cytometry and
immunocytometry into the animal models in use will further enhance our understanding of TB and facilitate the
development of treatment and vaccination strategies.
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INTRODUCTION

Tuberculosis (TB) is a widespread infectious disease, latently
infecting up to one third of the world’s population and caus-
ing ∼1.3 million deaths in 2016 (WHO 2017). Many of the world’s
regions with high disease prevalence are rife with malnutri-
tion, have limited access to medical resources and are hotbeds
for non-compliance with medical interventions, leading to mul-
tidrug resistant and extensively drug-resistant strains (Gandhi
et al. 2006; Migliori et al. 2012).

Mycobacterium tuberculosis (Mtb) is a pathogen that is spread
by aerosol droplets to uninfected individuals when infected
patients cough ( Figure 1 ). In the lungs, Mtb comes into
contact with innate immune cells that attempt to eliminate
the pathogen. When Mtb comes into contact with alveolar
macrophages, it can infect the cells and persist following phago-
cytosis as an intracellular pathogen. During the innate immune
phase, inflammatory cells, including dendritic cells, neutrophils
and macrophages, traffic to the lungs and attempt to control the
infection (Nunes-Alves et al. 2014). Dissemination of Mtb to the
lymph nodes occurs, allowing dendritic cells to present bacterial
antigens to T cells and prime them (Chackerian et al. 2002; Wolf
et al. 2008). Priming of ESAT6 in particular occurs ∼10 days post-
infection in the mediastinal lymph nodes and is followed later
by generation of effector T cells (Reiley et al. 2008). The adaptive
immune response that follows T cell priming, particularly the
generation of effector T cells and Th1 CD4+ T cells, leads to the
formation of granulomas. Granulomas are organized structures
where T cells and B cells encapsulate innate immune cells, such
as activated neutrophils and macrophages, with a fibrotic cap-
sule to create a gradient of hypoxia, with the greatest concen-
tration of hypoxia formed in its center to isolate and prevent the
growth of Mtb (Kumar et al. 2011). Granulomas caseate and fail
to contain Mtb when host-specific responses are insufficient to
prevent bacterial replication, Mtb-infected macrophages necro-
tize and bacilli escape the hypoxic core to disseminate into unin-
fected lung tissues or secondary sites of infection including the
liver, spleen and brain. Mtb has evolved numerous mechanisms
of host resistance including its ability to alter T cell cytokines
in infected cells, such as interleukin-1β produced by dendritic
cells, to induce Th2 immune responses and inhibit protective
Th1 host responses (Dwivedi et al. 2012).

When patients are infected with Mtb, there are multiple clin-
ical outcomes that they can experience. Many patients will con-
trol the infection and are considered latently infected (LTBI).
These individuals typically possess just a few intact granulo-
mas and are positive on the Mantoux tuberculin skin test (TST).
About 10% of all patients with TB will progress to active infection
over the course of their lifetimes, some with early progression
(Kwan and Ernst 2011). Comorbidities can also induce progres-
sion to active disease in latently infected patients, termed reac-
tivation, including, but not limited to, type 2 diabetes (T2D) and
human immunodeficiency virus (HIV) (Kwan and Ernst 2011; Ai
et al. 2016). HIV alone increases the rate of activation from 10%
over a patient’s lifetime to 10% per year (Kwan and Ernst 2011).
Due to the wide variety of potential states and outcomes, we cur-
rently lack the knowledge and tools to distinguish which indi-
viduals have cleared or will control Mtb and which will progress
to active TB disease. The lack of information on responses
that are associated with subsequent progression to active TB
impedes identification of individuals at the highest risk of pro-
gression to active TB and who would benefit most from pre-
ventative therapy in resource-poor, high TB-prevalent regions.
Additionally, the lack of information on favorable immune

responses that lead to containment of infection, as well as their
distinctions from those associated with progression to active
disease, is a significant impediment to the design and evaluation
of efficacious TB vaccines. Although it is generally understood
that Th1 responses, such as IFN-γ that are generated in response
to mycobacterial antigens, are protective, Th1 responses dur-
ing active disease are unable to sterilize the host, complicating
our ability to measure successful vaccination (Nunes-Alves et al.
2014).

As many mechanisms of pathogenesis and host response
to infection are poorly understood, it is imperative to utilize
animal models in order to investigate them. Animal models
of TB infection and TB/HIV co-infection have the potential to
yield insights about the host’s responses to different strains, to
different therapeutics and vaccines. They also have the ability
to faithfully replicate comorbidities, particularly in the use of
non-human primates (NHPs) with TB that are co-infected with
simian immunodeficiency virus (SIV). The model used for stud-
ies, however, should always be carefully considered to maximize
homology to human disease or symptomatology. For example,
zebrafish infected with M. marinum have been a vital host to
study caseous pathology within granulomas (Swaim et al. 2006;
Cronan and Tobin 2014) despite being a non-mammalian organ-
ism. Balancing the ethical costs of the model, as well as the
knowledge gap under investigation, are essential when choosing
the proper animal model for studying TB infection. Here we dis-
cuss the most prominently used animal models of Mtb infection
and their specific role in the identification of molecular determi-
nants of TB pathology and immunity. We also describe the use of
the various contemporary genome-wide approaches in the ani-
mal models of TB.

ANIMAL MODELS OF TB

Numerous animal models have been utilized for mechanistic
and vaccine studies for TB. These range from more accurate, but
more expensive, NHPs, to small and non-mammalian organisms
like zebrafish. While NHPs best capitulate the human immune
response and susceptibility to TB, often smaller animal mod-
els like mice, rats, guinea pigs, rabbits and zebrafish are better
utilized for investigating more narrow aspects of the immune
response to mycobacteria, such as granuloma formation, sus-
ceptibility to different strains, or pre-clinical vaccine responses.
A summary of the characteristics of each model is shown in
Table 1.

NHPS

NHPs have been actively used primarily in the national primate
research centers. The seven national primate research centers
possess specialized personnel, large facilities and a wealth of
expertise and experience that allows complex NHP research to
be conducted safely and effectively in a BSL3 setting. In addition,
several other research centers and universities in the USA and
around the world have developed facilities to leverage NHP mod-
els in addition to smaller animal models such as mice, rabbits,
guinea pigs and rats. The use of NHPs, particularly macaques, as
models of human disease has significantly increased recently.
Of the >15 000 publications in PubMed that utilized macaque
models of human disease, 60% were published in the last 10
years. These systems have also been significantly utilized in the
modeling of infectious diseases, particularly HIV (∼4500 pub-
lications) (Hulskotte, Geretti and Osterhaus 1998; Veazey et al.
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Figure 1 Mycobacterium tuberculosis (Mtb) is spread via aerosols and is harbored primarily in the lungs. When macrophages encounter and engulf the pathogens, it
may be eliminated or may persist due to compensatory mechanisms. During the innate immune phase, macrophages, neutrophils and dendritic cells are recruited
to the site of infection. After severeal week, T and B cells migrate to the site of infection and form granulomas that encapsulate the innate immune cells and bacilli

in a fibrotic capsule that creates a gradient of hypoxia. If the immune cells are not able to kill the bacilli and prevent its growth, granulomas caseate and Mtb bacilli
disseminate to other organs including the spleen, liver and brain.

Table 1. Comparison of biosafety safety level 2 (BSL-2) and BSL-3 animal models of Mtb infection.

Non-human
primates Mouse Rabbit Guinea pig Rat Zebrafish

Susceptible to human
clinical strains of Mtb

Yes Yes Yes Yes Yes No

Potential for PK studies Yes, but significant
cost

No, differs from
humans

Yes No, differs from
humans

Yes No

BSL-2 model No No No No No Yes
BSL-3 model Yes Yes Yes Yes Yes No
Easy to house No Yes No No Yes Yes
Pulmonary pathology Yes Yes Yes Yes Yes No
Caseous pathology Yes No, except

C3HeB/FeJ mouse
Yes Yes Yes Yes

Cavitary lesions Yes No Yes No No Yes
Dissemination Yes Yes Yes Yes Yes Yes
Latency Yes No Yes No Yes Yes
Ready availability of
immunological reagents

Yes, human
cross-reactivity

Yes No No No No

CD1-cross reactivity CD1a, CD1b, CD1c,
CD1d

CD1d only CD1a, CD1b,
CD1d

CD1b, CD1c CD1d only No

1998; Douek et al. 2002; Franchini et al. 2002; Brenchley et al.
2004; Hatziioannou et al. 2009; Weed et al. 2012; Kimata 2014),
HSV (Peretti et al. 2005; Crostarosa et al. 2009; Calenda et al.
2017), influenza (Brown et al. 2010; Kitano et al. 2010; McDermott
et al. 2011), Streptococcus pneumoniae (Philipp et al. 2012), Neisseria
gonorrhoeae (Weyand et al. 2013), non-tuberculous mycobacteria
(Winthrop et al. 2010; Henkle and Winthrop 2015) and malaria
(Lombardini et al. 2015; Phares et al. 2017). These models have not
only investigated the pathogenesis of infection, but have also
related tissue pathology, vaccine and drug development and, of
late, host-directed or immunotherapeutics (Kaushal et al. 2015).

Macaques have been extensively used in TB research (∼150
publications) (Kaushal and Mehra 2012; Kaushal et al. 2012; Fore-
man et al. 2017). In fact, macaques were extensively used for
studying experimental Mtb infections in the early and middle
parts of the 20th century, but as the advent of antibiotics and
the widespread use of the Bacillus Calmette-Guérin (BCG) vac-
cine resulted in reduced TB rates, interest waned. Barclay led key

studies five decades ago where Indian rhesus macaques were
infected via the aerosol route with Mtb.(Barclay et al. 1970). Bar-
clay et al. tested both BCG and Mtb cell wall as effective vaccines
against Mtb challenge in this species (Ribi et al. 1971; Anacker
et al. 1972), even demonstrating the feasibility of utilizing aerosol
BCG vaccination to protect against TB challenge (Barclay et al.
1973). As TB disease resurged in the developed world in the
1980s and 1990s, this led to renewed interest in its research
and it was at once clear that the model systems available to
study TB at that time were insufficient. Walsh led the study of
Mtb infection in the modern era in cynomolgus macaques and
showed that it was possible to generate human-like LTBI in that
species (Walsh et al. 1996). The cynomolgus macaque was then
extensively used, primarily by Flynn and colleagues, to study
aspects of Mtb infection (Capuano et al. 2003; Lin et al. 2009),
especially early infection (Lin et al. 2006), reactivation due to SIV
co-infection (Diedrich et al. 2010) and for vaccine evaluation (Lin
et al. 2012; Mehra et al. 2013). The work of several other groups
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simultaneously led to a renewed interest in the rhesus macaque
as a model for TB pathogenesis (Gormus et al. 2004; Lewinsohn
et al. 2006; Qiu et al. 2008; Chen et al. 2009; Sharpe et al. 2009; Ver-
reck et al. 2009, Sharpe et al. 2010). Mtb-infected rhesus macaques
have since been utilized extensively to study the role of bacte-
rial determinants of pathogenesis (Dutta et al. 2010), e.g. stress-
response transcription factors (Mehra et al. 2012, 2015). These
studies generated results different to those obtained in the typ-
ical mouse model and extended our knowledge of how Mtb has
evolved to manage stress in its attempt to persist. This model
has been invaluable to replicate the immune responses that
lead to human granuloma formation and their failure because
NHPs are able to produce granulomas that are comparable with
those found in humans ( Figure 1 ) (Mehra et al. 2010, 2013;
Slight et al. 2013). The NHP model has been vital for testing vac-
cines and vaccine-induced responses (Kaushal et al. 2015; Fore-
man et al. 2017), in elucidating Mtb/HIV co-infections using SIV
as a surrogate (Diedrich et al. 2010; Sestak et al. 2011; Foreman
et al. 2016) and in ascertaining the role of individual cell types
(Kuroda et al. 2018) and immune/metabolic pathways/molecules
(Diedrich, Mattila and Flynn 2013; Cheng et al. 2017).

Old World NHPs originating from Africa and Asia, includ-
ing macaques, are prevalent as an NHP model in TB research.
New World NHPs, originating from Central and South America
as well as Mexico, e.g. marmosets, have also been used for TB
research. A challenge of the marmoset model remains that even
low-dose infection has been shown to yield intensely patholog-
ical outcomes, making it difficult to faithfully model TB latency
(Via et al. 2013; Cadena et al. 2016). Marmosets remain a cap-
tivating model organism, however, due to the ability to stan-
dardize experiments using twins, particularly for comparisons
of strain virulence and disease progression (Via et al. 2013). Mar-
mosets have also been a useful model for investigating the effect
of different drug regimens because they produce fully formed
granulomas that can be collected and evaluated to determine
if a drug has fully sterilized a granuloma (Via et al. 2015). This
is a method that has been evaluated additionally in cynomol-
gus macaques (Gideon et al. 2015). There is limited work on TB
in baboons, although that species of monkeys is also suscep-
tible to Mtb under experimental conditions (Martino, Hubbard
and Schlabritz-Loutsevitch 2007). It may be useful to look at
the effectiveness of the baboon as a model of TB co-infection
because extensive work has been done in baboons to study T2D
(Rincon-Choles et al. 2012). T2D is known to promote Mtb infec-
tion and TB disease (Gauld and Lyall 1947; Kapur and Harries
2013). Treatment strategies for T2D have exhibited promise as
anti-TB host-directed therapeutics (Singhal et al. 2014).

In terms of determining which species to use as a model for
TB, an understanding of what one wishes to accomplish must be
reached, considering both the strain of Mtb being used as well as
what effect is being investigated. In side-by-side comparisons of
rhesus macaques and cynomolgus macaques, the former have
been found to be more susceptible to developing active TB infec-
tions when infected with a virulent strain, Mtb Erdman (Langer-
mans et al. 2001; Sharpe et al. 2009; Maiello et al. 2017). The low-
est dose used of Mtb Erdman by Sharpe et al., however, was ∼30
CFU, with an upper limit of 500 CFU (Sharpe et al. 2009). In a later
study, where a retained aerosol exposure was calculated to be
as low as 3 CFU of Mtb Erdman, Sharpe et al. still found that rhe-
sus macaques were overall more likely to progress to active dis-
ease and that cynomolgus macaques possessed a reduced dis-
ease burden (Sharpe et al. 2016). When a less virulent strain is
used, such as CDC1551, it is possible to investigate latency even
in rhesus macaques (Sestak et al. 2011; Foreman et al. 2016).

VALIDATION OF MOLECULAR DETERMINANTS
OF INFECTION, DISEASE AND PROTECTION IN
THE NHP MODEL

Over the last decade, important discoveries have been made
using innovative approaches, including novel genomic tech-
niques, to validate molecular determinants of infection and
disease in NHPs. In 2007, Huang et al. established and vali-
dated a real-time quantitation system that identified 78 immune
genes that were induced in rhesus macaques that were vacci-
nated/challenged with BCG (Huang et al. 2007). The first applica-
tion of a system-wide approach in the NHP model of TB infection
showed that gene expression in recently formed lung granulo-
mas is characterized by a massive cytokine storm (Mehra et al.
2010). However, with the establishment of the chronic state of
infection, this intense expression of pro-inflammatory cytokines
was rapidly inhibited in later granulomas (Mehra et al. 2010).
This study provided significant insights into the functioning of
the primate granuloma. The initial study, conducted in rhesus,
was then validated in cynomolgus macaques, where the effect of
BCG vaccination on the progression of granuloma gene expres-
sion was also studied (Mehra et al. 2013). These studies indi-
cated that primate lung TB granulomas were characterized by
a high degree of expression of markers of adaptive immune
dysfunction, such as indoleamine 2,3-dioxygenase (IDO), Arg1,
LAG-3 and PD-1 (Mehra et al. 2013). Many of these observations
have since been validated (Mattila et al. 2013; Phillips et al. 2015;
Gautam et al. 2017). These results suggest that either immune
exhaustion or suppression events may be common in granulo-
mas. In support of this, T cells derived from NHP TB granulomas
appear to be dysfunctional (Gideon et al. 2015), although it has
recently been suggested that exhaustion may not be the main
mechanism for this (Wong et al. 2018). Inhibition of IDO activ-
ity relieves the inhibition on T cells (Gautam et al. 2017) and
it may soon be possible to test the impact of inhibiting other
immune checkpoints, e.g. LAG-3 and PD-1 in this model, using
either an antibody/depletion or inhibitor/antagonism approach.
Numerous other cellular pathways that have been identified to
be involved in TB pathogenesis using murine models of TB can
be validated using NHPs to assess the feasibility of designing
host-directed therapies directed against these pathways. These
include the C-Abl pathway (Napier et al. 2011, 2015), the SIRT
pathway (Cheng et al. 2017) and the AMPK pathways (Singhal
et al. 2014). The C-Abl pathway can be modulated by the inhibitor
Imatinib, a tyrosine kinase inhibitor (TKI). Inhibition of the C-
Abl pathway by Imatinib correlates with better control of TB
via myelopoesis (Napier et al. 2011, 2015). The SIRT pathway
can be induced using agonists like pterostilbene (PTS) and its
induction correlates with better control of TB due to enhanced
macrophage function (Cheng et al. 2017). The AMPK pathway can
be induced by the antidiabetic drug metformin (Singhal et al.
2014). Several of these pathways suggest the interface between
immunity and cellular metabolism during Mtb infection. Mtb is
already well described to preferentially alter the host’s cellular
metabolism, in addition to its own metabolism. Furthermore,
these pathways also suggest mechanisms by which T2D and
other metabolic syndromes could affect the immunity to TB in
individual patients.

System-wide transcriptomic approaches in NHPs infected
with Mtb have also been used to identify correlates of risk of TB
development in the blood (Gideon et al. 2016) as well as lung tis-
sue (Kaushal et al. 2015). These results show that transcriptional
changes in this model translate well to the human situation
and can be used for novel discoveries. In studies of macaques
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infected with specific Mtb mutants, the global host response has
identified correlates of lack of disease despite infection (these
responses may or may not translate to correlates of protec-
tion) (Mehra et al. 2012). By investigating global responses in
the lungs of rhesus macaques infected with Mtb:�dosR mutants
which are deficient in responding to hypoxia, we have found
that Mtb actively subverts the recruitment of Th1 cells into the
early granuloma (Mehra et al. 2015). System-wide measurements
have also been applied to the granuloma level in both rhesus
(Mehra et al. 2010) and cynomolgus (Mehra et al. 2013) macaques.
In both models, we conclude that early lesions are characterized
by a proinflammatory cytokine storm but later lesions are repro-
grammed to suppress such responses (Mehra et al. 2010). It has
also been found that a balance of pro- and anti-inflammatory
cytokines, including IL-10 and IL-17, are associated with steril-
ization (Gideon et al. 2015). We have since successfully used lung
and bronchoalveolar lavage (BAL) responses to study vaccine-
induced protection (Kaushal et al. 2015), as well as the effect of
host-directed therapeutics (Gautam et al. 2017).

Some of the recent advances in the NHP model have resulted
from the use of high-definition live imaging using [18F]2-fluoro-
deoxy-D-glucose ([18F]FDG) positron emission tomography–
computed tomography (PET/CT) scanning (Lin et al. 2013; Cole-
man et al. 2014; Lin et al. 2014; Martin et al. 2017; White et al. 2017).
PET has proven particularly useful in determining the inflamma-
tory status of individual lesions. Generally, these studies suggest
that PET-hot granulomas are prevalent in early time points and
later time points are characterized by increased PET-cold lesions
(Coleman et al. 2014). These studies confirm previous transcrip-
tomics results that showed a cooling of proinflammatory signa-
tures in granulomas over the course of time (Mehra et al. 2010,
2013). The most important message from these studies is the
extensive heterogeneity in granuloma phenotype. Each gran-
uloma appears to be an individual entity and factors govern-
ing their inflammatory status are not well understood. Recent
cutting-edge molecular studies in this model include the use
of digitally barcoded strains (Martin et al. 2017) to identify the
founder bacilli for individual lesions and blockade of individ-
ual immune pathways and cells (Diedrich, Mattila and Flynn
2013; Gautam et al. 2017). Some of the recent advances in anti-
TB vaccine discovery have involved the use of isogenic Mtb
mutants (Kaushal et al. 2015; Foreman et al. 2017) or specific
cytomegalovirus-based viral vectors in this model.

MICE

Rodent, and primarily murine, research is ubiquitous in science
and is utilized in the study of nearly every human disease as
∼99% of all mouse genes possess a human homolog (Consortium
2002). Mice also have the benefit of posing a low cost to labo-
ratories and having a wide variety of available genetic knock-
outs for immunological studies. Cost is of particular impor-
tance to TB research since the requirement for specialized con-
tainment facilities leads to increased expenses to begin with.
In terms of an animal model for TB, mice are susceptible to
disseminating infection and are typically incapable of control-
ling the infection (Kramnik, Demant and Bloom 1998). Most
strains do not form classical granulomas like those found in
humans (see Figure 1 ) and instead form diffused, non-caseating
structures, such as the C57BL/6 strain that forms non-necrotic
lesions primarily comprised of neutrophils (Flynn 2006; Kram-
nik and Beamer 2016). Thus, while the mouse model of TB
has been extremely useful in identifying key immune mech-
anisms responsible for the control of TB (Orme 2003), as well

as for the assessment of drugs, therapeutics and regimens, its
utility in effectively modeling the progression of Mtb infection,
its pathology and the host-pathogen interactions that lead to
either finite control or progressive TB disease, has been ques-
tioned. It has been suggested that the microenvironment within
human TB lesions so profoundly impacts the physiology and the
metabolism of the pathogen that the study of TB in systems that
do not recapitulate these specific stress conditions (e.g. hypoxia)
present within human TB lesions can be fundamentally mis-
leading (Kaufmann et al. 2005). Recently, however, murine sys-
tems have been developed that recapitulate specific conditions.
For example, granulomas formed in C3HeB/FeJ (Kramnik) mice
infected with Mtb develop caseating necrosis and become cen-
trally hypoxic (Driver et al. 2012). B6.C3Hsst1 mice provide stable
hypoxic lesions to study (Kramnik 2008) and CBA/J IL-10 KO are
able to model mature fibrotic granulomas (Cyktor et al. 2013).
Of particular interest also are mouse models of Mtb/HIV co-
infection that utilize humanized mice. HuMouse develop a pro-
gressive, disseminating Mtb infection producing caseous gran-
ulomatous inflammation (Calderon et al. 2013). Endsley and
colleagues showed that increased Mtb replication (≥1-log) and
larger and diffused lesions are observed in these mice following
HIV/Mtb co-infection (Nusbaum et al. 2016).

Studies built on the comparison of inbred strains of mice,
with varying degrees of susceptibility to Mtb infection (Fortin
et al. 2007), are vital for deciphering the role of singular changes
to the immune response that may have diverse effects on the
overall host. These models have been used for multimodal in
vivo and ex vivo imaging to assess necrosis, fibrosis, RNAseq of
whole granulomas, macrophage recruitment and death, as well
as IFN and ISR pathway activation for comprehensive quantita-
tive evaluation of the dynamics of TB granulomas.

Recently, two additional mouse models have captured the
imagination of the field, largely due to their ability to offer max-
imal allelic variation within a mouse model that more closely
resembles human population dynamics. One, known as the Col-
laborative Cross (CC) model, is a large panel of new inbred mouse
strains derived from an eight-way cross using a set of Jackson
Labs mice that included three wild-derived strains. CC mice dis-
play a broad range of susceptibility to Mtb infection, which are
expectedly heritable (Smith et al. 2016). The other, known as
the Diversity Outbred (DO) model, represents a far more diverse
underlying genotype and was produced by a novel outbreed-
ing strategy that maintained a balanced mixture of the founder
genomes and avoided allelic loss and inbreeding (Churchill et al.
2012). Each DO mouse is genetically unique and, unlike inbred
strains, DO mice have normal levels of heterozygosity, recapitu-
lating that of humans (Svenson et al. 2012). The Jackson Labs DO
model was generated using 160 breeding lines as founders, some
which were also used to construct the CC mice (Churchill et al.
2012). These DO mice have since been established as the mod-
els of choice to study qualitatively different outcomes in behav-
ior (Logan et al. 2013), cancer (Winter et al. 2017) and infectious
diseases (McHugh et al. 2013). DO mice display a wide range of
pathologic phenotypes following influenza virus or bacterial co-
infection (McHugh et al. 2013). These results offer a glimpse of
the powerful potential that these newer mouse models, espe-
cially the DO outbred model, provide in the study of complex
human diseases with varied phenotypes. TB is one such dis-
ease, with Mtb infection leading to varied outcomes over the
course of time. Genetics has been strongly implicated in this
diversity of phenotypes. When DO mice were infected with stan-
dard doses of Mtb via aerosol, super-susceptible, susceptible and
resistant phenotypes were readily observed (Niazi et al. 2015).
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In addition to experiencing highly variable outcomes, DO mice
exhibited a spectrum of necrotic (human-like) lesions including
visible necrosis of individual macrophages, necrotizing granulo-
mas with a fibrotic capsule, tuberculous pneumonia with intra-
alveolar neutrophilic exudates and thrombosis of the lung cap-
illaries (Niazi et al. 2015; Kramnik and Beamer 2016).

More recently, the DO mouse collection has been used to
measure the impact of host-directed therapeutics (specifically
vitamin D) on the progression of Mtb infection (Bhatt et al. 2016).
In these studies, changes in host-specific immune responses,
e.g. cellular recruitment and phenotype, its impact on the granu-
loma structure and changes in bacterial burden could be readily
measured (Bhatt et al. 2016). DO mice exhibit a range of bacte-
rial burdens following aerosol infection with Mtb, enabling DO
mice to act as an improved mouse co-infection model (Monin
et al. 2015). The DO mouse model has been able to recapitulate
complex phenotypes related to Mtb infection, such as helminth
co-infections (Monin et al. 2015), as well as vaccine efficacy (Grif-
fiths et al. 2016). Furthermore, several genes in a TB susceptibil-
ity signature identified in an adolescent cohort study of human
household contacts (Zak et al. 2016) that predicted progression
to TB far earlier than when clinical signs were apparent can be
detected in the lungs of Mtb-infected DO mice, but not conven-
tional B6 mice, by RNAseq (our unpublished data).

In the process of testing other toll-like receptor (TLR) agonists
to similarly activate innate DC pathways in mice, we identified
monophosphoryl lipid A (MPL) as a safe adjuvant for pulmonary
delivery (Ahmed et al. 2017). We next tested whether the delivery
of MPL and CD40 agonist FGK 4.5 in DO mice improves Mtb con-
trol, as seen in inbred B6 mice (Ahmed et al. 2017). Accordingly,
individual DO mice were vaccinated with BCG, and at the time
of Mtb infection received MPL, FGK4.5 along with IL-10R neutral-
izing antibody. IL-10 was identified as a key anti-inflammatory
cytokine that limits T cell responses (Griffiths et al. 2016). These
new data show that DO mice that received the DC activation
therapy resulted in improved Mtb control and formed enhanced
B cell follicles, which serve as a correlate of improved Mtb con-
trol in both murine and NHP animal models (Slight et al. 2013
; Kaushal et al. 2015; Foreman et al. 2016). DO mice mimic the
spectrum of disease seen in human TB and, similar to humans,
exhibit variability in control upon Mtb challenge (Gopal et al.
2013). These model systems are, therefore, likely to advance our
understanding of TB pathogenesis and immunity in the years to
come. Furthermore, these will serve as initial screening tools for
therapeutic agents in the setting of human-like genetic variabil-
ity.

Mice are immensely valuable for their ability to provide a
clear analysis of protection in vaccine studies and in mecha-
nistic studies using genetic knockouts. This latter attribute is
particularly important since the interaction of the Mtb bacillus
with the host is complex and multi-parametric. Numerous cell
types of the immune system and several immune pathways are
involved, giving rise to variability and heterogeneity in pheno-
types, which mechanistic approaches can better control.

VALIDATION OF MOLECULAR DETERMINANTS
OF INFECTION, DISEASE AND PROTECTION IN
THE MURINE MODEL

Seminal murine studies have established principles of Mtb infec-
tion progression and TB disease in the murine model and iden-
tified bacterial determinants of disease and host contributions

into both protection from and pathology of TB. The current itera-
tion of the murine model of TB was optimized in the early 1990s
with the advent of the ability to infect mice with aerosols of
Mtb. These studies showed that Mtb was more virulent when the
exposure route was aerosol instead of the previously used intra-
venous route (North 1995). This led to the adoption of the aerosol
route of murine infection as the model of choice by the field. Fur-
ther experimentation with this route of infection showed that,
unlike systemic infection with Mtb, adaptive immune responses
are not initially elicited following Mtb infection via the aerosol
route (Cooper 2014), a result which has since been confirmed in
other experimental models (Mehra et al. 2010).

Using a mouse model where the route of infection is compa-
rable to humans was a defining achievement. Simultaneously,
landmark studies by Jacobs, Bloom and others allowed the devel-
opment of genetic systems for the manipulation and the inves-
tigation of Mtb (Jacobs et al. 1989, 1990; Cirillo et al. 1991; Jacobs
et al. 1991; Balasubramanian et al. 1996). These systems allowed
the generation of isogenic mutants of Mtb for testing in murine
virulence experiments. Eventually, genome-wide libraries of Mtb
transposon-interrupted mutants were generated which allowed
a system-wide investigation of the bacterial genes required for
the survival of the pathogen in murine lungs (Sassetti and Rubin
2003; Lamichhane, Tyagi and Bishai 2005). Successful execution
of these projects has since allowed a limited number of simi-
lar investigations to be performed in guinea pigs and macaques
(Jain et al. 2007; Dutta et al. 2010). One approach was to gener-
ate Mariner-transposon mutants of Mtb with lesions in individ-
ual genes and to pool them for use in in vitro or in vivo studies,
known as Designer Arrays for Define Mutant Analysis (DeAD-
MAn). This allowed >1/3rd of all Mtb genes to be mutated and
individual mutants included in the library (Lamichhane et al.
2003). Bayesian statistical analyses of this library revealed that
at least a third of the Mtb genes may be essential and it may
not be possible to interrupt these. The DeADMAn approach
has been used to study molecules required for bacterial sur-
vival and persistence in mice (Lamichhane, Tyagi and Bishai
2005). It was found that 6% of the Mtb mutants were essen-
tial for growth in the mouse model, including those encod-
ing for mycobacterial membrane large and small protein fam-
ily (mmpL/S), as well as genes involved in the synthesis of
(p)ppGpp, the alarmone that signals stringent response due to
stress and amino acid starvation (Haseltine and Block 1973).
Most of these observations have since been confirmed using spe-
cific isogenic mutants and the molecules implicated in these
murine screens have been validated to be critical for TB dis-
ease progression (Varela et al. 2012; Weiss and Stallings 2013;
Degiacomi et al. 2017). Another approach that was used to test
the consequences of genome-wide mutagenesis of Mtb genes in
the mouse model was Transposon Site Hybridization (TraSH).
This approach combined high-density insertional mutagene-
sis with either microarray- or TnSeq-based mapping of mutant
pools enriched or diminished post-infection (Sassetti, Boyd and
Rubin 2001; Sassetti and Rubin 2003; Griffin et al. 2011, 2012;
DeJesus et al. 2017). These studies identified a core group of
∼200 genes (5% of the genome, a number that compares favor-
ably to the one arrived at by the DeADMAn approach), which
were required for the survival of Mtb in mice. Many of these
genes were unique to mycobacteria and the majority were of
hitherto unknown functions (Sassetti and Rubin 2003). Many
of the core genes required for virulence in the mouse model
have since been individually validated to encode molecules
important for in vivo survival and/or persistence of the
bacillus.
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Since the first draft of the Mtb genome sequence became
available, it has become abundantly clear that this remarkable
pathogen has evolved to respond to a variety of stress condi-
tions during its in vivo life cycle (Cole et al. 1998). Numerous
stress conditions that could be biologically relevant in vivo have
been identified, e.g. damage to Mtb cell wall, or DNA, acidic
pH in the phagosomal environment, nitrosative and oxida-
tive stresses, nutritional starvation including phosphate, and
hypoxia (Stallings and Glickman 2010). These stressors do not
work in isolation but may in fact be interlinked. Furthermore,
Mtb genes and pathways have been implicated to be involved
in defense against such stress conditions and specific knock-
out of molecules or pathways analyzed for phenotype relative
to wild-type Mtb in the mouse model of aerosol infection. Thus,
a mutant in the kasB gene, which encodes an enzyme in the
mycolic acid synthesis pathway, was susceptible to treatment
with antimicrobial peptides that damage cell wall and found
to be highly susceptible to killing in the murine model. These
results showed a connection between the specific molecular
function of an Mtb protein and its ability to encounter and
respond to in vivo relevant stress. Numerous other mutants in
genes involved in cell wall component synthesis, maintenance
and modification (e.g. phthiocerol dimycocerosate, mycolic
acids and cyclopropanes) have been observed to be deficient for
survival in murine lungs (Glickman, Cox and Jacobs 2000; Rao
et al. 2005). Similarly, mutants in Mtb genes that protect against
or repair DNA damage also have significant defects for growth in
the murine model. For example, Rv1633, which encodes for UvrB,
forms a critical part of the nucleotide excision repair machinery
(Darwin et al. 2003). Interestingly, there was a significant defect
in the killing of mice by a strain unable to synthesize UvrB, but
the difference in tissue bacterial burdens was minimal (Darwin
et al. 2003). These results suggest that while the murine model
may be good for replicating several stress conditions that Mtb
faces in human lungs, it is possible that specific mechanisms
that restrict the replication of the bacillus in human lungs may
be somewhat differently invoked in murine lungs. Mtb mutants
in serine protease genes Rv3671c and Rv2224c were unable to
survive in murine lungs, validating their role in protecting the
bacillus from acidic pH by preserving intrabacillary pH (Vandal
et al. 2008; Vandal, Nathan and Ehrt 2009). Mtb uses a multitude
of pathways to counter oxidative burst of the phagosome, indi-
cating the importance of being able to survive in the wake of this
stress. These include a catalase gene katG (Pym, Saint-Joanis and
Cole 2002) and two superoxide dismutase genes, sodA (Edwards
et al. 2001) and sodC (Piddington et al. 2001). Mutants in katG
have strong defects in murine growth (Pym, Saint-Joanis and
Cole 2002) and sodA is an essential gene. When the expression
of sodA was perturbed by antisense RNA approach, the result-
ing strain survived poorly in mice (Edwards et al. 2001). Mtb also
experiences oxidoreductive stress and has extensive means to
respond to it. Mtb encodes a stress response network orches-
trated by an alternate, extracytoplasmic factor response sigma
factor sigH, which is induced in response to reductive, acidic
pH, heat shock and a variety of other stresses (Fernandes et al.
1999; Manganelli et al. 1999). SigH orchestrates an antioxidative
response by inducing the expression of thioredoxin/thioredoxin
reductase proteins (Bell et al. 2016). Surprisingly, a mutant in
the sigH gene, while being susceptible to oxidoreductive stress,
could grow in mice to levels comparable with wild-type Mtb
despite evidence of lesser pathology (Kaushal et al. 2002).

The murine model has perhaps been most beneficial in
establishing the key role of various components of the immune
system in protection from TB. Thus, seminal studies by Flynn

and Bloom, and Cooper and Orme, established the importance
of CD4+ T cells in protecting from TB, especially those express-
ing IFN-γ and IL-12 and those involved in TNF-α induction
(Cooper et al. 1993; Flynn et al. 1993a, 1993b, 1995a, 1995b; Cooper
et al. 1997). Since then, mouse studies have revealed a relatively
smaller role of CD8+ T cells in protection from Mtb infection (Lin
and Flynn 2015) and an even more miniscule contribution of B
cells and humoral immunity (Chan et al. 2014). Work by Khader
and Cooper has since revealed an interesting role for the Th17
branch of immunity in TB (Khader et al. 2005, 2007). More recent
work suggests that the role of some immune pathways, partic-
ularly Th17, may be governed by the strain of Mtb used and its
relative pathogenicity (Gopal et al. 2014). Similarly, Turner and
colleagues have established the negative role of IL-10 signaling
in the control of Mtb infection (Beamer et al. 2008). These studies
have since allowed us to focus on the function of specific lym-
phocytes. Thus, it has been postulated that murine granuloma
T cells may have compromised cytokine section and functional
activity (Egen et al. 2008; Bold et al. 2011; Egen et al. 2011).

RABBITS

Early on, rabbits of different origins were shown to have differen-
tial susceptibility to TB (Lurie, Zappasodi and Tickner 1955). Rab-
bits have commonly been infected via the aerosol route (Man-
abe et al. 2008), however human strains of Mtb are not fully vir-
ulent in rabbits (Dannenberg and Collins 2001). During infec-
tion with M. bovis, rabbits are able to form pulmonary cav-
itation, which has been considered to resemble Mtb-induced
granulomas in humans more faithfully than those formed in
mice and guinea pigs (Dannenberg 2006). Most of the species
available today are resistant to Mtb as Lurie’s susceptible breed
had died out (Dharmadhikari and Nardell 2008). Seminal stud-
ies by Dannenberg et al. showed that alveolar macrophages are
the target cell for Mtb and are required for resistance to TB
(Henderson, Dannenberg and Lurie 1963; Rojas-Espinosa et al.
1974). Resistance to TB required proteolytic enzymes function-
ing in the endocytic pathway (Henderson, Dannenberg and Lurie
1963; Rojas-Espinosa et al. 1974). Dannenberg also illuminated
the phenomenon of delayed type hypersensitivity in the rabbit
model (Dannenberg 1991). More recently, the model has been
employed to study mechanisms of Mtb persistence and reactiva-
tion (Geiman et al. 2004; Kesavan et al. 2009), cavitary dissemina-
tion (Nedeltchev et al. 2009), response of Mtb to host-mediated
hypoxia in the granuloma (Converse et al. 2009), correlates of
immune-mediated latency (Subbian et al. 2013a, 2013b) and both
the environment of failed immunity and its correction by host-
directed therapeutics (Subbian et al. 2011a, 2011b, 2016). Man-
abe et al. have developed the only animal model of TB-related
immune reconstitution inflammatory syndrome (IRIS) in rabbits
to study the progression and severity of the immune reconsti-
tution inflammatory syndrome (Manabe et al. 2008). The model
has now been employed for testing drug effectiveness, partic-
ularly pharmacokinetics and pharmacodynamics, to estimate
drug penetration into different types of lesions in experimen-
tally infected rabbits (Rifat et al. 2018). Rabbits also form caseat-
ing, necrotic granulomas ( Figure 1 ) which, under the correct
conditions, may liquefy and cavitate (Nedeltchev et al. 2009).
Bishai and colleagues have developed a reliable model of cavi-
tary disease in rabbits and confirmed pathological and molec-
ular correlates of human disease. This model permits in vivo
imaging to observe and quantify the events leading to cavita-
tion (Kubler et al. 2015) and thus has tremendous potential in
the study of granuloma breakdown.
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VALIDATION OF MOLECULAR DETERMINANTS
OF INFECTION, DISEASE AND PROTECTION IN
THE RABBIT MODEL

As discussed above, Subbian et al. have characterized vari-
ous outcomes of Mtb infection in the rabbit model (Subbian
et al. 2011a, 2012, 2013b; Tsenova et al. 2014). They also applied
whole genome transcriptomic evaluation to better understand
universal host responses as they relate to the progression of
infection (Subbian et al. 2012). Rabbits infected with low doses
of low-virulence strain CDC1551, which elicits strong immune
responses, initially exhibited bacterial growth and pathology,
but eventually controlled infection in a latent form (Subbian
et al. 2012). Genome-wide transcriptional analysis supported this
notion, with the number of genes involved in both inflamma-
tory responses and in lung remodeling (required for granuloma
formation) peaking 2 weeks after infection in rabbit lungs and
then progressively reducing in extent (Subbian et al. 2012). Sim-
ilar results were earlier obtained in both the rhesus (Mehra et al.
2010) and the cynomolgus (Mehra et al. 2013) macaque models,
which is discussed subsequently. The use of PET/CT imaging was
first employed in the rabbit model of TB to study the dynamics
of infection. These studies also confirmed earlier transcriptomic
outcomes that low-dose experimental infection in this model
involved an initial inflammatory phase followed by a chronic
phase with reduced granuloma-associated inflammatory sig-
nal (Via et al. 2012). Thus, the use of state-of-the-art molecular
approaches in animal models have extended our understand-
ing of the granuloma formation/maturation kinetics in a manner
not possible in humans. Circulatory human cytokine/chemokine
profile-based molecular analytes are now being used to success-
fully study Mtb infection in rabbits (Dehnad et al. 2016).

Transcriptomics has also been employed in the rabbit model
to successfully evaluate responses to therapy, including host-
directed therapy (Subbian et al. 2011a). However, the most strik-
ing use of global ‘omics’ approach in this model has been to com-
pare infection with a high-immunogenic vs. a high-virulence
strain of Mtb (Subbian et al. 2013b). According to these reports,
Mtb CDC1551, and perhaps other hyper-immunogenic strains,
express early lung transcriptional profiles of infection that result
in reduced STAT1 induction and polymorphonuclear leukocyte
(PMN) recruitment and inflammation. Hence, the usual out-
come of infection in rabbits with this strain is LTBI (Bishai et al.
1999; Subbian et al. 2012, 2013b). On the contrary, STAT1 and
inflammatory signals were highly expressed following compa-
rable infection with the hypervirulent HN878 strain and led to
high levels of PMN recruitment and cavitary disease (Subbian
et al. 2013b). While further research across experimental mod-
els is necessary, these results provide a potential mechanism for
how hyper-virulent strains may have acquired the ability to elicit
lung pathology as a means of overcoming the ability of the large
majority of human beings to restrict Mtb infection as LTBI.

GUINEA PIGS

Guinea pigs are susceptible to Mtb and form granulomas, so
they have been useful in immunohistopathological stages of
pulmonary granuloma formation (Dannenberg and Collins 2001;
Turner, Basaraba and Orme 2003). Guinea pigs have also been
useful in investigations of responses to antigenic lipopeptides
due to their possession of type I CD1 presentation molecules
(Kaufmann et al. 2016). Initially considered the gold standard
for vaccine testing against TB, the guinea pig model is con-
sidered highly susceptible (Clark, Hall and Williams 2014) and

has suffered from a lack of immunological tools such as guinea
pig-specific antibodies for immune analysis in the past. It is
expected, however, that more tools will be available in the future.
Thus, a genome-wide interrogation of transcriptional responses
to Mtb infection in this model is now possible (Jain, Dey and Tyagi
2012). An immune-gene specific array platform has been avail-
able for over a decade now and has been used to study Mtb infec-
tion in this model (Tree et al. 2006). This reagent has validated
that Mtb infection of guinea pigs elicits strong and immediate
Th1 responses (Tree et al. 2006), indicating its ability to recapit-
ulate aspects of the human immune response to Mtb.

VALIDATION OF MOLECULAR DETERMINANTS
OF INFECTION, DISEASE AND PROTECTION IN
THE GUINEA PIG MODEL

Guinea pigs have been successfully leveraged to study Mtb-
specific metabolic fate. With the increasing understanding that
the immune system interacts with metabolism with influential
consequences on the fate of various infections, interest in the
guinea pig model of TB has also increased. Recently, important
studies have investigated persisters in lung granulomas of
this animal model (Lenaerts et al. 2007). Basaraba et al. have
recently been successful in developing a model of TB/T2D in
these guinea pigs (Podell et al. 2014, 2017). This is an excep-
tionally significant advance. T2D is a major cause of morbidity
and mortality worldwide amongst non-infectious causes and
accounts for ∼90% of the entire diabetic burden (Deshpande,
Harris-Hayes and Schootman 2008). Furthermore, the rates of
T2D have been significantly increasing both globally as well as
in areas of the world where TB is endemic. Thus, globally, it is
predicted that the number of T2D patients will double between
2010 and 2030 (Rowley et al. 2017). It has been proposed that
T2D is a comorbidity that is fueling the TB pandemic in certain
parts of the world at levels comparable with HIV co-infection,
especially in regions where TB is already endemic (Dooley and
Chaisson 2009). When T2D was induced in guinea pigs, Mtb
infection caused a significantly higher degree of TB disease with
reduced survival and severe pathological presentation than
controls (Podell et al. 2014). This coincided with uncontrolled
inflammatory responses. Thus, the guinea pig model allows an
in-depth study of T2D/TB comorbidity, including the testing of
novel approaches for therapeutic control.

The guinea pig model has also been used in mutant infec-
tion screening experiments to better understand the bacillary
determinants of pathogenesis (Jain et al. 2007). When compared
with mice infected with the identical mutant library, guinea pigs
permitted an accelerated detection of genes required for the in
vivo survival of Mtb (Jain et al. 2007). These results suggest that
TB-related pathology in guinea pig lungs results in relatively
greater immune pressure on the bacillus than the corresponding
murine pathology.

RATS

Rats remain a more recent and less developed model of TB
infection out of all mammalian models. Recently, Lewis rats
(Sugawara, Yamada and Mizuno 2004a), American cotton rats
(Elwood et al. 2007), Wistar rats (Gaonkar et al. 2010; Cardona
et al. 2011; Singhal et al. 2011) and diabetic rat strains (Sugawara,
Yamada and Mizuno 2004b; Sugawara and Mizuno 2008) have
been used to develop the rat model of TB infection. They
have also been used to demonstrate Th1-shifts in immunity
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following BCG vaccination (Cardona et al. 2011). Unlike mice,
rats have been found to form well-organized granulomas and
accumulate foamy macrophages ( Figure 1 ), which have been
associated with pulmonary lesion resolution (Singhal et al.
2011). Rats have been used successfully as an animal model for
testing drug efficacy (Gaonkar et al. 2010; Foo et al. 2011) and
antigen-specific T cell responses (Cardona et al. 2011; Foo et al.
2011; Singhal et al. 2011) and have been a valuable animal model
for pharamacokinetic and toxicology studies by pharmaceutical
companies (Gumbo et al. 2015). Similar to NHP models of TB
infection, Wistar rats exposed to a low dose infection were
found to control or clear bacilli by 4 months post-infection,
depending on the strain used (Singhal et al. 2011), indicating
that they have the potential to model latency. As a co-infection
model, rats would be of benefit in the exploration of diabetes
as Goto Kakizaki T2D rats (McGillivray et al. 2014) and Komeda
diabetes-prone rats (Sugawara and Mizuno 2008) have been
shown to have a higher susceptibility to TB compared with
wild-type rats. Like mice, rats are simple to house, however
they can withstand repeated blood collections and could be
used during long-term infection studies.

ZEBRAFISH

Despite the fact that zebrafish do not possess lungs, researchers
have been successful in utilizing their infection with M. mar-
inum to uncover the mechanisms of microgranuloma forma-
tion prior to antigen-specific responses (Volkman et al. 2010;
Ramakrishnan 2013). This model is useful in the determination
of elementary mycobacterial pathogenesis and treatment. Many
seminal recent discoveries about granuloma induction and the
role of various mycobacterial virulence factors in this process
have been initiated in this model (Volkman et al. 2010; Cambier
et al. 2014). Zebrafish were vital in showing that macrophage
death spreads bacilli to adjacent macrophages encapsulated
within the same granuloma (Volkman et al. 2004). Many of these
observations were extended from the fish model and validated
in clinical human samples (Tobin et al. 2010). Recently, inves-
tigations in this system have identified specific mechanisms
by which granulomas mature, with specialized phagocyte mor-
phology contributing to the pathology of the lesion and pro-
moting bacillary replication and persistence (Cronan et al. 2016).
The zebrafish embryo model was used to show innate immune
mechanisms that lead to granuloma formation, including induc-
tion of innate immune aggregates ( Figure 1 ) and activation of M.
marinum granuloma-specific genes (Davis et al. 2002). Zebrafish
are small, easy to image (especially in the larval stage where
the lesions can be directly visualized) and offer the advan-
tage of significantly powered group sizes while posing mini-
mal increases in overall cost (Cronan and Tobin 2014). The lack
of host homology, however, limits the ability of zebrafish to
completely model human infection, particularly latency. Special
facilities are required for studies utilizing the fish model, how-
ever these studies have an additional benefit of being conducted
at BSL2 since most studies utilize the strain M. marinum, which
rarely infects humans, rather than Mtb.

IMPORTANCE OF ANIMAL MODELS FOR DRUG
AND VACCINE EFFICACY

Animal models are important for evaluating new drug regimens
prior to introduction in humans. With humans, the threat of

developing drug or multidrug resistant strains prevents rapid
introduction and animals, particularly mice, provide a niche
where drug regimens can be used quickly to determine if new
regimens are efficacious in treating and eliminating TB. Mice
were useful in showing that rifapentine and moxifloxacin could
be used to eliminate TB within 2 months, rather than the stan-
dard 6 months with rifampin (R), isoniazid (H) and pyrazinamide
(Z) (Rosenthal et al. 2007). The use of different strains is vital to
the evaluation of drug efficacy for later human use. Dual and
triple drug combinations of H, R and Z have shown that different
challenge strains yielded different in vivo efficacy in BALB/c mice
(De Groote et al. 2012), leading to the need to develop improved
drug regimens for eventual human use. Animal models allow an
avenue to explore these new drugs prior to human use. Differ-
ent quinolones (Lenaerts et al. 2008) and nitroimidazo-oxazines
(Nuermberger et al. 2008) have recently been investigated to
replace the current three-drug regimen. Recently, a subclass of
quinolones called 2-pyridones has been investigated, includ-
ing KRQ-10 018, and was found to be similar in in vivo efficacy
to isoniazid and have less activity than moxifloxacin (Lenaerts
et al. 2008). When the nitroimidazo-oxazine PA-824 was used
with moxifloxacin and pyrazinamide regimen as a substitute for
rifapentine, it cured mice more quickly than the standard regi-
men, but not within 3 months of treatment (Nuermberger et al.
2008).

As early as 1997, it was suggested that vaccine efficacy is
altered based on the number of passages that the BCG strain
has undergone (Behr and Small 1997). Behr et al. found that sig-
nificant genetic changes had accumulated in many of the BCG
strains, including the loss of region of difference 2 (RD2) in BCG-
Denmark, BCG-Tice and BCG-Glaxo (Behr and Small 1999). In
mice, it was found that the Prague and Japanese strains of BCG
had lower recovery rates compared with three other BCG strains
and were unable to protect against a second challenge with Mtb
(Lagranderie et al. 1996). These studies highlight that, despite the
presence of a vaccine that has been accepted for a long period,
proper maintenance of the vaccine strain is vital in ensuring its
efficacy. Experiments in animal models are thus necessary to
ensure that efficacy is maintained over time to protect vulnera-
ble human populations.

It has been observed for some time that BCG is primar-
ily efficacious in the prevention of disseminated TB in chil-
dren, so studies in other animal models are vital in investi-
gating improvements that must be made to improve protec-
tion. Animal models have supported the lack of widespread pro-
tection produced by the BCG vaccine. Using Mtb Erdman and
HN878 challenge to evaluate parenteral BCG vaccination effi-
cacy, Verreck et al. showed that protection widely varies in rhe-
sus macaques, as is the case in humans (Verreck et al. 2017). Until
we possess a vaccine that prevents adult pulmonary TB, it will
be impossible to eliminate the disease. Due to the existence of
multidrug and extremely drug-resistant TB, treatment improve-
ments alone will not be sufficient to contain the infection.
Improved developments in vaccines, treatments and patient
support for improved compliance will be necessary to ultimately
eliminate TB.

IMPORTANCE OF STRAIN-STRAIN
COMPARISON IN ANIMAL MODELS

It has been estimated that humans can be infected with Mtb with
an infectious dose as low as 10 CFU. Humans have a 10% lifetime
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risk of progressing to active disease once they have acquired
TB (Society AT 2000). As a result, using an animal model with
a higher susceptibility rate would make sense in replicating the
natural, human response to infection. As humans have different
susceptibilities to different strains of Mtb, it is ideal to compare
the susceptibilities of each animal model with different strains
of Mtb, as well as using multiple strains of Mtb to model treat-
ment efficacy (De Groote et al. 2012). Several animal models have
been used for side-by-side susceptibility comparisons of differ-
ent strains such as Mtb Erdman, H37Rv and CDC1551 including
mice (Kelley and Collins 1999; Manca et al. 1999; Ordway et al.
2007; De Groote et al. 2012), rabbits (Manabe et al. 2003; Tsen-
ova et al. 2005), rats (Singhal et al. 2011) and NHPs (Cadena et al.
2016). In early comparisons over the course of 3 months, mouse
studies failed to show differential susceptibilities among differ-
ent strains of Mtb in intravenous or aerosol challenge (Kelley and
Collins 1999). A study involving comparisons of rabbits aerosol-
challenged with Mtb Erdman, CDC1551 and H37Rv found that
Erdman was the most virulent strain and caused a broader spec-
trum of disease within 16–20 weeks post-challenge (Manabe et al.
2003). Several studies of strain-strain comparisons have been
conducted within the NHP model as well. Despite marmosets
having high susceptibility, they have been used to reveal that
strain and infectious dose can lead to heterogenous responses
by comparing low-dose Erdman and CDC1551 infection ranging
from 1–12 CFU (Cadena et al. 2016).

The use of animal models in strain-strain comparison are
beneficial in that they enable one to investigate both differ-
ences in the host’s responses to the individual strains as well
as differential virulence mechanisms of the strains themselves.
Using New Zealand white rabbits, Tsenova et al. found that phe-
nolic glycolipid (PGL) biosynthesis is critical in subverting the
host’s ability to produce protective TNF-α by comparing rabbits
infected with CDC1551, HN878 and HN878pks1–15::hyg (Tsen-
ova et al. 2005). Using CDC1551 and HN878 infection, Subbian
et al. showed that differential leukocyte activation and recruit-
ment within the first 3 h of infection led to vastly different out-
comes despite identical infectious doses being used (Subbian
et al. 2013b). HN878-infected rabbits that developed cavitary dis-
ease had increased expression of pro-inflammatory genes that
are associated with extravasation and activation of PMNs in the
lungs, including those producing TNF-α, IL-8, IL-15, MCP-1 and
CXCL10. Other studies have found that CDC1551 induces a more
rapid and robust response in mice, with granulomas containing
high levels of TNF-α, IL-6, IL-10, IL-12 and IFN-γ mRNA (Manca
et al. 1999). Mice were also vital in showing that some of HN878
hypervirulence is due to the induction of stronger Th1 responses
and rapid Treg emergence compared with other strains that
result in their decreased survival (Ordway et al. 2007). Studies uti-
lizing multiple challenge strains are also vital in evaluating the
protection offered by different vaccines. BCG has shown efficacy
in protecting mice from various strains of Mtb, however these
differ incredibly from clinical observations in humans (Jeon et al.
2008).

ADDITIONAL GENOMIC APPROACHES IN THE
ANIMAL MODELS OF TB

The availability of genome sequences in the past two decades
has spawned the sciences of systems biology, where the under-
standing of the entire genome is leveraged to understand the
responses of both the pathogen and the host on a ‘system-
wide’ level. Initial studies focused on a simplistic design where

the response of Mtb to various in vitro conditions directly or
indirectly corresponding to stresses that the pathogen might
be subjected to in vivo were measured. These experiments
clearly illuminated that Mtb has developed an intricate net-
work of transcriptional networks to fine-tune responses to dif-
ferent stresses. Key molecules in this network included sigma
factors, which serve to guide the RNA polymerase to specifi-
cally initiate gene expression. The Mtb genome encodes about a
dozen stress- or condition-specific sigma factors whose expres-
sion are often intricately controlled at multiple levels (Gomez,
Chen and Bishai 1997). Thus, it was shown that sigE responds
to stress that weakens the Mtb cell wall and, unlike wild-
type Mtb, �sigE mutants are effectively killed by phagocytes
(Manganelli et al. 2001). SigE is one of the few molecules
known to be expressed in Mtb-infected macrophages by selec-
tive capture of transcribed sequences (SCOTS), an early genome-
wide RNA measurement technique. Since those early days,
the animal models of TB have progressed tremendously, and
state-of-the art techniques are now routinely used in these
to study both the pathogenesis of Mtb as well as the evalua-
tion of host responses involved in immunity as well as pathol-
ogy. These include comparative genomics, post-genomic muta-
tions, transcriptomics (beginning with DNA microarrays, but
now including RNAseq and single cell RNAseq), proteomics
(including to detect proteins with modifications such as phos-
phorylation, etc.), lipidomics, metabolomics and whole ani-
mal live imaging by magnetic resonance imaging (MRI) and
PET/CT.

CONCLUSIONS

No one animal model recapitulates the breadth of heterogene-
ity in human TB. However, several new mouse models can por-
tray specific events in the granuloma such as hypoxia or fibro-
sis. Similarly, guinea pigs, zebrafish and rabbit infection mod-
els have significantly contributed to our understanding of Mtb
infection and the resulting immune response. Perhaps the best
recapitulation of Mtb-specific pathogenesis events and immu-
nity occurs in NHPs. Mtb-infected macaques have been used for
transcriptome-wide immune response evaluation in peripheral
blood to back-translate key findings for humans. These studies
have been extended to evaluate BAL and lung samples. State-of-
the-art molecular imaging tools such as PET/CT have been suc-
cessfully employed in this model. The use of bar-coded strains
and isogenic mutants to better understand TB pathogenesis has
revealed interesting information from this model. Finally, the
use of the NHP model is informing vaccine and therapeutic dis-
covery critical to the future control of the TB pandemic. Overall,
the use of animal models improves our understanding of Mtb
disease pathogenesis and provides us with models that recapit-
ulate aspects of human disease for the testing of new vaccine
and treatment regimens that are vital to ultimately eliminate
TB.
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