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A B S T R A C T

We investigated peripheral blood mononuclear cell gene expression responses to acute psychosocial

stress to identify molecular pathways relevant to the stress response. Blood samples were obtained from

10 healthy male subjects before, during and after (at 0, 30, and 60 min) a standardized psychosocial

laboratory stressor. Ribonucleic acid (RNA) was extracted and gene expression measured by

hybridization to a 20,000-gene microarray. Gene Set Expression Comparisons (GSEC) using defined

pathways were used for the analysis. Forty-nine pathways were significantly changed from baseline to

immediately after the stressor (p < 0.05), implicating cell cycle, cell signaling, adhesion and immune

responses. The comparison between stress and recovery (measured 30 min later) identified 36

pathways, several involving stress-responsive signaling cascades and cellular defense mechanisms.

These results have relevance for understanding molecular mechanisms of the physiological stress

response, and might be used to further study adverse health outcomes of psychosocial stress.

Published by Elsevier B.V.
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1. Introduction

The importance of psychosocial stress as a risk factor for a
variety of negative health outcomes is widely recognized. Stress
induces endocrine and immune system responses that help coping
with the change in demand (McEwen, 1998) and stressors exert
these influences by regulation of genes. Findings from previous
gene expression studies in animal models show changes due to
acute stress exposure cannot be readily translated to the human
paradigm (Fujikawa et al., 2000; Liberzon et al., 1999). It has been
suggested that peripheral blood mononuclear cell (PBMC) gene
expression may provide an indicator of gene activation changes as
a response to stress in humans (Segman et al., 2005), as
lymphocytes have been shown to be perturbed following acute
psychological stress (Aloe et al., 1994), probably mediated through
endocrine and immune markers that are activated by the stressor.
Only very few studies have investigated gene expression altera-
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tions due to stress in humans. Studies examining genome-wide
transcriptional activity in PBMCs have been reported. One
examined chronic isolation and showed it was associated with
specific signaling pathways involved in immune regulation and
biological stress responses (Cole et al., 2007). A more recent study
associated chronic care-giving stress with alterations in gluco-
corticoid signal transduction as reflected by altered gene expres-
sion compared to a control group (Miller et al., 2008). Microarrays,
which allow high-throughput profiling of transcriptional activity,
are powerful tools that detect signatures of biological processes
that underlie adaptive and maladaptive responses to a challenge of
the system. Measurement of expression of multiple genes or even
genome-wide transcriptional activity patterns is warranted.
Previous studies have not attempted to study gene expression
alterations using more than one single measurement time point.
However, considering the complex chronology of biological
processes that occur due to exposure to an acute stressor, repeated
measurement of gene expression is crucial. In the current pilot
study, we attempted to repeatedly measure gene expression
patterns using a genome-wide approach allowing us to examine
biological pathways changes that follow an acute psychosocial
laboratory stressor in adult healthy men. As this is a ‘‘proof of
concept’’ approach that will drive future research endeavors
using a repeated measurement approach, no hypotheses about
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alterations in specific pathways were formulated. Therefore, the
following analyses should be regarded as explorative in nature and
will hopefully inform future decisions on formulating specific
hypotheses. However, we expected to find changes in processes
that are relevant for the biological response to stress. In particular,
psychological stress is known to activate the hypothalamic–
pituitary–adrenal (HPA) axis (Charmandari et al., 2005). The HPA
axis plays a fundamental role in regulating other homeostatic
systems, including the sympathetic nervous system and the
immune system. Cortisol exerts inhibitory effects on the secretion
of pro-inflammatory cytokines, including interleukin (IL)-6, and
helps return these cytokines to baseline levels after stress.
Increased sympathetic responses may mediate increased immune
responses especially during stress. Thus, we expected changes in
gene expression profiles that were closely related to changes in
these biological stress systems.

2. Methods

2.1. Participants and conditions

This study was approved by the Institutional Review Boards of Emory University

School of Medicine and the Centers for Disease Control and Prevention (CDC). All

subjects were recruited via newspaper advertisement. Only male participants were

included in the study. Exclusionary criteria were significant medical illness, past or

current presence of psychotic symptoms or bipolar disorder, current presence of

psychoactive substance abuse/dependency or eating disorders, as well as hormonal

and psychotropic medication in the 4 weeks prior to study entry. Written informed

consent was obtained prior to study entry and subjects were admitted as inpatients

to the Emory University General Clinical Research Center. This study was conducted

as part of a larger study.

2.2. Psychosocial stress procedure

A standardized and validated psychosocial stress test, the Trier Social Stress Test

(TSST) (Kirschbaum et al., 1993), was performed between 15:00 h and 16:00 h. The

test consists of a 10-min anticipation and preparation phase and a subsequent 10-

min public speaking and mental arithmetic task in front of three individuals.

2.3. Assessments during the stress procedure

2.3.1. Psychometric measures

We measured positive and negative affect before and after TSST using the

Positive and Negative Affect Scale (PANAS) (Crawford and Henry, 2004), which

comprises 20 items describing emotions experienced at the present moment.

2.3.2. Biological measures

At 12:00 h, an intravenous (IV) catheter was inserted and subjects were not

allowed to intake anything per oral except for water until 17:00 h. Blood was

sampled in ethylenediaminetetraacetic acid (EDTA) tubes through the IV before

(�15 and 0 min), during (15 min) and after the stress exposure (30, 45, 60, 75, and

90 min) for assessment of plasma adrenocorticotropin (ACTH), cortisol, norepi-

nephrine/epinephrine, and interleukin (IL)-6 concentrations. ACTH and cortisol

concentrations were measured using commercial radioimmunoassays (ACTH:

Nichols Institute, San Juan Capistrano, CA; cortisol: DiaSorin Corporation, Stillwater,

MN). Inter- and intra-assay coefficients of variation were less than 6% for ACTH and

less than 4% for cortisol. Catecholamines were measured by reverse-phase, ion pair

high performance liquid chromatography. For norepinephrine, mean intra-assay

coefficient of variation was 7.1% (>800 pg/ml) and mean inter-assay coefficient of

variation was 10.3% (300–550 pg/ml). For epinephrine, mean intra-assay coefficient

of variation was 9.6% (>80 pg/ml) and mean inter-assay coefficient of variation was

16.3% (60–140 pg/ml). Plasma IL-6 concentrations were measured by enzyme-

linked immunosorbent assay (R&D Systems, Minneapolis, MN).

2.3.3. Gene expression profiling

Whole blood was drawn (at 0, 30, and 60 min) into an 8 ml BD Vacutainer Cell

Preparation Tube with sodium citrate (Becton Dickinson, NJ), and immediately

processed according to manufacturer’s instructions. Total ribonucleic acid (RNA)

was isolated using TRIzolTM reagent (Invitrogen, CA) and RNA quality and quantity

was assessed using the Agilent 2100 Bioanalyzer, all RNA used had RIN >8.5.

Contaminating deoxyribonucleic acid (DNA) was removed by incubation with 1 U

DNaseI (GeneHunter Corp., TN) at 37 8C for 15 min. RNA was labeled and arrays

processed as previously described (Ojaniemi et al., 2003; Whistler et al., 2003).

Hybridization was onto a 20K array (MWG Biotech, Germany, now Ocimum

Biosolutions). A median background value was calculated around each of the

features and subtracted from the mean feature signal to give the net signal for the
respective gene. The data was quantile normalized and log2 transformed. Features

showing minimal variation across the set of arrays were excluded from the analysis,

those whose expression differed by at least 1.5-fold from the median in at least 50%

of the arrays were retained, giving 7247 genes for further analysis.

2.4. Statistical analyses

2.4.1. Gene set expression comparison (GSEC) analysis

The GSEC tool (Xu et al., 2008) in BRB-ArrayTools (v3.7; http://linus.nci.nih.gov/

BRB-ArrayTools.html) analyzes pre-defined gene sets for differential expression

among pre-defined classes (Pavlidis et al., 2004). Gene sets for this analysis were

derived from 593 BioCarta (http://www.biocarta.com), or 181 Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways (http://www.genome.jp/kegg/

pathway.html) and 65 experimentally verified transcription factor targets. We

identified pathways whose expression was differentially regulated among the

classes. By analyzing gene sets, rather than individual genes, we were able to reduce

the number of tests conducted, and allow findings among biologically related genes

to reinforce each other. This analysis is different than annotating a gene list using

gene ontology (GO) categories. For each gene set we computed the number of genes

represented on the microarray in that group, and calculated the statistical

significance for each gene by a univariate analysis using a paired t-test with a

random variance model (Wright and Kirby, 2003). Then, for each gene set two p-

value summary statistics (the Fisher (LS) and the Kolmogorov–Smirnov (KS)

statistics (Simon and Lam, 2004) and the Efron–Tishirani’s maxmean test statistic

(Efron and Tishirani, 2007) were calculated. The significance level associated with

the gene set is the proportion of the random samples giving as large a value of the

summary statistic as in the actual genes of the specified gene set. We considered a

gene set to be significantly differentially regulated if one of the tests was <0.05.

2.4.2. Transcription factor analysis

In an attempt to determine the over-representation of transcription factor

binding sites (TFBS) within the set of co-expressed genes from the GSEC pathway

analysis, as compared with a background set of genes, the Opossum system was

used for enrichment analysis (Ho Sui et al., 2005; Huang et al., 2005). The analysis

parameters looked at promoters 2000 nucleotides upstream of each gene’s

transcription start site, using a conservation level of top 10 percentile of non-coding

conserved regions with an absolute minimum percent identity of 70%. Two

measures of statistical over-representation were measured, a Z-score and a one-

tailed Fisher exact probability.

2.4.3. Peripheral markers analysis

The Friedman test was used to compare observations repeated on the same

subjects.

2.5. Microarray validation

2.5.1. Quantitative real-time polymerase chain reaction (qPCR)

Validation of the microarray gene expression findings was performed using qPCR

on four genes that showed different expression patterns between the three time

points for all donors. The candidate genes for validation are given in Table 1.

Endogenous control genes were selected on the basis of the microarray gene

expression data from all time points. Ten genes were selected that showed low

coefficients of variation, and genes with different functions were chosen to avoid

genes belonging to the same biological pathways that might be co-regulated.

GeNorm was used to select the most stable pair-wise combination of reference

genes: phosphoglycerate kinase 1 (PGK1) and glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) (Table 1). The slope of a five-step fivefold dilution

standard curve (100 mg–10 pg) for each primer set was used to determine their PCR

amplification efficiency (10�1/slope). The template cDNA was pooled total RNA

extracted from PBMC of several donors.

One microgram of DNAse digested RNA was reverse transcribed into cDNA using

random hexamers and the Transcriptor Reverse Transcriptase kit (Roche Applied

Sciences, Indianapolis, IN) according to the manufacturer’s instructions. Quanti-

tative real-time PCR was performed using the LightCycler1 480 system and the

Probes Master Mix kit (Roche) in 96 well plates according to the manufacturer’s

instructions. The primers and probes used are outlined in Table 1. All samples

including the external standards and non-template control were run in duplicate.

The cycling conditions consisted of one cycle at 95 8C for 5 min followed by 45

cycles of 95 8C � 15 s, 60 8C � 15 s and 72 8C � 45 s. The Lightcycler 480 software

was used to extract crossing points. The data was normalized to GAPDH and PGK1

using the geometric means of the reference genes.

3. Results

Demographic characteristics of the participants are summar-
ized in Table 2. Positive affect did not change before and after
stress. However, negative affect increased significantly from pre-
to post-stress.

http://linus.nci.nih.gov/BRB-ArrayTools.html
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Table 1
Hydrolysis primer and probe sets used for the validation of gene expression data. The probes were labeled with the HEX fluorophore 50 , and the non-fluorescent Black Hole

Quencher 30 .

Gene symbol Forward primer sequence (50–30) Reverse primer sequence (50–30) Probe sequence (50–30) Amplicon length (bp) PCR efficiencya

GAPDH AACCTGCCAAATATGATGACATCA GCCCAGGATGCCCTTGA AGCAGGCGTCGGAGGGCCC 67 1.88

PGK1 CAAGAAGTATGCTGAGGCTGTCA CAAATACCCCCACAGGACCAT TCGGGCTAAGCAGATTGTGTGG 68 1.93

PKC TGACAAACCCCCGTTCTTGA GTTGACATATTCCATGACGAAGTACA ACTCCTGCTTCCAGACAGTGGATCGG 82 1.80

CASP8 CCTGGGTGCGTCCACTTT CAAGGTTCAAGTGACCAACTCAAG TGGGCACGTGAGGTTGGGCC 78 1.96

ALDH3A2 GCAGCGATTTGACCACATTTTC TAACATGGACTTTTCCCTCCCA CGGTTGGCAAAATTGTCATGGAAGCT 120 1.88

IL6R GTACCACTGCCCACATTCCT CAGCTTCCACGTCTTCTTGA CCTGGCCTTCGGAACGCTCCTC 71 1.99

a The maximum efficiency for a PCR reaction = 2.
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Analysis of repeated measures of peripheral markers revealed
significant differences between time points for ACTH (x2(7) = 24.8;
p = 0.001), cortisol (x2(7) = 34.5; p < 0.001), norepinephrine
(x2(7) = 47.7; p < 0.001), and epinephrine (x2(7) = 41.0;
p < 0.001) (Fig. 1A–D). Plasma IL-6 (x2(7) = 38.2; p < 0.001) and
log2 normalized signal intensity for IL-6 extracted from gene
expression data are presented in Fig. 2.

Comparison between baseline (0 min) and stress samples
(30 min) revealed a total of 49 pathways that significantly changed
(p < 0.05) (Table 3). When comparing stress (30 min) and recovery
samples (60 min), 36 pathways were significantly changed
(Table 4). The parametric p-values and the geometric means for
all genes identified in the pathways of Tables 3 and 4 can be found
in Supplementary file 1. Eight pathways were identified as
common to each of these analyses (bold highlight, Tables 3 and
4) involving 210 unique genes. This represents 36 and 45% of the
unique genes common to these eight pathways. We are able to
dissect out the gene expression changes in each of the pathways
(Supplementary file 2). The Janus kinase-signal (JAK/STAT)
signaling pathway is central to the stress response and looking
at the expression changes between baseline and stressor (0 and
30 min) we find 42/56 genes are showing �2-fold increase in
expression. Then 31/42 of these genes are down-regulated (�2-
fold change) during the recovery (30–60 min). A further 11 genes
in this pathway, unchanged from baseline to stress, are also down-
regulated during the recovery. Similar analytical dissection of the
gene regulation for the remaining seven common pathways is
given in Supplementary file 2.

The transcription factors that regulate the genes in the
pathways that were found to be differentially expressed were
examined by over-representation analysis (Tables 5 and 6).

The limited amount of RNA on several subjects allowed for
validation of four genes by qPCR (Fig. 3). Overall there was very
good agreement of the qPCR data with the mRNA generated
microarray data, in that the trends of differential expression were
maintained in both.
Table 2
Demographic features and psychological measures during psychosocial stress test.

n = 10

Mean age in years (range) 32.4 (20–54)

Mean BMI (range) 25.8 (21.3–33.4)

Race (%)

Caucasian 5 (50)

African-American 5 (50)

PANAS-positive

Pre-stress (95% CI) 18.8 (12.5–25.0)

Post-stress (95% CI) 16.8 (9.5–24.0)

PANAS-negative

Pre-stress (95% CI) 3.2 (�0.8 to 7.2)

Post-stress (95% CI) 10.8* (5.9–15.6)

BMI = body mass index; PANAS = Positive Affect Negative Affect Scale.
* p < 0.01.
4. Discussion

Acute stressors trigger adaptive up-regulation of natural
immunity, redistribution of cells (Goebel and Mills, 2000), and
preparation of the natural immune system (Miller et al., 2005). In
our analysis these effects from psychosocial stress are reflected in
changes in acute inflammatory response pathways (see Table 3,
33–36), and pathways regulating adhesion molecules (Table 3, 1–
5). The effects of the leukocytosis are more apparent in the
baseline-stress analysis than the stress–recovery time period, as a
greater number of pathways are associated with cell migration and
adhesion in the former compared to the latter. In addition, stress
response pathways associated with nuclear factor kappa B (NF-kB)
appear to be associated with the stress–recovery period (Table 4,
29–32). A variety of pathways were significantly changed between
baseline and stress, involving basic cell regulatory and signaling
processes, many involving cell growth, differentiation and pro-
liferation (Table 3, 17–29). Also, it was noted that ras-related C3
botulinum toxin substrate 1 (RAC1) was central to the functioning
of several pathways in the baseline–stress analysis (Table 3, 1, 2
and 16). This protein is a pleiotropic regulator of many cellular
processes, including the cell cycle, cell–cell adhesion, and motility
(through the actin network). Thus, all these pathways are
implicated in the adhesion and diapedesis of immune cells from
the lymphatic system to the blood stream. A shortfall in this pilot
study was that we did not monitor the cell subsets during the
course of the time series, which is essential for larger scale studies,
so we can account for the differences in the gene expression
profiles being driven by the changes in T cell, B cell and natural
killer cell populations.

Acute stressors trigger suppression of specific immunity
(Segerstrom and Miller, 2004). The role of psychological stress
in the regulation of lymphocyte adhesion molecules has been well
examined (Mills et al., 1998; Redwine et al., 2003). These
mechanisms are also reflected by changes in the pathway
implicated in adhesion (Table 3, 1–5). More specifically, stress
induces changes in effector T cell distribution, as can be seen by
changes in the pathways involved in T helper cell mobilization
(Table 3, 28 and 34–35).

Apoptosis plays an important role in the organism’s response to
acute stress. While lymphocytes expand and proliferate in
response to acute stress, apoptosis has to be inhibited in the
early phase of the stress response. In the later stages, though,
apoptosis must occur to reduce the number of accumulated cells
and to restore homeostasis. Our findings show that during stress
gene products involved in apoptotic processes are altered upon
exposition of the organism to acute stress (Table 3, 6–7, 15 and 23).

Several pathways involved in the immediate stress response
were common across stress and recovery, indicating common
mechanisms underlying the processes that allow the body to
mount an adequate response and recover from a stressor to regain
homeostasis. Two of the pathways, involved in metabolic
processes (Oxidative Phosphorylation and Ascorbate metabolism,
a total of 52 genes) all showed up-regulation of gene expression



Fig. 1. Biological measures during psychosocial stress test. Plasma ACTH (A), plasma cortisol (B), plasma norepinephrine (C), and plasma epinephrine (D) changed significantly

over time. Red arrows indicate when blood sample was analyzed for PBMC gene expression. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of the article.)

Fig. 2. Plasma IL-6 and log2 normalized signal intensity for IL-6 extracted from gene

expression data. Similar profiles for the two measures add validity to the gene

expression data. Red arrows indicate when blood sample was analyzed for PBMC

gene expression. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of the article.)
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between baseline-stress, followed by down-regulation during
recovery, as did the vast majority of genes in the JAK/STAT
signaling pathway. The immediate physiological consequences of
the stress response are evident in the analyses seen here, i.e.
immune activation and energy mobilization. However, genes in the
three pathways associated with the cell cycle, cell differentiation,
etc., showed mixed regulation of the genes, and genes that were
up- (or down-) regulated in the baseline-stress analysis were still
up-regulated in the stress–recovery analysis (Supplementary file
2). Some of this reflects the biological changes occurring in the
lymphocyte populations with respect to cell differentiation,
activation and survival, as the proportion and numbers of
circulating cells changes, as is well documented during stressors
(Segerstrom and Miller, 2004; Zorrilla et al., 1995).

There are five transcription factors that are common to the
genes in both GSEC pathway analyses (Tables 5 and 6). These are
NF-kB, V-rel reticuloendotheliosis viral oncogene homolog A,
nuclear factor of kappa light polypeptide gene enhancer in B-cells
3, p65 (avian) (RELA), nuclear receptor subfamily 3, group C,
member 1 (NR3C1 or glucocorticoid receptor), spermatogenic
leucine zipper 1 (SPZ1), and E74-like factor 5 (ELF5). The first two
interact with each other to form the NF-kB transcription complex.
This complex is involved in cellular responses to stimuli such as



Table 3
Results of the paired class comparison analysis between baseline and stress time points using BioCarta and KEGG pathways as defined gene sets. Pathways containing more

than five genes present on the array were included in the analysis. This meant that 176 BioCarta and 146 KEGG pathways were considered. A univariate analysis using paired

t-tests with a random variance model was run to determine the differentially expressed genes in each gene set. Significant gene sets were then identified with summary

statistics (the LS/KS permutation test and Efron–Tishirani’s maxmean test (Efron and Tishirani, 2007) using a threshold of 0.05 for at least one test. In the combined BioCarta/

KEGG analysis 49 pathways passed this threshold. Pathways in highlighted in bold are common to both the baseline-stress and stress–recovery analyses. p-Values and Log

ratios are presented in Appendix BSupplementary file 1.

Pathway ID Pathway description No. of genes Biological function

1 h_ucalpain uCalpain and friends in Cell spread 11 Adhesion

2 h_agr Agrin in postsynaptic differentiation 19 Adhesion, cell migration

3 h_ecm Erk and PI-3 kinase are necessary for collagen binding

in corneal epithelia

10 Adhesion, cell migration

4 h_rho Rho cell motility signaling pathway 13 Adhesion, cell morphology

5 h_rac1 Rac 1 cell motility signaling pathway 10 Adhesion, cell signaling

6 hsa05040 Huntington’s disease 13 Apoptosis
7 h_ras Ras signaling pathway 8 Apoptosis

8 h_intrinsic Intrinsic prothrombin activation pathway 6 Blood collection

9 hsa04110 Cell cycle 43 Cell cycle

10 h_g1 Cell cycle: G1/S check point 9 Cell cycle

11 h_skp2e2f E2F1 destruction pathway 5 Cell cycle
12 h_RacCycD Influence of Ras and Rho proteins on G1 to S Transition 12 Cell cycle

13 h_p27 Regulation of p27 phosphorylation during cell
cycle progression

7 Cell cycle progression

14 hsa04120 Ubiquitin mediated proteolysis 15 Cell cycle, immune response

15 h_pml Regulation of transcriptional activity by PML 15 Cell growth, apoptosis

16 h_At1r Angiotensin II mediated activation of JNK Pathway via Pyk2 16 Cell migration

17 h_mrp Multi-drug resistance factors 6 Cell regulation

18 h_cardiacegf Role of EGF receptor transactivation by GPCRs in

cardiac hypertrophy

6 Cell regulation

19 hsa04540 Gap junction 35 Cell signaling

20 h_gpcr Signaling pathway from G-protein families 10 Cell signaling

21 h_erk Erk1/Erk2 MAPK signaling pathway 13 Cell signaling, cell growth and differentiation

22 h_calcineurin Effects of calcineurin in keratinocyte differentiation 5 Cell signaling: Ca++

23 hsa04630 JAK/STAT signaling pathway 56 Cell signaling: cytokines, growth
factors, stress

24 hsa04310 Wnt signaling pathway 48 Cell signaling: development,

proliferation, mobility

25 h_pelp1 Pelp1 modulation of estrogen receptor activity 5 Cell signaling: growth factor signaling

26 hsa04010 MAPK signaling pathway 114 Cell signaling: growth, inflammation,
apoptosis

27 h_fcer1 Fc epsilon receptor I signaling in mast cells 12 Cell signaling: immunity, arachadonic

acid metabolism

28 hsa04330 Notch signaling pathway 17 Cell signaling: T-cell development

29 h_hes Segmentation clock 8 Cell signaling: WNT and Notch

30 hsa00790 Folate biosynthesis 14 Cofactor biosynthesis

31 h_ppara Mechanism of gene regulation by peroxisome proliferators via PPARa 20 Gene regulation

32 h_sppa Aspirin blocks signaling pathway involved in platelet activation 6 Hemostasis

33 hsa04650 Natural killer cell mediated cytotoxicity 64 Immune response: NK cell

34 h_dc Dendritic cells in regulating TH1 and TH2 development 5 Immune response: T-cell
35 h_tcr T cell receptor signaling pathway 14 Immune response: T-cell

36 h_mef2d Role of MEF2D in T-cell apoptosis 5 Immune response: T-cell; apoptosis

37 hsa04730 Long-term depression 32 Learning and memory

38 hsa04720 Long-term potentiation 28 Learning and memory

39 hsa00380 Tryptophan metabolism 41 Metabolism: Amino acid

40 hsa00530 Aminosugars metabolism 6 Metabolism: carbohydrate

41 hsa00053 Ascorbate and aldarate metabolism 9 Metabolism: carbohydrate
42 hsa00190 Oxidative phosphorylation 43 Metabolism: energy production
43 hsa00770 Pantothenate and CoA biosynthesis 8 Metabolism: fatty acid

44 hsa00531 Glycosaminoglycan degradation 10 Metabolism: glucosamine

45 hsa00534 Heparan sulfate biosynthesis 7 Metabolism: glucosamine

46 hsa00604 Glycosphingolipid biosynthesis - ganglioseries 9 Metabolism: glycolipid

47 hsa00960 Alkaloid biosynthesis II 16 Metabolism: secondary metabolites

48 h_prc2 PRC2 complex long-term gene silencing by modification

of histone tails

7 Regulation gene expression

49 h_arap ADP-ribosylation factor 10 Vesicular trafficking
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stress and plays a key role in regulating the immune response
(Avitsur et al., 2003; Bhatara et al., 1998). In fact, it has recently
been identified as a potential critical bridge between stress and
cellular activation (Bierhaus et al., 2003; Rosecrans and Karin,
1998). Another common transcription factor regulating the
differentially expressed genes in the common pathways was
NR3C1, a transcription factor that binds to glucocorticoid response
elements (GRE) and is a modulator of other transcription factors. It
affects inflammatory responses, cellular proliferation and differ-
entiation. SPZ1 is involved in regulating genes involved in cell
growth and differentiation, while ELF5 is an ETS-domain tran-
scription factor, which regulate a diverse range of biological
functions including mammalian hematopoiesis (Sharrocks et al.,
1997).

Cortisol activation of the glucocorticoid receptor (GR) exerts
broad anti-inflammatory effects by inhibiting NF-kB/Rel transcrip-
tion factors and other pro-inflammatory signaling pathways such
as the JAK/STAT signaling pathway (Collado-Hidalgo et al., 2006;
Rhen and Cidlowski, 2005). Exploring the JAK/STAT signaling
pathway in the baseline-stress GSEC analysis (Supplementary file



Table 4
Results of the paired class comparison analysis between stress and recovery time points using BioCarta and KEGG pathways as defined gene sets. Pathways containing more

than five genes present on the array were included in the analysis. This meant that 176 BioCarta and 146 KEGG pathways were considered. A univariate analysis using paired

t-tests with a random variance model was run to determine the differentially expressed genes in each gene set. Significant gene sets were then identified with summary

statistics (the LS/KS permutation test and Efron–Tishirani’s maxmean test (Efron and Tishirani, 2007) using a threshold of 0.05 for at least one test. In the combined BioCarta/

KEGG analysis 49 pathways passed this threshold. Pathways in highlighted in bold are common to both the baseline-stress and stress–recovery analyses. p-Values and Log

ratios are presented in Supplementary file 1.

Pathway ID Pathway description No. of genes Biological function

1 hsa04810 Regulation of actin cytoskeleton 89 Adhesion

2 hsa05040 Huntington’s disease 13 Apoptosis
3 h_p27 Regulation of p27 phosphorylation during cell

cycle progression
7 Cell cycle progression

4 h_skp2e2f E2F1 destruction pathway 5 Cell cycle progression, TF
5 h_gsk3 Inactivation of Gsk3 by AKT: accumulation of b-catenin

in macrophages

8 Cell proliferation/differentiation

6 h_CCR3 CCR3 signaling in eosinophils 14 Cell signaling

7 h_akt AKT signaling pathway 5 Cell signaling: cell survival

8 hsa04630 JAK/STAT signaling pathway 56 Cell signaling: cytokines, growth factors
9 hsa04010 MAPK signaling pathway 114 Cell signaling: growth, inflammation,

apoptosis
10 hsa04912 GnRH signaling pathway 38 Cell signaling: HPG axis

11 hsa04620 Toll-like receptor signaling pathway 45 Cell signaling: immunity

12 hsa04664 Fc epsilon RI signaling pathway 36 Cell signaling: immunity, arachadonic

acid metabolism

13 h_il1r Signal transduction through IL1R 15 Immune response, cell signaling

14 h_tall1 TACI and BCMA stimulation of B cell immune responses. 7 Immune response: B-cell

15 h_dc Dendritic cells in regulating TH1 and TH2 development 5 Immune response: T-cell
16 hsa00460 Cyanoamino acid metabolism 5 Metabolism: amino acid

17 hsa00340 Histidine metabolism 27 Metabolism: amino acid

18 hsa00450 Selenoamino acid metabolism 12 Metabolism: amino acid

19 hsa00220 Urea cycle and metabolism of amino groups 8 Metabolism: amino acid

20 hsa00053 Ascorbate and aldarate metabolism 9 Metabolism: carbohydrate
21 hsa00051 Fructose and mannose metabolism 17 Metabolism: carbohydrate

22 hsa00010 Glycolysis/gluconeogenesis 18 Metabolism: carbohydrate

23 hsa00030 Pentose phosphate pathway 6 Metabolism: carbohydrate

24 hsa00190 Oxidative phosphorylation 43 Metabolism: energy
25 hsa00591 Linoleic acid metabolism 17 Metabolism: fatty acid

26 hsa00600 Sphingolipid metabolism 14 Metabolism: fatty acid

27 h_eicosanoid Eicosanoid metabolism 5 Metabolism: fatty acid. Stress response

28 hsa00940 Stilbene, coumarine and lignin biosynthesis 7 Metabolism: xenobiotic

29 h_eponfkb Erythropoietin mediated neuroprotection through NF-kB 7 NF-kB

30 h_hcmv Human cytomegalovirus and Map kinase pathways 8 NF-kB

31 h_nthi NF-kB activation by non-typeable hemophilus influenzae 18 NF-kB

32 h_arenrf2 Oxidative stress induced gene expression via Nrf2 9 Stress response

33 hsa03020 RNA polymerase 10 Transcription

34 h_eif4 Regulation of eIF4e and p70 S6 kinase 14 Translation regulation

35 hsa04130 SNARE interactions in vesicular transport 13 Vesicular trafficking

36 h_SARS SARS coronavirus protease 8 Glycolysis

Table 5
Statistically over-represented TFBS in genes associated with the GSEC baseline and stress analysis as determined by Opossum. Results displayed where Z-score�5 and Fisher

�0.01.

Transcription factor TF class Information contenta Target gene hits Background TFBS rateb Target TFBS rateb Z-scorec Fisher scored

MZF1_5-13 Zn-Finger, C2H2 9.4 301 0.0222 0.0245 10.6 2.71E�07

MZF1_1-4 Zn-Finger, C2H2 8.6 377 0.0464 0.0494 10.3 2.20E�04

SP1 Zn-Finger, C2H2 9.7 290 0.02 0.022 9.9 6.78E�08

TEAD1 TEA 15.7 100 0.0029 0.0037 9.9 2.07E�04

RELA REL 14.8 141 0.0039 0.0048 9.2 2.39E�05

GABPA ETS 13.9 157 0.0049 0.0057 8.3 8.50E�05

REL REL 10.5 227 0.0089 0.01 8.1 4.86E�07

CEBPA bZIP 9.2 210 0.0118 0.013 7.8 5.60E�04

ELF5 ETS 8.7 353 0.0291 0.0307 6.6 4.05E�07

Spz1 bHLH-ZIP 11.9 166 0.0049 0.0056 6.6 1.13E�08

NR3C1 Nuclear Receptor 14.7 60 0.0023 0.0027 6.4 1.48E�03

ELK1 ETS 8.8 315 0.0201 0.0213 6.1 2.56E�07

HLF bZIP 11.1 124 0.0048 0.0054 5.9 6.55E�03

Arnt-Ahr bHLH 9.5 319 0.0179 0.0189 5.7 6.97E�05

GFI Zn-Finger, C2H2 9.5 270 0.0169 0.0179 5.4 4.65E�05

RORA_1 Nuclear Receptor 13.2 197 0.006 0.0065 5.0 1.61E�09

NF-kB REL 13.3 180 0.0057 0.0062 5.0 5.24E�07

a This is the specificity of the TFBS profile’s position weight matrix.
b The number of times this TFBS was detected within the conserved non-coding regions of the background or target set of genes.
c The likelihood that the number of TFBS nucleotides detected for the included target genes is significant as compared with the number of TFBS nucleotides detected for the

background set. Z-score is expressed in units of magnitude of the standard deviation.
d The probability that the number of hits vs. non-hits for the included target genes could have occurred by random chance based on the hits vs. non-hits for the background set.
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Table 6
Statistically over-represented TFBS in genes associated with the GSEC stress and recovery analysis as determined by Opossum. Results displayed where Z-score�5 and Fisher

�0.01.

Transcription factor TF class ICa Target gene hits Background TFBS rateb Target TFBS rateb Z-scorec Fisher scored

REST Zn-Finger, C2H2 22.958 10 0.0002 0.0006 17.8 1.72E�03

NR3C1 Nuclear Receptor 14.749 49 0.0023 0.0031 9.9 2.77E�03

RELA REL 14.757 105 0.0039 0.0047 7.1 3.93E�03

NF-kB REL 13.345 142 0.0057 0.0065 6.2 2.39E�05

Spz1 bHLH-ZIP 11.907 127 0.0049 0.0056 5.8 9.30E�06

SRF MADS 17.965 17 0.0005 0.0007 5.6 4.41E�02

ELF5 ETS 8.693 280 0.0291 0.0305 5.2 4.47E�05

a This is the specificity of the TFBS profile’s position weight matrix.
b The number of times this TFBS was detected within the conserved non-coding regions of the background or target set of genes.
c The likelihood that the number of TFBS nucleotides detected for the included target genes is significant as compared with the number of TFBS nucleotides detected for the

background set. Z-score is expressed in units of magnitude of the standard deviation.
d The probability that the number of hits vs. non-hits for the included target genes could have occurred by random chance based on the hits vs. non-hits for the background

set.

Fig. 3. Comparison of microarray gene expression (left) and qPCR data (right) for selected genes. Bar chart represents averaged signal � SD.

U.M. Nater et al. / Biological Psychology 82 (2009) 125–132 131
3) we see 19 genes are identified with the NF-kB/RELA TFBS
combination and eight genes are up-regulated �2-fold between
baseline and stress, while only three of these genes are down-
regulated. Three of five genes with NR3C1 (GR) promoter
sequences in the JAK/STAT pathway are down-regulated (Supple-
mentary file 3). We find that the cortisol effects are evident in the
gene expression patterns during the time series analysis. This
indicates by using state-of-the-art methodologies we can explore
the biological changes of psychological stressors.

When blood is collected, the intrinsic pathway is activated by
contact with the collection devices causing damage to the platelets
and activation of factor XII (Schaffer et al., 2008). This pathway was
identified as having differentially expressed genes in the baseline-
stress analysis (Table 3).

Several limitations of the current study need to be addressed.
The small sample size limits generalization to a broader popula-
tion. Also, not all genes measured in the microarrays were
annotated and genes that might be critical for the stress response
might thus have been omitted from our analysis. Related to this
issue, only a fraction of the annotated genes are summarized in a
pathway. To some extent, we were able to address some of these
limitations by analyzing gene sets, rather than individual genes,
thus we were able to reduce the number of tests conducted, and
allow findings among biologically related genes to reinforce each
other. This functional class scoring is a more powerful method of
identifying differentially expressed gene classes than the com-
monly used over-representation analysis, or annotation of gene
lists based on individually analyzed genes (Simon and Lam, 2004).
It indicates which gene sets contain more differentially expressed
genes than would be expected by chance. Further, we were able to
measure gene expression patterns at three time points (immedi-
ately before and after, as well as 30 min after an acute stressor) in
our current study. It would have certainly been of great interest to
have further measures beyond that time frame. Longer lasting
changes in the endocrine, immune, and sympathetic nervous
system could not be captured in our study. Clearly, future studies
need to incorporate more measurement time points in order to be
able to capture the complex biological processes that occur
following an acute stressor. Also, increasing both sample size and
sampling time points will allow us to more closely describe cellular
events in a chronological order as they occur before, during, and
after a stressor. Finally, we chose to use a within-subject
measurement approach. This allowed us to examine changes of
biological pathways after exposure to an acute stressor. However,
further studies that will expand our current efforts will benefit
from including a control condition in which no stress intervention
occurred. This will allow discerning baseline and stress-related
processes.

In conclusion, we were able to show even in a small sample of
healthy volunteers that effects of acute psychological stress are
reflected in genome-wide transcriptional activity changes in
peripheral blood. Specific pathways may be changed in specific
disorders in response to psychosocial stress. Our pilot study needs
to be replicated and future studies will expand our current findings
by including more subjects. The stress-related changes that we
were able to describe are most likely adaptive responses to a
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moderate stressor. It might be of great interest to use this approach
in clinical samples. Identification of gene expression patterns
relevant for psychiatric and somatic disorders that are related to
stress has the potential to identify novel targets for the prevention
and treatment of adverse outcomes of stress.
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