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Generating high-fidelity
privacy-conscious synthetic
patient data for causal e�ect
estimation with multiple
treatments

Jingpu Shi, Dong Wang†, Gino Tesei† and Beau Norgeot*

Anthem AI, Palo Alto, CA, United States

In the past decade, there has been exponentially growing interest in the use

of observational data collected as a part of routine healthcare practice to

determine the e�ect of a treatment with causal inference models. Validation

of these models, however, has been a challenge because the ground truth is

unknown: only one treatment-outcome pair for each person can be observed.

There have been multiple e�orts to fill this void using synthetic data where

the ground truth can be generated. However, to date, these datasets have

been severely limited in their utility either by being modeled after small non-

representative patient populations, being dissimilar to real target populations,

or only providing known e�ects for two cohorts (treated vs. control). In this

work, we produced a large-scale and realistic synthetic dataset that provides

ground truth e�ects for over 10 hypertension treatments on blood pressure

outcomes. The synthetic dataset was created bymodeling a nationwide cohort

ofmore than 580, 000 hypertension patient data including each person’smulti-

year history of diagnoses, medications, and laboratory values. We designed

a data generation process by combining an adapted ADS-GAN model for

fictitious patient information generation and a neural network for treatment

outcome generation. Wasserstein distance of 0.35 demonstrates that our

synthetic data follows a nearly identical joint distribution to the patient cohort

used to generate the data. Patient privacy was a primary concern for this study;

the ǫ-identifiability metric, which estimates the probability of actual patients

being identified, is 0.008%, ensuring that our synthetic data cannot be used

to identify any actual patients. To demonstrate its usage, we tested the bias

in causal e�ect estimation of four well-established models using this dataset.

The approach we used can be readily extended to other types of diseases in

the clinical domain, and to datasets in other domains as well.
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1. Introduction

In health care, studying the causal treatment effects on

patients is critical to advance personalized medicine. Observing

an association between a drug (exposure or treatment) and

subsequent adverse or beneficial event (outcome) is not enough

to claim that the treatment (or exposure) has a significant effect

on the observed outcome. This is because of the existence

of confounding variables, defined as factors that affect both

the treatments and outcomes. Randomized controlled trials

(RCTs) have been the gold standard for estimating causal

relationships between intervention and outcome. However,

RCTs are sometimes not feasible due to logistical, ethical, or

financial considerations. Further, randomized experiments may

not always be generalizable, due to the restricted population

used in the experiments. In the past decade, observational

data has become a viable alternative to RCTs to infer

causal treatment effects due to both the increasingly available

patient data captured in Electronic Health Records (EHRs)

(Henry et al., 2016) and the remarkable advances of machine

learning techniques and capabilities. Typically, EHRs capture

potential confounding factors such as race, gender, geographic

location, eventual proxies of social determinants of health,

as well as medical characteristics such as comorbidities and

laboratory results.

Many causal inference models have been proposed to

estimate treatment effects from observational data. Validation

of these models with realistic benchmarks, however, remains a

fundamental challenge due to three reasons. First, the ground

truth of treatment effects in a realistic setting is unknown. In

real world, we can not compute the treatment effect by directly

comparing the potential outcomes of different treatments

because of the fundamental problem of causal inference: for a

given patient and treatment, we can only observe the factual,

defined as the patient outcome for the given treatment, but

not the counterfactual, defined as the patient outcome if

the treatment had been different. Second, legal and ethical

issues around un-consented patient data and privacy created a

significant barrier in accessing EHRs by the machine learning

community. In order to mitigate the legal and ethical risks

of sharing sensitive information, de-identification of patient

records is a commonly used practice. However, previous work

has shown that de-identification is not sufficient for avoiding

re-identification through linkage with other identifiable datasets

(Sweeney, 1997; Malin and Sweeney, 2004; Emam et al.,

2011). Third, most publicly available datasets support binary

treatments, while there has been growing literature developing

techniques with multiple treatments in recent years (Lopez and

Gutman, 2017).

To address these challenges, in this work we generated

a large-scale and realistic patient dataset that mimics real

patient data distributions, supports multiple treatments, and

provides ground truth for the effects of these treatments. The

datasets we generated are synthetic patients with hypertension

modeled on a large nationwide cohort of patient data including

their history of diagnoses, medications, and laboratory values.

We designed a data generation process by adapting an

Anonymization Through Data Synthesis Using Generative

Adversarial Networks (ADS-GAN by Yoon et al., 2020) model

for fictitious patient information generation and using a neural

network for treatment outcome generation. The synthetic

dataset demonstrates strong similarity to the original dataset as

measured by the Wasserstein distance. In addition, we ensured

that the original patients’ privacy is preserved so that our dataset

can be made available to the research community to evaluate

causal inference models.

We demonstrated the use of the synthetic data by applying

our dataset to evaluate four models: the inverse probability

treatment weighting (IPTW) model (Rosenbaum and Rubin,

1983), the propensity matching model (Rosenbaum and Rubin,

1983), the propensity score stratification model (Rosenbaum

and Rubin, 1983), and one model in the doubly robust family

(Bang and Robins, 2005).

To our knowledge, this is the first large scale clinical

dataset that mimics real data joint distributions with multiple

treatments and known causal effects. Since hypertension is a

condition affecting nearly half of adults in the United States

(116 million, or 47%), our generated dataset can be directly used

for clinical researchers to develop and evaluate their models for

this important disease. The approach we used can be readily

extended to other types of diseases in the clinical domain, and

to datasets in other domains as well.

2. Materials and methods

2.1. Patient data and inclusion exclusion
criteria

To make our synthetic data realistic, we generated the

data based on a real-world patient database from a large

insurance company in the United States. This database contains

5 billion insurance claims (diagnoses, procedures, and drug

prescriptions or refills) and lab test results from 56.4 million

patients who subscribed to the company’s service within a 5-

year time period between December 2014 and December 2020.

From this database, we extracted a subset of patients affected by

hypertension. Patients were included in the dataset if they had

a medical claim indicating hypertension (ICD code I10, I11.9,

I12.9, and I13.10) or treated with anti-hypertensive medications.

We excluded patients from the dataset if they were age <18

or age >85, affected by white coat hypertension, secondary

hypertension, malignant cancers, dementia, or were pregnant.

After applying the above mentioned inclusion and exclusion
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criteria, we had about 1.6 million patients included in this study.

We further excluded patients treated with a combination of

drugs rather than a single drug. We then ranked the drugs by

the number of patients treated with each drug, and only kept

patients either treated with one of the 10 most popular drugs or

not received any treatments at all. These filtering steps produced

about 580, 000 patients in the study. The distribution of this

dataset was then learned and used to generate synthetic patients,

viewed as samples drawn from the learned distribution.

The patients’ diagnoses and treatment history and how their

conditions evolve over time were captured by trajectory data

consisting of labs, diagnoses and their corresponding dates. For

the convenience of data processing and analysis, we converted

the trajectory data into tabular data with rows representing

different patients (samples) and columns representing patient

features (variables) including patient demographics, diagnoses,

medications and labs. In Table 1, we list and briefly describe

these 60 patient variables: 2 variables (F1) describing the

systolic blood pressure before the treatment and the date it

was measured, 2 variables (F2) describing the systolic blood

pressure after the treatment and the date it was measured,

3 variables (F3) indicating current and prior drug usage

and refill information, 4 variables (F4) describing patient

basic information (age, gender, ethnicity), 30 variables (F5)

indicating laboratory measurements, 2 variables (F6) indicating

the presence or absence of comorbid conditions defined by the

Charlson Comorbidity Index (Charlson et al., 1987), 15 variables

(F7) describing the patient’s zip code, the racial makeup and

income levels in the patient’s zip code tabulation area (ZCTA),

2 variables (F8) indicating meta information. The causal effects

of anti-hypertensive drugs (current drugs of F3) on patient

outcomes were measured as the difference between the first (F1)

and second lab results (F2).

2.2. Methods

To generate the synthetic data, we first generated the patient

variables using an adapted ADS-GANmodel, then generated the

treatment outcomes using a neural network. Our approach can

be conceptually decomposed into four steps described below.

2.2.1. Step 1: Data preprocessing

Our goal was to generate the synthetic data from the patient

data extracted in Section 2.1. In this step, we preprocessed

the data and prepared it for subsequent steps. As described in

Table 1, this patient dataset contains mixed data types including

integers (e.g., age), floats (e.g., lab values), categorical values (e.g.,

drugs), and dates. Further, the values and dates of a lab test are

missing for some patients if the lab test was not ordered by the

doctors for these patients. We one-hot encoded the categorical

variables and standardized the continuous variables so that all

TABLE 1 Names, grouping, and descriptions of patient variables for

hypertension dataset.

Var. family Var. names Description

F1 Date-, lab- First lab result and date

F2 Date+, lab+ Second lab result and date

F3 Drugs, prior_drugs,

last_refill

Drugs’ info

F4 Age, gndr_cd, race_cd,

ethncty_cd

Age/Gender/Ethnicity

F5 Lab measurement results

and date

11 lab measurements and date

F6 Safety_morbs,

morbs_prior

Current and previous

comorbidities

F7 Zip_cd, total_pop,

p_female,

median_income etc

Zip code and related statistics

F8 Trajectory_index, mcid Meta-information

the variables were transformed into numerical values in the

[0, 1] range. We then added a binary feature for each lab test

to indicate missing lab values and dates. The resulting dataset

has 200 features available per patient and we call it the original

dataset, to be distinguished from the synthetic dataset.

2.2.2. Step 2: Generation of observed variables
using ADS-GAN

In this step, we generated synthetic patients characterized

by the same variables as listed in Table 1. We wanted to achieve

two goals: to make the synthetic data as realistic as possible and

to make sure the probability of identifying any actual patients

in the original dataset from the synthetic dataset is very low.

We quantitatively define the identifiability in Definition 2 (Yoon

et al., 2020), and the realisticity as the Wasserstein distance

(Gulrajani et al., 2017) between the feature joint distribution

of the synthetic dataset and that of the real dataset it is

modeled after.

There is a trade-off between the identifiability and

realisticity of the generated data. Frameworks like the Medical

Generative Adversarial Network (MedGan, Choi et al., 2018)

and Wasserstein Generative Adversarial Network and Gradient

Penalty (WGAN-GP, Arjovsky et al., 2017) do not explicitly

define and allow to control the identifiability levels. Therefore,

we evaluated the generative models that allow to explicitly

control such a trade-off, e.g., the ADS-GAN (Yoon et al.,

2020), Private Aggregation of Teacher Ensembles Generative

Adversarial Network (PATE-GAN, Jordon et al., 2019) and

Diversity-promoting Generative Adversarial Network (DP-

GAN, Xie et al., 2018). ADS-GAN proved to consistently

outperform the others across the entire range of identifiability
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levels on both the MAGGIC (Meta-Analysis Global Group in

Chronic Heart Failure) and the three UNOS (United Network

for Organ Sharing) transplant datasets. It is also based on a

measurable definition for identifiability. Another advantage of

ADS-GAN is the use of Wasserstein distance to measure the

similarity between two high dimensional joint distributions,

which solves the limitation in the original GAN framework

where the training of the generator and the discriminator is

unstable (Yoon et al., 2020). We therefore selected ADS-GAN

and adapted it by adding a contrastive term to its loss function

to generate the patient variables in our study.

We denote the patient feature space by X . Let X be a d-

dimensional random variable in X , subject to distribution PX .

We use d-dimensional vector x to denote a generic realization

of X, which is independently and randomly drawn from PX ,

where integer d > 1. The original dataset obtained in Section

2.2.1 is D = {xi}
N
i=1, where xi =

(

x
(1)
i , x

(2)
i . . . , x

(d)
i

)

, with

x
(j)
i ∈ X (j) ⊆ R representing the j-th feature of patient i.

Here integer N is the number of samples and d is the number

of features of each sample.

The goal of ADS-GAN is to produce a synthetic data set D̂ =
{

x̂i
}

, where each x̂ ∈ R
d is drawn from the distribution P

X̂
. Let Z

be a random variable in space Z , and z ∼ PZ be the realizations

of Z drawn from a multi-variate Gaussian distribution. We train

a generator G :X × Z → X and a discriminator D :X → R in

an adversarial fashion: the generatorGwhich produces synthetic

patients x̂i = G (xi, z) ensures that the synthetic dataset D̂ =
{

x̂i
}

is not too close to D as measured by the ǫ-identifiability

defined below; on the other hand, the discriminator D which

measures the distance between two distributions ensures that the

distribution of generated patients P
X̂
is indistinguishable from

the distribution of real patients PX .

Definition 1. We define the weighted Euclidean distance

U
(

xi, xj
)

between xi and xj as

U
(

xi, xj
)

=
∥

∥w
(

xi − xj
)
∥

∥ ,

where w =
(

w(1),w(2) . . . ,w(d)
)

is a d-dimensional weight

vector.

To calculate wk where 1 <= k <= d, we first calculate the

discrete entropy of the k-th feature, i.e.,

H
(

X(k)
)

= −
∑

x(k)∈X (k)

P
(

X(k) = x(k)
)

log
[

P
(

X(k) = x(k)
)]

The weight wk is then calculated as the inverse of H
(

X(k)
)

.

Since the theoretical range of entropy for a feature is [0, log(N)],

the theoretical range for wk is [ 1
log(N)

,∞). For our dataset,

most feature weights are in range [0.25, 50]. In reality, if a

patient can be re-identified, the re-identification is most likely

through rare characteristics or medical conditions of a patient.

Calculating the weight this way ensures that the rare features of

a patient are given more weight, correctly reflecting the risk of

re-identification associated with different features.

We now define ri as

ri = min
xj∈D/xi

U
(

xi, xj
)

,

where D
/

xi represents the dataset D without xi. From

the definition, ri is the distance between xi and any other

observation in D such that it is minimized. Similarly we define

r̂i as

r̂i = min
x̂j∈D̂

U
(

xi, x̂j
)

.

Definition 2. The ǫ-identifiability of dataset D from D̂ is

defined as

ǫ = I

(

D, D̂
)

=
1

N

∑

i

[

I
(

ri > r̂i
)]

, (1)

where I is an indicator function.

We base the discriminator D on Wasserstein GAN with

gradient penalty (Gulrajani et al., 2017) (WGAN-GP), which

adoptsWasserstein distance between P
X̂
and PX , and defines the

loss LD for the discriminator D as

LD = Ex∼PX ,x̂∼PX̂

[

D (x) − D
(

x̂
)

− µ
(
∥

∥∇x̃D (x̃)
∥

∥

2 − 1
)2

]

(2)

where x̃ belongs to a random interpolation distribution between

PX and P
X̂
and µ is a hyper-parameter that we set to 10 based

on previous work (Gulrajani et al., 2017). We implemented

both the generator and the discriminator using multi-layer

perceptrons. To train the generator G, we need to compute the

ǫ-identifiability by computing ri and r̂i for every sample, which

is computationally expensive. To solve the problem, Yoon et al.

(2020) made a simplifying assumption that G (x, z) is the closest

data point to x. However, this assumption can be violated during

the training of the network that maximizes the distance between

G (x, z) and x. We here introduce a contrastive loss (triplet

ranking loss, Schroff et al., 2015) term, which is defined as

Ucon
(

x, x′, z
)

=max
(

0,U (x,G (x, z)) − U
(

x′,G (x, z)
))

. (3)

Then, the final identifiability loss function LI is

LI = Ex∼PX ,z∼Pz [−U(x,G(x, z))]+ βEx,x′∼PX [Ucon(x, x
′, z)].

(4)

Similar to Yoon et al. (2020), this loss function also assumes

that G (x, z) is the closest data point to x. However, a penalty will

be imposed if this assumption is violated when the generated
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sample G (x, z) is closer to x′, a randomly drawn sample from

dataset D, than to x. The strength of the penalty term is

controlled by β . In the final optimization problem, we minimize

G and maximize D simultaneously, written as

G∗,D∗ = argmin
G

max
D

[

LD + λLI
]

(5)

where λ is a hyper-parameter that controls the trade-off between

the two objectives. Once trained, the adapted ADS-GAN model

can be used to produce synthetic data set D̂.

2.2.3. Step 3: Data generation model and
captured causal e�ects

A data generation model is needed to produce the

potential outcomes for the synthetic data, i.e., the factuals and

counterfactuals. Since the synthetic data is to be used to evaluate

causal inference models, the ground truth of the causal effects

needs to be known. Therefore, a causal mechanism needs to be

explicitly built into the data generation process to ensure that

the causal effects are indeed what cause the potential outcomes

and can therefore serve as the ground truth to evaluate causal

inference models. Although a completely predictive model can

be used to produce the potential outcomes, it does not make

the causal effects known and can not be used in such a

data generation process. Many researchers used arbitrary data

generation functions and arbitrary treatment effects to produce

such synthetic data. For example, Schuler and Rose (2017) used

a linear function as the data generation process and set the

treatment effects arbitrarily. Such approaches are simple, but

cannot produce synthetic outcomes that resemble real outcomes.

In this work, we trained a neural network model on the original

dataset to capture both the treatment effects with the network

weights and the mapping from patient covariates to outcomes.

We then used the learned mapping and treatment effects,

along with the synthetic covariates as the network’s inputs, to

produce synthetic outcomes that resemble real outcomes. The

captured treatment effects serve as the ground truth in the

synthetic data when the data is used to evaluate causal inference

models because the patient outcomes are generated from these

causal effects.

Note that there is a distinction between the ground truth in

the context of causal model evaluation and the true treatment

effects in the real world. In our work, the captured effects

are the ground truth in the synthetic data, but not necessarily

the accurate true treatment effects of the treatments in the

real world.

We partition the domain of observed patient variable X of d

dimensions into the covariate domain XC ⊆ R
dc , the treatment

domain XT ⊆ R
dt and the outcome domain Xo ⊆ R, so that

d ≥ dc + dt + 1. The covariates are all the patient variables

excluding drugs, prior drugs, zip code, and lab+. Treatments are

the drugs. Outcome is the difference between lab+ and lab-. Each

treatment ti ∈ XT is one-hot encoded and represented by a dt

dimensional vector, where dt is the number of treatments. In

a cohort of N patients, for the i-th individual patient we use

Yi, which is a scalar, to denote the potential outcome under

treatment ti ∈ XT , and xci to denote the covariates of this

patient. We assume that (Yi, ti, xci) ∈ R × XT × XC are

independently and identically distributed, which means that

the potential outcomes for a patient are not impacted by the

treatment status of other patients. We further assume that all

the confounders are included in xc, and each patient has a

none-zero chance of receiving any treatment. Therefore, the

three fundamental assumptions for causal inference, SUTVA,

unconfoundedness, and positivity, are satisfied (Rosenbaum and

Rubin, 1983).

Following Lopez and Gutman (2017) and Shalit et al. (2017),

given xci ∈ XC and ti, t0 ∈ XT , where t0 is the zero-vector

placebo, the individual-level treatment effect (ITE) of ti can be

defined as

τti (xci) :=E [Y (ti) − Y (t0) |xci)] . (6)

Hence, the population average treatment effect for treatment

ti can be defined as

ATEti :=E [Y (ti) − Y (t0)] =

∫

XC

τti (xc) p (xc) dxc. (7)

The data generation process can be modeled as Y =

Ω (xc, t), where Ω :XC×XT→Xo. The true form of Ω is

unknown and can be complicated. Here we make a simplifying

assumption that the representation learned from the covariate

domain is separated from the representation learned from

the treatment domain. Specifically, let 8 :XC → R be a

representation function and R be the representation space. We

define Q :R×XT→Xo so that � (xc, t) = Q (8 (xc), t).

With simplified Ω , we proposed a neural network

architecture shown in Figure 1 that is able to capture Ω , 8, and

at the same time, calculate the treatment effects. For the covariate

domainXC , the network is a fully connected feed-forward neural

network with Relu as the activation function for all the neurons.

For the treatment domainXT , the inputs are encoded treatments

directly connected to a neuron with a linear activation. The loss

function is the standard mean square error (MSE). A dropout is

applied to all the layers and L2 regularization is applied to all the

weights of the neural network.

The model � is trained on the original dataset described in

Section 2.2.1, where we have one factual for each observation.

Due to the separation of the covariate domain and treatment

domain, and with the particular architecture of the ANN

shown in Figure 1, the neural network weights for treatment

connections can be interpreted as the causal treatment effects.

Since there is no interaction between the covariates and

treatments, the individual treatment effects and population
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FIGURE 1

Neural network architecture for patient outcome generation

and causal e�ect calculation.

average treatment effects are the same. Indeed, suppose w is the

weight vector for treatment input t, then

Y (ti|xci) = 8 (xci) + wtTi + ei

where 8 (xci) is the contribution to the neural network output

from the covariate domain, wtTi is the contribution from the

treatment domain, and ei is the error term. The outcome for the

placebo t0 becomes,

Y (t0|xci) = 8 (xci) + wtT0 + ei

According to Equation (6), the treatment effect is then

τti = w(tTi − tT0 ) = wtTi

Since ti is a one-hot encoded vector, the treatment effect

τti is just the weight of the neural network connection to the

treatment given to this patient. One can similarly show that the

weight is also the ATEti in Equation 7.

2.2.4. Step 4: Generation of factuals and
counterfactuals

The domain of variables and all its partitions are the

same for the real dataset D as for the synthetic dataset

D̂ =
{

x̂i : x̂i = G (xi, z) , xi ∈ D, z ∼ PZ
}N
i=1. Hence, the neural

network trained on the original dataset in Step 2.2.3 can be fed

with the synthetic patient variables generated in Step 2.2.2. The

neural network outputs are served as the treatment outcomes for

the synthetic data.

Once trained, this neural network is capable of generating all

factual and counterfactual treatment outcomes for the synthetic

data. For any synthetic patient with covariate x̂cj ∈ Xc, the

potential outcome of any treatment ti ∈ XC can be generated

as Ŷj (ti) = �
(

x̂cj, ti
)

= Q
(

8
(

x̂cj
)

, ti
)

. However, instead of

generating the potential outcomes of all possible treatments in

XT , in this work we only generated two potential outcomes for

each patient: the factual outcome corresponding to the treatment

produced by the ADS-GAN model, and the counterfactual

outcome if the patient had not received any treatment. Note

that we only produced one treatment in Section 2.2.2 for each

synthetic patient with the ADS-GANmodel, in order to preserve

the treatment assignment mechanism learned from the original

dataset, where each patient received only one treatment.

There is a distinction between the assumptions made

in Section 2.2.3 in determining the treatment effects and

the assumptions that our synthetic dataset actually satisfies.

Specifically, our synthetic dataset satisfies the SUTVA and

unconfoundedness assumption, as we did not model the

interactions between patients and we provided all the patient

variables in the dataset used to generate the outcomes. Whether

the synthetic dataset satisfies the positivity assumption, however,

depends on the original dataset because the patient assignment

mechanism for the synthetic data is learned from the original

dataset. The validity of this assumption can be checked by

calculating the patients’ propensity scores (Rosenbaum and

Rubin, 1983). Violation of this assumption poses challenges to

models that estimate causal effects based on propensity scores,

such as the one proposed in Prescott et al. (2016).

2.3. Evaluations

To evaluate the quality of our synthetic dataset, we

compared the joint data distributions between the original

and synthetic datasets. We first calculated the Wasserstein

distance (Villani, 2009) between the joint distribution of the

synthetic data and that of the original data. The Wasserstein

distance between two distributions ranges in [0, ∞] and

can be interpreted as the optimal cost of transforming one

distribution to the other (Villani, 2009). To put the calculated

value in correct perspective, we measured the Wasserstein

distance between the original dataset and a randomly generated

dataset of the same dimensions. This serves as the baseline

scenario. In addition, we randomly split the original dataset into

two datasets and measured the Wasserstein distance between

them, which is essentially the Wasserstein distance between

the dataset and itself and serves as the best case scenario. We

also visually compared the the joint distributions by plotting

the heatmap of the two joint distributions side by side, and

compared the marginal distributions of individual variables of

the generated synthetic data with the corresponding ones from

the original data.

Since the synthetic dataset we generated in this study is

meant to be made public, patient privacy has to be preserved

to ensure that no actual patients in the original dataset can

be identified through the synthetic dataset. We calculated the

ǫ-identifiability as defined in Definition 2 to evaluate whether
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patient privacy was addressed. We further calculated the ǫ-

identifiability for the original data from a randomly generated

dataset, which should be zero in theory but can be a small

positive number due to a non-zero possibility of identifying a

real patient from unrelated data. It serves as a reference of how

small the ǫ-identifiability can possibly be.We then calculated the

correlation matrix between the synthetic and original datasets

to see how each variable of the synthetic data is correlated with

every variable of the original data.

Finally, to demonstrate the usage of our dataset, we

evaluated using our data the accuracy of causal effect estimate

with four well-established models: the doubly robust (DR), the

propensity score stratification, the propensity matching, and

the inverse probability treatment weighting (IPTW) model.

Doubly robust approaches adopt an outcome regression model

to estimate the treatment outcome and a propensity model

to estimate the probability of a patient being assigned to a

treatment. In the DR model we tested, random forest is used

as the outcome regression model. We used Microsoft DoWhy

(Sharma and Kiciman, 2020) and EconML (Battocchi et al.,

2019) causal inference packages for the implementation. When

calculating the causal effect of a treatment, we removed all the

counter-factuals from the dataset to prevent the problem from

becoming trivial.

We adopted four metrics to evaluate the models: the

Spearman’s rank correlation coefficient to measure how well

the models preserve the rank of the drugs by their treatment

effects, the Kendall rank coefficient similar to Spearman’s

coefficient but based on concordant and discordant pairs, the

Pearson correlation coefficient between the estimated effects

and the ground truth, and finally the magnitude metric R-

square (R2), measuring how much variance of the ground

truth can be explained by the estimate. A comparison of the

first three correlation metrics can be found in Coolen-Maturi

and Elsayigh (2010), and a discussion of R2 can be found in

Akossou and Palm (2013).

To estimate how these models perform in a real-world

setting, we generated an additional dataset consisting of all

patient variables of the original dataset and patient outcomes

generated from the trained outcome neural network with patient

variables and treatments from the original dataset as its inputs.

We call this dataset the hybrid dataset because part of the data

comes from the original dataset and part of the data is generated.

We run the four causal inference models on both the synthetic

dataset and the hybrid dataset and compared the results.

3. Results

This section reports the quality of our synthetic dataset. We

found that there is strong similarity in both marginal and joint

data distributions between the original and synthetic dataset,

and that patient privacy is preserved.

3.1. Data similarity and patient
identifiability

We first show how well the generated synthetic data

preserves the joint distribution of the original data. We

calculated the Wasserstein distance (Villani, 2009) between the

joint distribution of the synthetic data and that of the original

data to be 0.35, which is in the range (0.17, 8.6), where 0.17

is the Wasserstein distance in the best case scenario and 8.6

is the Wasserstein distance in the baseline scenario. We tried

multiple random splits in the best case scenario and found that

the Wasserstein distance varies very little with different splits.

We then compared the joint distributions visually. In

Figures 2A,B, the correlation among all patient attributes in the

original (synthetic) dataset is visualized by the heatmap on the

left (right). In the heatmap, the brighter the color of a pixel

is, the more correlated the two variables are with each other.

The diagonal is the brightest in the map, as each pixel on the

diagonal represents the correlation between a variable and itself.

The two heatmaps show almost identical patterns, indicating the

joint distribution of the original data is well preserved in the

synthetic data.

In Figure 3, we compared qualitatively the marginal

distributions of individual variables of the generated synthetic

data (orange) with the related ones from the original data

(blue). The figure shows strong similarity between the original

and synthetic dataset in both basic statistical summaries (e.g.,

median and quartiles) and overall shape of these distributions.

As far as patient privacy is concerned, all the synthetic

samples in our dataset are conceptually drawn from a

distribution, so no single piece of information about any actual

patients is directly carried over to our dataset. We further

calculated the ǫ-identifiability as defined in Definition 2 to

be 0.008% from the synthetic dataset, and 0.0007% from the

random dataset, indicating that the risk of any actual patient

being identified from the synthetic dataset is extremely small.

Figure 2C shows that the correlation between the variables of

the original data and those of the synthetic data is very low,

consistent with the small ǫ-identifiability value reported above.

3.2. Evaluate causal inference algorithms
using the dataset

We run the four causal inference models described in

Section 2.3 on both the hybrid and the synthetic datasets and

report all the results in Tables 2, 3.

The results on the hybrid dataset (Table 2) show that the

evaluated algorithms performed very differently: the doubly

robust model produced the best results and captured both

the ranking and the magnitude of the drug effects; the

propensity stratification and matching model captured the
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FIGURE 2

Heatmaps of correlation matrices of patient variables for the original (A), synthetic (B), and between original and synthetic data (C), respectively.

FIGURE 3

Comparison of marginal distribution of lab values between original and synthetic data. The three horizontal dotted lines in each violin plot from

top to the bottom represent the third quartile, median, and the first quartile, respectively.

TABLE 2 Model evaluation results on hybrid dataset.

Spearman Kendalltau Correlation R2 score

Doubly robust—RF 1.00 1.00 1.00 0.76

Propensity stratification 0.96 0.91 0.97 −0.23

Propensity matching 0.94 0.82 0.90 −1.01

IPTW −0.22 −0.16 −0.28 −845.88

ranking of the drugs, but were not able to correctly calculate

the magnitude of the drug effects. The IPTW model was not

able to produce correct results on the ranking, nor on the

magnitude, which was not surprising due to its significant

bias if the propensity model is misspecified (Austin and

Stuart, 2017). The results on the synthetic dataset (Table 3)

show a similar pattern. The doubly robust model performed

the best, followed by propensity stratification and matching.

IPTW performed the worst. Investigating why some models

outperform others on the two datasets is out of scope of

this work. Here we show that the synthetic data preserves

TABLE 3 Model evaluation results on synthetic dataset.

Spearman Kendalltau Correlation R2 score

Doubly robust—RF 0.94 0.82 0.94 0.51

Propensity

stratification

0.76 0.60 0.80 −0.47

Propensity

matching

0.42 0.24 0.40 −4.54

IPTW −0.35 −0.16 −0.42 −1565.35

the relative performance of different models that would be

achieved in a more realistic setting, represented by the

hybrid dataset.

We reduced the size of the synthetic data and observed

how the model evaluation results changed with smaller

data sizes. When the size was reduced to 20% of the

original size, the results were still similar to those obtained

with the full dataset. When the size was below 20%,
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however, the standard deviation of the results started to

increase significantly.

4. Discussion

There are certain limitations of our work. The inclusion

and exclusion criteria applied to the data in this work may

introduce selection bias. Our work was designed with a target

trial in mind in which patients are recruited at an initial

qualifying measurement and then followed up after treatment

assignments. We believe this minimizes the impact of selection

bias from conditioning on the inclusion and exclusion criteria

in our original data. In this work, we produced one dataset

for hypertension and evaluated four causal inference models.

We leave it to future work to produce synthetic datasets for

other diseases and evaluate and compare other causal inference

models. Because hypertension affects almost half of adults in

the United States, a synthetic dataset on hypertension is of

significant value by itself. For simplicity, in this study we made

the assumption that the covariate domain is separated from the

treatment domain and did not consider treatment modifiers,

i.e., interactions between treatments and patient variables, when

producing treatment effects. Modeling treatment modifiers is

an interesting and important topic which we plan to address in

the future.

Our work is related to several existing works on publicly

available databases, fictitious patient record creations, and data

generation processes. First used in Hill (2011), the Infant

Health and Development Program (IHDP) is a randomized

controlled study designed to evaluate the effect of home

visits from specialist doctors on the cognitive test scores of

premature infants. The Jobs dataset by LaLonde (1986) is a

benchmark used by the causal inference community, where the

treatment is job training and the outcomes are income and

employment status after training. The Twins dataset, originally

used for evaluating causal inference in Louizos et al. (2017)

and Yao et al. (2018), consists of samples from twin births

in the U.S. between the years 1989 and 1991 provided in

Almond et al. (2005). The Annual Atlantic Causal Inference

Conference (ACIC) data challenge provides an opportunity

to compare causal inference methodologies across a variety

of data generation processes. In our work, we learned a

data generation process from real-world patient data using a

neural network, then used the learned network to generate

patient outcomes.

Walonoski et al. (2018) generated synthetic EHRs based on

publicly available information. The focus of their work was on

generating the life cycle of a patient and how a disease evolves

over time. Goncalves et al. (2020) evaluated three synthetic

data generation models–probabilistic models, classification-

based imputation models, and generative adversarial neural

networks–in generating realistic EHR data. Tucker et al. (2020)

used a Bayesian network model to generate synthetic data

based on the Clinical Practice Research Datalink (CPRD)

in the UK. Benaim et al. (2020) evaluated synthetic data

produced from 5 contemporary studies using MDClone. Wang

et al. (2021) proposed a framework to generate and evaluate

synthetic health care data, and the key requirements of

synthetic data for multiple purposes. Beaulieu-Jones et al. (2019)

generated synthetic participants that resemble participants of

the Systolic Blood Pressure Trial (SPRINT) trial. All of these

works focus on data generation producing patient variables

but without ground truth for causal effects. In contrast,

the focus of our work was not only on generating patient

variables, but on producing ground truth for causal effects

as well.

To validate their models, many researchers such as

Schuler and Rose (2017) created synthetic covariates and

produced potential outcomes with a designed data generation

process. Such datasets were not designed to approximate

any real data distributions. Franklin et al. (2014) created a

statistical framework for replicating the electronic healthcare

claims data from an empirical cohort study and preserving

the associations among patient variables. Neal et al. (2020)

provided a benchmark for causal estimators by focusing on

the simplest setting with no confounding, no selection bias,

and no measurement error. All these works generated potential

outcomes from covariates with known causal effects, but

without any regard to patient privacy. We addressed the

critical issue of patient privacy concerns so that our data can

be made available for the research community to evaluate

their models.

Some oversampling techniques such as the Synthetic

Minority Oversampling Technique (SMOTE, Chawla et al.,

2002) can be used to generate synthetic patients from

real patients. These techniques do not explicitly address

the patient privacy issue. Indeed, we implemented SMOTE

and generated synthetic data with it. The ǫ-identifiability

of the synthetic data generated this way was calculated

to be 0.4%, much larger than the value 0.008% with

our approach.

In summary, researchers have traditionally relied on

labeled data, i.e., ground truth to validate machine learning

models. Due to the fundamental problem of causal inference,

however, the lack of realistic clinical data with ground

truth makes it difficult to evaluate causal inference models.

In this work, we produced a large-scale and realistic

synthetic dataset by adapting an ADS-GAN model to

generate patient variables and using a neural network to

produce patient outcomes. The data we generated supports

multiple treatments with known treatment effects. We

demonstrated that this synthetic dataset preserves patient

privacy and has strong similarity to the original dataset

it is modeled after. We believe that it will facilitate the

evaluation, understanding and improvement of causal inference
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models, especially with respect to how they perform in

real-world scenarios.
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