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improved power and precision with 
whole genome sequencing data in 
genome-wide association studies of 
inflammatory biomarkers
Julia Höglund  *, nima Rafati , Mathias Rask-Andersen  , Stefan enroth  , 
Torgny Karlsson  , Weronica e. Ek & Åsa Johansson  

Genome-wide association studies (GWAS) have identified associations between thousands of common 
genetic variants and human traits. However, common variants usually explain a limited fraction of the 
heritability of a trait. A powerful resource for identifying trait-associated variants is whole genome 
sequencing (WGS) data in cohorts comprised of families or individuals from a limited geographical 
area. To evaluate the power of WGS compared to imputations, we performed GWAS on WGS data for 
72 inflammatory biomarkers, in a kinship-structured cohort. When using WGS data, we identified 18 
novel associations that were not detected when analyzing the same biomarkers with genotyped or 
imputed SNPs. Five of the novel top variants were low frequency variants with a minor allele frequency 
(MAF) of <5%. Our results suggest that, even when applying a GWAS approach, we gain power and 
precision using WGS data, presumably due to more accurate determination of genotypes. The lack of 
a comparable dataset for replication of our results is a limitation in our study. However, this further 
highlights that there is a need for more genetic epidemiological studies based on WGS data.

Over the past decade, genome-wide association studies (GWAS) have successfully identified associations of thou-
sands of single-nucleotide polymorphisms (SNPs) with human traits and diseases1. Most of the associated alleles 
discovered so far are common, with a minor allele frequency (MAF) above 5%2. Many SNPs are also located out-
side coding regions, which complicates the identification of causal mechanisms, functional variants and relevant 
genes. Additionally, identified SNPs collectively only explain a limited fraction of the heritability3–5. A number 
of hypotheses for this “hidden heritability” have been proposed, such that part of the heritability is due to rare 
variants6, that there is a non-negligible fraction of unmapped or untagged common variants7, or that variants with 
very low effect sizes have not been captured in current GWAS. The extent to which rare and low-frequency coding 
variants (<5%) influence traits and diseases is still not completely understood2. Rare variants may not be present 
on currently available SNP arrays nor be well tagged by the available SNPs8 on the array due to the low linkage 
disequilibrium (LD) between common SNPs and rare variants9. Performing GWAS with imputed or genotyped 
variants is therefore not ideal for detecting associations with rare variants. Additionally, rare variants are often 
specific to individual populations7,10–12, or even families, making them hard to detect with standard GWAS in 
unrelated participants.

However, the limitations in association studies can be partly reduced. Firstly, a powerful approach to identify 
complex trait- and disease-associated rare variants is to use populations that comprise of families or individuals 
from a limited geographical area13,14. Secondly, whole genome sequencing (WGS) data can be used to better cap-
ture rare and low frequency variants and variants not in LD with SNPs on a genotyping array. WGS is superior 
to imputation when it comes to determining genotypes of rare variants with high accuracy8. Simulation stud-
ies have shown that the mapping precision for rare variants increases considerably when using WGS data in a 
GWAS approach, making it an efficient way of detecting and fine-mapping rare variants simultaneously15. Hence, 
by shifting from genotyped and imputed data to WGS data, a standard GWAS can be performed with a likely 
increase in both variant capture and precision. Yet, few GWAS have been performed using WGS data to date. 
During the last years, WGS has been performed in a variety of different populations7,11,12,16. A recent study within 
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a small kinship-structured cohort (similar to ours), tested for the burden of rare variants from WGS data on six 
cardiometabolic traits17. The authors found novel signals that neither were captured with low-depth sequencing, 
nor with genome-wide genotyping with dense imputation in the same samples17, supporting the notion that WGS 
data in kinship-structured cohorts can improve power to identify genetic associations. A number of studies have 
also performed GWAS in cohorts where the variants were imputed from unique reference panels based on WGS 
of a subset of the participants of the same cohorts, or performed GWAS on low coverage (~4×) WGS data18–22. 
For example, in a study on circulating lipid levels and five inflammatory biomarkers22, WGS of 2,120 Sardinians 
was performed to assess the impact of the variants common in the Sardinian cohort but rare in the 1000 Genomes 
Project. In total, 14 signals were found, including two new loci that would have been missed if data had been 
imputed using the 1000 Genomes reference panel, further underlining the advantages of large-scale sequencing.

Biomarkers are often strongly genetically regulated23,24 and have been shown to be less polygenic in compari-
son to complex traits and diseases, which increases the power to study the effect in a smaller cohort where WGS 
data is available. When used for diagnosis, an ideal biomarker should be uniquely present or overexpressed in 
the tissue of interest and not be influenced by confounding factors, such as genetic variants23,24. However, genetic 
factors commonly have a considerable effect on biomarker levels and introduce noise when biomarkers are used 
for diagnosis. Better characterization of the genetic contribution to variation in biomarker levels is therefore of 
great importance.

In this project, we used a GWAS approach to test for associations with no fewer than 72 inflammatory 
plasma protein biomarkers, in order to investigate the gain in precision and rare variant-capture with WGS 
data compared to genotyped/imputed SNPs. In total, 100525 individuals with high coverage WGS data from the 
kinship-structured population-based Northern Swedish population health study (NSPHS)26 were included. This 
cohort has also been genotyped27 and imputed, making this a valuable opportunity to compare the relative per-
formance of WGS and genotyping/imputation in relation to the same phenotype measurements. This study is one 
of few that uses WGS data with a GWAS approach in order to capture a greater number of low frequency variants 
associated with inflammatory protein biomarkers, and to further characterize the genetic structure underlying 
these associations, aiming to extend our knowledge of the genetic contribution to these biomarkers.

Results
A total of 1005 individuals with WGS data and biomarker data were included in this study. The age of the participants 
ranged from 14 to 94 years with a median of 52 years, and 50.8% of the participants were females. The biomarkers 
were measured at two timepoints. At the first timepoint, biomarkers from Olink’s Oncology I and Cardiovascular I 
panels were measured of which 31 are inflammatory (from now on called ONC_CVD). At the second timepoint, 95 
inflammatory biomarkers from the Inflammatory I panel, were measured (from now on called INF). After quality con-
trol (QC), 72 unique biomarkers remained of which 42 were only from the INF panel, while one had been measured 
only on ONC_CVD. As many as 29 biomarkers were included on both the INF and ONC_CVD panels and they were 
considered technical replicates. The average number of individual measurements per biomarker was 915 (median 929, 
range: 430–957) in ONC_CVD and 829 (median 871, range: 424–892) in INF.

Genome-wide association for biomarker levels. In the WGS data, a total of 16,890,549 biallelic 
single-nucleotide variants (SNVs) were called. A MAF threshold of 0.15% was chosen in order to reach enough 
statistical power in the GWAS (Supplementary Fig. S1). After filtering on MAF and Hardy-Weinberg equilibrium 
(HWE), 12,210,410 SNVs remained for downstream analyses. For the 72 individual biomarkers analyzed, 5,812 
genome-wide significant (P < 1.62 × 10−8) associations were identified, and for 41 (56.9%) of the biomarkers, 
there was at least one associated SNV (Fig. 1, Table 1, Supplementary Table S1). For CCL4 and CXCL5, two inde-
pendent associations each were identified, making it a total of 43 independent associations.

We identified 11 biomarkers that had significant associations in both ONC_CVD and INF, representing 1,418 
SNV-biomarker associations. Seven of the biomarkers had significant associations only when analyzing the measure-
ments from ONC_CVD, but not when analyzing the same biomarker measured on the INF panel. However, these 
variants had p-values just below the genome-wide threshold (ranging from 1.17 × 10−8 to 3.43 × 10−13) in ONC_CVD 
and p-values just above the genome-wide threshold in INF (Supplementary Table S2). Here, the larger sample size 
in ONC_CVD (90–100 more individuals) probably increased the power enough to reach genome-wide significance.

Most biomarkers (67.44%) with at least one significant hit identified, had an association in cis (i.e., within 
1 Mb of the gene encoding the biomarker) or even within the gene encoding the biomarker itself. The rest of the 
associations were in trans, all located on another chromosome than the gene encoding the biomarker (Fig. 2). 
Adjusting for the most significant SNV resulted in 15 biomarkers having a secondary, significant signal close to 
the primary signal, and adjusting for both the primary and secondary SNV resulted in seven biomarkers having a 
tertiary signal (Table 2, with more extensive variant data in Supplementary Tables S3 and S4). In the conditional 
analyses, only the SNVs that were located within each associated region (see methods) were analyzed. Due to the 
reduced number of variants analyzed in the conditional analyses, as compared to the primary GWAS, the power 
to analyze rarer variants increased and we therefore did not have a MAF threshold in the conditional analyses. 
Here, we then identified four variants with MAF < 0.15%

In general, the biomarkers without a genome-wide significant association had heritability estimates below 0.3, 
i.e. less than 30% of the variation in biomarker abundance is due to genetic factors (Supplementary Table S5). For 
many GWAS-associated biomarkers, the heritability was still fairly high, with the top SNVs and the top condi-
tional SNVs accounting for a total of 5–20% of the total variance in biomarker abundance in most cases (Fig. 3).

Comparison with our previous GWAS using genotyped/imputed data suggests novel loci for 
many biomarkers. Twenty of the biomarkers (ADA, CASP-8, CCL11, CCL20, CCL23, CD244, CDCP1, 
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CST5, CX3CL1, CXCL1, CXCL11, CXCL9, FGF-5, MCP-3, ST1A1, STAMBP, TGFB1, TNFB, TNFSF14, uPA) 
with significant associations in the present study, did not have any significant associations in our previous GWAS 
when using genotyped/imputed SNP data25,28 (Supplementary Figs S2–S20). The abundance of two of these bio-
markers (CXCL9 and CXC11) had an associated variant that in our previous studies was identified to be asso-
ciated only with CXCL10 and is most likely a false positive finding for CXCL9 and CXCL11 (discussed more 
thoroughly in Supplementary, including Supplementary Figs S21–S25). The remaining novel biomarker asso-
ciations represented 18 unique loci that were not found to be associated with the levels of the same biomarker 
using genotyped/imputed data in the same cohort. Of these, 15 loci (see overlap with GWAS catalog below) 
have not been reported in any previous study of the same biomarkers, thus making them novel loci. In the novel 
loci, six top variants are considered to be low-frequency variants (MAF < 5%). Additional to the novel loci, four 
biomarkers (CD6, CXCL5, CCL4, MMP-10) had associations driven by top variants that are only in moderate in 
LD (R2 < 0.8) with the top variants from our previous studies, and might therefore be considered independent 
associations (Supplementary Figs S26–S30). Another 19 loci overlapped between the present study and our pre-
vious studies with SNP data25,28, for which nine loci had the same top variant. The remaining ten overlapping loci 
had different top variants, although these variants were in high LD (R2 > 0.8). The top variants in the overlapping 
loci were more strongly associated (more significant p-value) in the present study than in our previous GWAS, 
except for two biomarkers (MMP-10 and TRAIL), for which more significant GWAS top variants were found in 
the previous studies (Tables 3 and 4).

Replication in an independent cohort. Due to the lack of a similar dataset (WGS data and measured levels of 
the same inflammatory biomarkers) for replication, we could only test for replication for a subset of our results using 
GWAS results of circulating cytokines in a Finnish population29 (Supplementary Table S6). Of the cytokines that were 
analyzed in both studies, we fully replicated our primary results for CCL11, i.e., the same top SNV was found in both 
cohorts. One of the two independent associations with CCL4 was also fully replicated. We also replicated one of the 
three independent associations with MCP-1, and one of the two independent associations with CXCL1, although with 
an LD between the top variants of R2 = 0.75 and 0.72 for MCP-1 and CXCL1, respectively. For our second independent 
association with CCL4, our top variant was either monomorphic in the Finnish population or had not been analyzed. 
However, the most significant CCL4 associated SNV in the Finnish population is also genome-wide significant in 
our study (P = 3.52 × 10−12), even if not our most significant. Our results for MCP-3, SCF and CXCL9 did not rep-
licate in the Finnish population (P > 0.05 in the Finnish cohort for our top SNVs) and our result for TNFB was only 
nominally significant (P = 0.027). On the other hand, the most significant SNVs for IL-7, IL-10, IL-18 and HGF in the 
Finnish population, were not genome-wide significant in our cohort, even if rs5745687 (for HGF) as well as rs385076, 
rs17229943, and rs71478720 (for IL-18) were nominally significant (P < 0.05).

Figure 1. Results of GWAS analysis of the abundance of the 42 significant plasma proteins. Each dot 
represents a locus with a significant association. A non-filled dot represents an association in trans (on 
another chromosome than the gene encoding the biomarker) and the filled dots an association in cis. The dots 
are labelled with the names of the genes/locus that the top variant is located in in italics and the associated 
biomarker in brackets. Two genes are shown if it is intergenic. Red color depicts the centromere.
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Colocalization with eQTL data in blood. Colocalization (the same top variant) with cis-eQTLs in periph-
eral blood was found for five of the top SNVs (Table 5), associated with the levels of three different biomarkers 
(CD40, CXCL5 and IL-15RA). For the other top variants from our biomarker GWAS, LD was calculated between 
each top variant and the most significant eQTL. Two top variants, associated with CXCL5, were colocalized 

Biomarker SNV P-value Effect, beta (SE)
Effect 
allele (ref)

MAF (effect 
allele) chr:position† Gene Type Location**

ADA rs11555566 4.91 × 10−18 1.46 (0.17) C (T) 0.019 20:43255220 ADA missense cis

CASP-8 rs116010659* 3.623 × 10−09 0.46 (0.07) T (C) 0.165 2:202178477 ALS2CR12 intronic cis

CCL11 rs2228467 2.19 × 10−09 0.63 (0.11) C (T) 0.070 3:42906116 ACKR2 missense trans

CCL19 rs149941420 4.28 × 10−18 0.61 (0.07) G (T) 0.160 6:32556454 HLA-DRB1 intronic trans

CCL20 rs17368659* 1.40 × 10−09 0.42 (0.07) G (T) 0.160 11:102742761 MMP-12 intronic trans

CCL23 rs712048 1.28 × 10−12 −0.64 (0.09) A (C) 0.087 17:34326215 CCL14-CCL15 ncRNA_intronic cis

CCL25 rs2032887 1.09 × 10−37 0.72 (0.06) G (A) 0.301 19:8121360 CCL25 missense cis

CCL4 rs113010081 4.19 × 10−38 0.80 (0.06) C (T) 0.232 3:46457412 CCRL2;LTF intergenic trans

CCL4 rs4141329* 1.55 × 10−14 −0.38 (0.05) C (A) 0.472 17:34490448 CCL4;CCL3L3 intergenic cis

CD244 rs71517284 1.16 × 10−13 0.41 (0.06) C (T) 0.378 1:160802681 CD244 intronic cis

CD40 rs4239702* 1.01 × 10−49 −0.84 (0.06) T (C) 0.273 20:44749251 CD40 intronic cis

CD6 rs11230563 5.23 × 10−31 −0.79 (0.07) T (C) 0.168 11:60776209 CD6 missense cis

CDCP1 rs78521038 2.62 × 10−12 −0.44 (0.06) A (G) 0.225 3:45176513 CDCP1 intronic cis

CST-5 rs4239743 8.61 × 10−21 0.60 (0.06) C (A) 0.499 20:23859017 CST5 intronic cis

CX3CL1 rs9921681* 3.37 × 10−10 0.33 (0.05) T (C) 0.309 16:57374418 PLLP;CCL22 intergenic cis

CXCL1 rs3117604 2.46 × 10−19 0.50 (0.06) C (T) 0.331 4:74734668 CXCL1 upstream cis

CXCL10 rs11548618* 5.07 × 10−47 2.11 (0.15) A (G) 0.035 4:76943947 CXCL10 missense cis

CXCL11 rs11548618* 3.44 × 10−13 −1.05 (0.14) A (G) 0.035 4:76943947 CXCL10 missense cis

CXCL5 rs425535* 1.09 × 10−34 1.01 (0.08) T (C) 0.103 4:74863997 CXCL5 synonymous cis

CXCL5 rs10740118* 6.09 × 10−27 0.40 (0.05) C (G) 0.443 10:65101207 JMJD1C intronic trans

CXCL6 rs111903579 6.71 × 10−58 0.81 (0.05) T (C) 0.445 4:74700432 CXCL8;CXCL6 intergenic cis

CXCL9 rs11548618* 6.19 × 10−10 −0.90 (0.15) A (G) 0.035 4:76943947 CXCL10 missense cis

FGF-5 rs16998073 1.50 × 10−11 0.44 (0.07) T (A) 0.335 4:81184341 PRDM8;FGF5 intergenic cis

Flt3L rs111595024* 1.01 × 10−16 1.76 (0.21) A (G) 0.015 13:28761592 PAN3 intronic trans

IL-10RB rs8178528 5.46 × 10−35 −0.64 (0.05) A (G) 0.425 21:34660980 IL10RB intronic cis

IL-12B rs10043720 7.99 × 10−31 −0.68 (0.06) A (G) 0.262 5:158767333 LOC285626 ncRNA_intronic cis

IL-15RA rs3136630 2.64 × 10−19 −0.56 (0.06) T (C) 0.312 10:5997820 IL15RA intronic cis

IL-18R1 rs10190555 2.37 × 10−72 1.08 (0.06) A (G) 0.233 2:102994056 IL18R1 intronic cis

TGFB1 rs1800472* 1.35 × 10−12 −0.88 (0.12) A (G) 0.040 19:41847860 TGFB1 missense cis

MCP-1 rs1800024* 1.26 × 10−09 0.58 (0.10) T (C) 0.075 3:46412559 LOC102724297 ncRNA_intronic trans

MCP-2 rs1133763 2.693 × 10−53 −1.30 (0.08) C (A) 0.104 17:32647831 CCL8 missense cis

MCP-3 rs11102571 1.34 × 10−09 0.50 (0.08) C (G) 0.112 1:109407135 SPATA42;GPSM2 intergenic trans

MCP-4 rs12075 1.25 × 10−45 −0.72 (0.05) G (A) 0.474 1:159175354 ACKR1 missense trans

MMP-1 rs471994* 5.02 × 10−19 −0.47 (0.05) A (G) 0.390 11:102697731 WTAPP1 ncRNA_intronic cis

MMP-10 rs17359286* 1.17 × 10−08 −0.51 (0.09) T (G) 0.081 11:102643718 MMP-10 synonymous cis

SCF rs6073958* 1.20 × 10−09 0.037 (0.06) C (T) 0.199 20:44551855 PLTP;PCIF1 intergenic trans

ST1A1 rs138534121 2.51 × 10−13 0.78 (0.11) G (A) 0.064 16:28595989 SGF29 intronic cis

STAMBP 1:53206258§ 3.32 × 10−09 0.92 (0.16) T (G) 0.026 1:53206258 ZYG11B intronic trans

TNFB rs2229092 2.70 × 10−29 −1.77 (0.16) C (A) 0.027 6:31540757 LTA missense cis

TNFSF14 rs344560 3.72 × 10−17 −0.88 (0.10) T (C) 0.065 19:665020 TNFSF14 missense cis

TRAIL rs144242131* 1.02 × 10−12 1.98 (0.28) A (G) 0.007 18:29769910 MEP1B upstream trans

uPA rs346058 7.11 × 10−09 −0.71 (0.12) T (A) 0.046 19:44202855 PLAUR;IRGC intergenic trans

VEGF-A rs6921438 1.63 × 10−12 0.35 (0.05) G (A) 0.434 6:43925607 LINC01512;
LOC101929705 intergenic cis

Table 1. Location and annotation of significant top GWAS hits from WGS data. The raw p-values (not adjusted 
for multiple testing) are shown. If one biomarker had been measured twice (i.e. been measured on both INF 
and ONC_CVD), the SNV with the most significant p-value is presented. Novel variants are shown in bold. 
Additional information can be found in Supplementary Table S2. §Does not have an rs-id, †In hg19 coordinates 
*Variant is from ONC_CVD. Either the p-value was lower, or no significant association was found in INF. **In 
cis: within 1 Mb of the gene encoding the biomarker; in trans: on another chromosome of the gene encoding the 
biomarker.

https://doi.org/10.1038/s41598-019-53111-7


5Scientific RepoRtS |         (2019) 9:16844  | https://doi.org/10.1038/s41598-019-53111-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

(R2 > 0.8) with a variant associated with a trans-eQTL in blood. Two secondary hits associated with IL-18R1 
and TNFSF14 respectively, and one tertiary hit associated with CCL23, were also found to be colocalized with a 
cis-eQTL. All overlapping variants had the same direction of effect except for the overlap with the trans-eQTL, 
where two SNVs (rs10740118 and rs7088799) in JMJD1C was associated with increased protein levels of CXCL5, 
but was in LD (R2 = 0.86) with a variant, rs10761779 that was associated with decreased RNA levels of CXCL5.

Colocalization with data from the GWAS catalog. The association signal for eight biomarkers (CCL19, 
CCL4, CD40, CD6, CXCL5, IL-12B, IL-18R1, TNFSF14) colocalized with association signals for one or several 
inflammatory diseases (Table 6, Supplementary Table S7). Here, we regard the signals to be colocalized when 
a top SNV or any SNVs in LD (R2 > 0.8) with a top SNV identified in our study was also the top SNV for an 
inflammatory disease in the GWAS catalog (v 1.0.2). In four cases, our top SNV had been associated with an 
inflammatory disease in previous GWAS: rs113010081/CCL4 with inflammatory bowel disease, rs1569723/CD40 
with Crohn’s disease, rs4239702/CD40 with rheumatoid arthritis and rs11230563/CD6 with ulcerative colitis. The 
remaining top variants are in LD (R2 > 0.8) with previously inflammatory disease-associated top variants. For 
example, the top variants for CXCL5 found in this study (rs352045 in ONC_CVD and rs425535 in INF) are both 
in high LD (R2 = 0.944) with a variant previously associated with ulcerative colitis. Some of our top SNVs were 
also colocalized with associations for different blood-trait (Supplementary Table S8).

Discussion
We performed a GWAS on 72 inflammatory biomarkers in a Swedish cohort using WGS data, and identified 
SNVs that were associated with the plasma levels for as many as 41 biomarkers. Of the biomarkers with at least 
one significant hit, 67.44% had an association within 1 Mb of the gene encoding the biomarker (in cis) and the 
rest (32.56%) had an association on another chromosome (in trans). Many of the biomarker levels are highly 

Figure 2. Circular representation of the GWAS hits. The numbers in the outer circle correspond to the chromosomes. 
Each biomarker is labelled at the position of the gene coding it on the cytoband. The colored lines/arrows represent 
the significant hits. The breadth of the line represents the size of the region associated with respective biomarker.
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heritable and some top SNVs explained as much as 25% of the variability. When comparing the results to our 
previous GWA analyses25,28 using genotyped/imputed data, novel associations were identified for 18 biomarkers 
when WGS data was used, 15 of which has not been identified in any previous study. Additionally, in four of the 
biomarkers, for which the associated loci overlapped with our previous study, the top variants in the present and 
former studies were not correlated (R2 < 0.8), thus making these findings potentially independent associations.

We have previously used both mass spectrometry and the recently developed protein extension assay (PEA) 
to identify the genetic contribution to variation in protein levels in the NSPHS cohort, where we showed that 
more than 30% of the biomarkers are influenced by genetic variants23,28,30,31. In a recent study with a larger sam-
ple size32 (N = 3,394), but also based on genotyped/imputed data, we contributed to the identification of 79 
genome-significant loci for 83 plasma protein biomarkers for cardiovascular disease. A more recent study by 
Sun et al.33 identified nearly two thousand genetic associations with almost 1,500 proteins, which increased the 
existing knowledge about the human plasma proteome by fourfold. With the use of WGS data, we can extend our 
knowledge even further. In the present study, we have shown that we can increase the power in identifying novel 
loci by using WGS data in GWAS, instead of using genotyped or imputed SNPs. We were able to identify associ-
ations for 58% of the biomarkers, which is a considerable higher fraction compared to the 30% identified in the 
same cohort using genotyped/imputed data.

In addition to a gain of power, we have also shown that we can increase the precision by using WGS data 
instead of genotype/imputed SNP data25,28. Overall, MAF agreed well between the genotyped/imputed dataset 
and the WGS dataset, for all associated SNVs. The MAF threshold in our previous studies was set to at least one 
chromosome in the dataset, which corresponds to a lower threshold than 0.15%. This means that even the rar-
est variants in the present study were included in the previous analyses with genotyped or imputed SNPs, even 
though there was no power to identify an association with such rare variants. For the 18 associations not found in 
our previous studies, the imputation quality was overall good, except for the SNVs that did not pass imputation 
QC (Table 7). In some cases, the associations were just below the significance threshold in the imputed data. Some 
such examples are ADA, CCL11 and TGFB1 where the top variants in the present study are suggestive hits in our 
previous study. These three associations are in regions with not many variants genotyped or imputed, but with 

Biomarker SNV
Conditional 
signal P-value P adj.

Effect, beta 
(SE)

Effect allele 
(ref)

MAF (effect 
allele) chr:position† Gene Type Location**

CCL23 rs72831705 secondary 9.52 × 10−11 1.07 × 10−05 0.44 (0.07) T (C) 0.153 17:34321277 CCL15-CCL14 ncRNA_
intronic cis

CCL23 rs854671 tertiary 1.48 × 10−08 1.67 × 10−03 0.23 (0.05) C (T) 0.475 17:34361300 CCL23;
CCL18 intergenic cis

CCL4 3:51599851§* secondary 3.53 × 10−07 2.10 × 10−02 3.09 (0.61) A (C) 0.00098 3:51599851 RAD54L2 intronic trans
CCL4 rs188700215* secondary 1.01 × 10−07 5.91 × 10−03 −5.19 (0.97) A (G) 0.00098 17:30092085 MIR365B;COPRS intergenic trans

CCL4 rs201079256* tertiary 1.02 × 10−13 5.97 × 10−09 −0.36 (0.05) T (C) 0.465 17:34522125 CCL3L1;
CCL3L3 downstream cis

CD40 rs6063068* secondary 7.41 × 10−08 6.27 × 10−03 3.28 (0.61) T (A) 0.00098 20:45717496 EYA2 intronic cis

CD40 rs182282247* tertiary 9.99 × 10−08 8.45 × 10−03 0.82 (0.15) A (G) 0.021 20:44730041 NCOA5;
CD40 intergenic cis

CST-5 rs6138152 secondary 3.87 × 10−07 3.13 × 10−02 0.36 (0.07) G (A) 0.211 20:23850130 CST2;CST5 intergenic cis

CST-5 rs75823487 tertiary 4.56 × 10−07 3.69 × 10−02 4.25 (0.84) T (C) 0.0015 20:29478349 MIR663AHG;
LINC01597 intergenic trans

CXCL1 rs10938101* secondary 7.53 × 10−07 6.54 × 10−03 −0.24 (0.05) T (G) 0.461 4:74688772 CXCL8;CXCL6 intergenic cis
CXCL6 rs181216093* secondary 5.27 × 10−09 8.42 × 10−04 −1.21 (0.21) T (C) 0.009 4:74661204 CXCL8;CXCL6 intergenic cis
IL-15RA rs144173272 secondary 1.49 × 10−11 1.86 × 10−06 −1.70 (0.25) T (C) 0.013 10:6008255 IL15RA missense cis
IL-15RA rs35095871 tertiary 3.06 × 10−07 3.81 × 10−02 0.41 (0.08) G (A) 0.102 10:5700416 ASB13 intronic cis
IL-18R1 rs12999517 secondary 4.89 × 10−19 1.31 × 10−13 −0.47 (0.05) C (T) 0.172 2:102959260 IL1RL1 intronic cis
MCP-2 rs74832623 secondary 6.47 × 10−32 7.79 × 10−27 −1.17 (0.10) G (A) 0.045 17:32535173 LINC01989;CCL2 intergenic cis

MCP-2 rs12601658 tertiary 7.15 × 10−12 8.61 × 10−07 −0.32 (0.05) A (T) 0.244 17:32533423 LINC01989;
CCL2 intergenic cis

MMP-1 rs470358* secondary 9.38 × 10−09 1.56 × 10−03 0.29 (0.05) T (C) 0.397 11:102668702 WTAPP1 ncRNA_
intronic cis

SCF rs6104417* secondary 2.66 × 10−07 2.53 × 10−02 0.23 (0.05) C (T) 0.4995 20:44632542 ZNF335;MMP9 intergenic trans
ST1A1 rs4149383 secondary 5.38 × 10−07 4.56 × 10−02 0.54 (0.11) A (G) 0.061 16:28620320 SULT1A1 UTR5 cis
TNFB rs746868 secondary 1.42 × 10−07 2.18 × 10−02 0.26 (0.05) C (G) 0.061 6:31540429 TNFB intronic cis

TNFB 6:27190519§ tertiary 4.06 × 10−08 6.22 × 10−03 1.77 (0.32) T (G) 0.005 6:27190519 MIR3142;
PRSS16 intergenic trans

TNFSF14 rs2291668 secondary 4.71 × 10−07 7.36 × 10−03 0.27 (0.05) A (G) 0.281 19:6669934 TNFSF14 synonymous cis
TRAIL 18:21026109§* secondary 1.01 × 10−07 1.28 × 10−02 −5.19 (0.97) A (G) 0.00049 18:21026109 TMEM241;RIOK3 intergenic trans

Table 2. Location and annotation of top GWAS hits after having conditioned on the most significant hit. The 
raw p-values (not adjusted for multiple testing) are shown. The adjusted p-values are based on the number of 
SNVs tested in each region which means that each SNV does not need to reach genome wide significance. If one 
biomarker had been measured twice (i.e. been measured on both INF and ONC_CVD), the SNV with the most 
significant p-value is presented. Additional information can be found in Supplementary Table S4. §Does not 
have an rs-id, †In hg19 coordinates. *Variant is from ONC_CVD. Either the p-value was lower, or no significant 
association was found in INF. **In cis: within 1 Mb of the gene encoding the biomarker; in trans: on another 
chromosome of the gene encoding the biomarker.
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many SNVs called in the WGS. For example, in the WGS analyses, a missense SNV (rs11555566) within ADA, 
which encodes adenosine deaminase, was strongly associated with the expression level of the corresponding 
adenosine deaminase protein (P = 4.9 × 10−19). This variant is quite rare in our cohort (MAF = 1.9%) and was 
not identified as genome-wide significant in the imputed data, even if imputation quality was suggested as good 
and the MAF was similar to the WGS data (Supplementary Fig. S2). In the cases of CD244, CDCP1 and ST1A1 
on the other hand, the top SNVs from the present study were not imputed in our previous study (CD244), or did 
not pass imputation QC (CDCP1 and ST1A1). These can therefore all be considered novel associations. However, 
in the case of STAMBP, the genotype quality in the WGS data is also low, making this the most uncertain associ-
ation. Excluding this variant, all novel top variants had a genotype quality of at least 75 in the WGS data, and are 
therefore considered quite robust.

We also compared our association signals for colocalization with data from the GWAS catalog. A total of eight 
biomarkers (CCL19, CCL4, CD40, CD6, CXCL5, IL-12B, IL-18R1, TNFSF14) had top variants previously asso-
ciated with an inflammatory disease, or correlated (R2 > 0.8) with variants previously associated with an inflam-
matory disease, suggesting that variation in biomarker levels might mediate the disease association, although, we 
did not determine the direction of causality. For example, the minor allele of rs10190555 was found to be asso-
ciated with higher levels of interleukin 18 receptor 1 (IL-18R1). The minor alleles of two SNPs in LD (R2 = 0.95) 
with rs10190555 (rs917997[T] and rs6708413[G]) are also associated with a higher risk of inflammatory bowel 
disease (IBD) and Crohn’s disease respectively. IL-18R1 is a cytokine receptor that binds interleukin 18 (IL-18) 
and is essential for IL-18 mediated signal transduction. IL18R1 has previously been found to have colocalized 
disease and eQTL association patterns in CD4 and CD8 cells for both ulcerative colitis and Crohn’s disease34. In 
that study, reduced transcript levels of IL18R1 in CD4 and CD8 cells was associated with increased risk for IBD, 
and the SNP most strongly associated with expression was rs11123923. However, rs11123923 is only in weak LD 
with the top variant (rs10190555) from our study (R2 = 0.20). In our study, the association to IL-18R1 spans over 
a large region with strong LD. When adjusting for the top variant, a secondary top variant (rs12999517) reached 
genome-wide significance. This variant is intronic in IL1RL1, which encodes the interleukin-1 receptor-like 1 
(IL1RL1, alternatively ST2) protein. In a previous functional study, the C allele in rs6543115, which is located in 
a distal IL1RL1 promoter, was shown to confer susceptibility to ulcerative colitis as well as increase expression of 
the soluble ST2 isoform35. However, the top conditional variant (rs12999517) from our study is not in LD with 
the previously found variant, and is not in strong LD with any other variant previously associated with ulcerative 
colitis.

When adjusting for the effects of the top SNP (rs344560) associated with TNFSF14, the minor allele of 
rs2291668 was found to be significantly associated with increased TNFSF14 levels in our study. Interestingly, the 
secondary variant rs2291668 is found to explain significantly more of the variability in TNFSF14 levels (9.1%, 
as compared to 4.4% explained by rs344560 [likelihood-ratio test, p < 0.001, χ2 = 26.95, 1 d.f.]). The top SNP 
(rs344560) in the primary signal is a missense variant located in the gene TNFSF14, which encodes the biomarker. 
This variant was found to be associated with lower TNFSF14 levels. The missense variant is neither reported in the 
GWAS catalog, nor is it in LD with any previously reported variants. However, the conditional SNP, rs2291668, 
is correlated with rs1077667 that has previously been associated with multiple sclerosis. A possible explanation 
is that the missense variant affects the antibody affinity for the biomarker which in turn will give lower measured 
protein levels. These lower levels might give a strong association signal and it is not until the top missense variant 
is adjusted for, that the true regulatory variant is detected.

A subset of our top SNVs overlapped with eQTLs in blood. For example, the correlated variants rs352045 and 
rs425535 (top SNVs for CXCL5 in the INF and ONC_CVD respectively) are in high LD with an eQTL for CXCL5 
RNA levels in blood. Two variants, rs425535: a nonsynonymous exonic variant that lies within a splicing enhancer 
site, and rs352046: a promoter variant that is located within a transcription factor binding site for myeloid zinc 
finger proteins, have also previously been associated with CXCL5 mRNA expression38 and CXCL5 protein levels 
in blood39. Both variants have been shown to be in almost complete LD (R2 = 0.94) to complete LD (R2 = 1) in 
both U.S and European populations36,39 and are in complete LD in our cohort. The minor allele for rs425535 was 
previously shown to be associated with significantly higher CXCL5 plasma concentrations and the minor allele for 

Figure 3. Narrow-sense heritability estimates of the top variants. The total heritability estimate is shown in dark 
grey. The contribution of the top variant is shown in pink, the contribution of the first conditional top variant 
(secondary hit) in yellow and the second conditional (tertiary hit) in green. Light grey depicts biomarkers with 
no significant GWAS signal.
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rs352046 with higher CXCL5 expression levels, which agrees with our results where the minor alleles of rs352045 
and rs425535 were associated with higher CXCL5 levels (Supplementary Table S6). In our study, rs352046 was 
not identified as the top variant but instead rs352045 which is in almost complete LD with rs352046 (R2 = 0.97). 
Our top SNV is located only 137 bp from rs352046 and both are found within transcription factor binding sites. 
Neither the association with rs352045 nor rs352046 are reported in the GWAS catalog. However, both rs352045 

Biomarker WGS top variant chr:pos†
MAF WGS 
(effect allele)

MAF imputed 
(effect allele) Effect allele (ref)

Genotype quality 
(sd) WGS

Imputation 
quality of 
WGS top 
variant P present

P Enroth28 
for WGS top 
variant

Enroth top variant 
(R2§)28

P top variant 
Enroth28

CCL19 rs149941420 6:32556454 0.160 0.125 G (T) 90.92 (13.34) 0.846 4.269 × 10−18 n.s. ‡ rs9968904 (0.979) 5.744 × 10−13

CCL25 rs2032887 19:8121360 0.301 0.302 G (A) 92.07 (12.10) 1 1.089 × 10−37 4.368 × 10−35 rs2032887 (1) 4.368 × 10−35

CCL4 rs113010081 3:46457412 0.232 0.201 C (T) 92.44 (11.21) 0.996 4.188 × 10−38 7.834 × 10−24 rs113341849 (0.992) 7.834 × 10−24

CD40 rs1569723 20:44742064 0.256 0.257 C (A) 95.30 (8.69) 1 5.242 × 10−43 6.608 × 10−21 rs4810485 (0.997) 4.960 × 10−21

CD6 rs11230563 11:60776209 0.168 0.164 T (C) 90.08 (13.40) 1 5.235 × 10−31 1.115 × 10−18 rs11230556 (0.729) 9.259 × 10−21

CXCL10 rs11548618 4:76943947 0.035 0.035 A (G) 92.21 (10.60) 1 5.072 × 10−47 5.396 × 10−37 rs11548618 (1) 5.396 × 10−37

CXCL5 rs352045 4:74864687 0.103 0.100 T (G) 89.77 (13.54) 0.995 6.091 × 10−27 1.164 × 10−19 rs2564594 (0.974) 7.826 × 10−20

CXCL5 rs10740118 10:65101207 0.443 0.445 C (G) 96.52 (7.24) 0.999 2.927 × 10−13 5.033 × 10−10 rs12770839 (0.698) 8.833 × 10−12

CXCL6 rs111903579* 4:74700432 0.446 NA** T (C) 85.04 (18.31) NA** 6.708 × 10−58 NA** rs6831029 (0.813) 1.126 × 10−26

Flt3L rs145096717 13:28761592 0.015 0.002 A (G) 94.67 (8.47) 0.668 2.086 × 10−16 3.519 × 10−14 rs145096717 (1) 3.519 × 10−14

IL-10RB rs8178528 21:34660980 0.425 0.423 A (G) 95.79 (8.07) 0.968 5.461 × 10−35 n.s. ‡ rs2843697 (0.951) 1.098 × 10−16

IL-12B rs10043720 5:158767333 0.272 0.269 A (G) 91.15 (12.75) 0.998 7.988 × 10−31 1.424 × 10−17 rs10076557 (1) 4.247 × 10−18

IL-15RA rs3136630 10:5997820 0.312 0.312 T (C) 91.43 (12.75) 1 2.644 × 10−19 1.659 × 10−11 rs3136630 (1) 1.659 × 10−11

IL-18R1 rs10190555 2:102994056 0.233 0.234 A (G) 94.92 (9.44) 0.999 2.373 × 10−72 1.155 × 10−51 rs2058660 (0.957) 5.500 × 10−51

MCP-2 rs1133763 17:32647831 0.104 0.109 C (A) 91.07 (12.04) 0.978 2.693 × 10−53 n.s. ‡ rs3138037 (1) 2.113 × 10−48

MCP-4 rs12075 1:159175354 0.474 0.473 G (A) 94.55 (10.13) 1 1.253 × 10−45 1.475 × 10−43 rs12075 (1) 1.475 × 10−43

VEGF-A rs6921438 6:43925607 0.434 0.389 G (A) 95.10 (10.09) 0.770 8.294 × 10−40 n.s. ‡ rs7767396 (0.942) 8.048 × 10−19

Table 4. Top GWAS hits from WGS data in comparison to the significant genotyped/imputed associations 
identified by Enroth et al.28. Results from INF are compared*. The p-values for the top variants from the present 
study are shown (P present) as well as the p-values for the same variant in the imputed data (P Enroth for WGS 
top variant). The most significant SNV from the previous study and corresponding p-value is also shown, and 
its LD (R2) with the most significant SNV from the present study. The comparisons have been filtered the same 
way as the present study. Only biallelic variants and variants not located in a spanning deletion are compared. 
†In hg19 coordinates. ‡Not significant in Enroth et al. (P > 4.79e-9). §R2 with WGS top variant. *For CXCL6 the 
variant is from ONC_CVD since this p-value was lower. **Did not pass imputation QC or were not present in 
the reference panel used for the imputations.

Biomarker WGS top variant chr:pos†

MAF WGS 
(effect 
allele)

MAF 
imputed 
(effect 
allele)

Effect allele 
(ref)

Genotype 
quality (sd) 
WGS

Imputation 
quality for 
WGS variant P present

P Ahsan25 
for WGS top 
variant

Ahsan top variant 
(R2§)25

P top variant 
Ahsan25

CCL19 rs149941420* 6:32556454 0.160 0.125 G (T) 90.92 (13.34) 0.846 4.269 × 10−18 5.429 × 10−12 rs2395201 (0.277) 5.951 × 10−17

CCL4 rs113010081 3:46457412 0.232 0.201 C (T) 92.44 (11.21) 0.996 4.188 × 10−38 3.124 × 10−23 rs113341849 (0.992) 3.326 × 10−26

CCL4 rs4141329 17:34490448 0.472 0.483 C (A) 94.92 (10.96) 0.712 1.550 × 10−14 n.s.‡ rs113877493 (0.095) 9.181 × 10−10

CD40 rs4239702 20:44749251 0.273 0.261 T (C) 97.09 (6.08) 0.996 1.014 × 10−49 3.288 × 10−18 rs4810485 (0.911) 4.697 × 10−19

CXCL10 rs11548618 4:76943947 0.035 0.035 A (G) 92.21 (10.60) 1 5.072 × 10−47 2.132 × 10−37 rs11548618 (1) 2.132 × 10−37

CXCL5 rs425535 4:74863997 0.103 0.100 T (C) 92.63 (10.84) 0.989 1.091 × 10−34 2.081 × 10−25 rs425535 (1) 2.081 × 10−25

CXCL5 rs7088799 10:65016174 0.443 0.446 G (T) 97.22 (6.00) 0.999 7.357 × 10−16 4.598 × 10−11 rs7896910 (0.735) 2.932 × 10−11

CXCL6 rs111903579 4:74700432 0.446 NA** T (C) 85.04 (18.31) NA** 6.708 × 10−58 NA** rs16850073 (1) 1.976 × 10−32

Flt3L rs111595024 13:28768589 0.015 NA** G (A) 50.08 (21.35) NA** 1.008 × 10−16 NA** rs145096717 (0.967) 3.045 × 10−14

MCP-1 rs1800024 3:46412559 0.075 0.077 T (C) 93.57 (9.38) 0.998 1.257 × 10−09 n.s. ‡ rs2888526 (0.979) 2.399 × 10−09

MMP-1 rs471994 11:102697731 0.389 0.395 A (G) 94.33 (10.16) 1 5.017 × 10−19 1.736 × 10−15 rs471994 (1) 1.736 × 10−15

MMP-10 rs17359286 11:102643718 0.081 0.058 T (G) 93.56 (9.98) 0.999 1.171 × 10−08 n.s. ‡ rs486055 (0.583) 9.246 × 10−10

SCF rs6073958 20:44551855 0.199 0.196 C (T) 96.37 (7.18) 0.997 1.204 × 10−09 2.325 × 10−09 rs6073958 (1) 2.325 × 10−09

TRAIL rs144242131 18:29769910 0.007 0.007 A (G) 90.74 (12.23) 0.999 1.020 × 10−12 1.387 × 10−16 rs144242131 (1) 1.387 × 10−16

Table 3. Top GWAS hits with WGS data in comparison to the significant genotyped/imputed associations 
identified by Ahsan et al.25. Results from ONC_CVD are compared*. The p-values for the top variants from the 
present study are shown (P present) as well as the p-values for the same variant in the imputed data (P Ahsan 
for WGS top variant). The most significant SNV from the previous study and corresponding p-value is also 
shown, and its LD (R2) with the most significant SNV from the present study. The comparisons have been 
filtered the same way as the present study: only biallelic variants and variants not located in a spanning deletion 
are compared. †In hg19 coordinates. ‡Not significant in Ahsan et al. (P > 4.2e-09). §R2 with WGS top variant. 
*All top variants and P-values are from the analyses of the ONC_CVD panel, except for CCL19 that is from INF. 
**Did not pass imputation QC or were not present in the reference panel used for the imputations.

https://doi.org/10.1038/s41598-019-53111-7


9Scientific RepoRtS |         (2019) 9:16844  | https://doi.org/10.1038/s41598-019-53111-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

and rs425535 are in high LD (R2 = 0.94) with a variant, rs2457996, that has previously been associated with 
ulcerative colitis. Ulcerative colitis is a sub type of IBD and CXCL5 have previously been shown to play a role in 
IBDs, such as ulcerative colitis and Crohn’s disease. In a study by Z’Graggen et al.40, a preferential expression of 
CXCL5 mRNA in the epithelium of the intestinal tissue from patients with IBD was observed. They also found a 
strong expression of CXCL5 at protein level. CXCL5, which encodes an epithelial cell-derived neutrophil activat-
ing peptide (also called ENA-78), has previously been suggested as a possible candidate gene for inflammatory 
diseases36,37 Since the previously mentioned variants, rs425535 and rs352046, have been shown to be associated 
with higher CXCL5 plasma concentrations and higher CXCL5 expression levels respectively, this further indicates 
that these variants might play a role in the pathogenesis of IBD.

Despite the many results, our study has some limitations with one being the limited sample size. Standard 
GWAS of complex traits commonly includes hundreds of thousands of samples. However, by analyzing quan-
titative phenotypes that are less complex, such as biomarkers, we can gain power and the sample size can be 
dramatically reduced. Despite this, for some biomarkers a sample size of <1000 individuals are not enough to 
make a robust assessment, and further studies in larger cohorts, or meta-analyzes needs to be performed. Another 
limitation is the lack of reproducibility, given the nature of the study. It is a small kinship-structured cohort, 
which makes the results not generalizable to more mixed population or a population of another ancestry. While 
this population structure increases power to detect rare variants that might be more common in an isolated pop-
ulation, it also makes it harder to reproduce in another cohort. As of now, there are also only a limited number 
of cohorts that have been measuring the levels of the same inflammatory biomarkers and that have WGS data 
available. Even within our own data, we fail to replicate some results, both in the technical replicates as well as in 
the novel associations with regards to the results from genotyped/imputed data. The limitations mentioned above 
are most likely also dependent on differences in biomarker quantifications between the biomarker panels. As 
with imputation, variant calling can be more or less precise. Only a genotype probability is given, with additional 
quality measures. Caution should be taken, until the associations have been validated. This applies especially to 
the associations containing only a few variants, or variants not yet given an official identifier. Validation has to 
be performed in a similar cohort, in order to obtain higher confidence and better understanding of the results. 
This limitation was especially apparent in our validation in the Finnish population, with a possible reason for 
lack of replication being the discrepancy in population size (around 950 in NSPHS compared to up to 8,293 
Finns). Other possible explanations for the lack of replication are the different LD structures, the different tech-
niques used for protein quantification, and that one cohort being based on WGS and the other on genotyped and 
imputed data.

In summary, we have performed GWAS in a family-based cohort with WGS data in relation to inflammatory 
biomarkers. By analyzing only sequencing data, we seek to further extend our knowledge on the genetic contri-
bution to these important biomarkers. The cost-efficient solution of sequencing a few individuals and creating a 
reference panel to be able to do dense genotyping is becoming a well-established method in genetic studies. The 
use of low-depth sequencing as a way of increasing power is also more common today. By using high coverage 
WGS data, we do see an increase in both power and precision despite our limited sample size, an increase which 
indeed appears promising. We compared our results to earlier studies using genotyped/imputed data as well as 
to previously published GWAS. This study found several new loci associated with inflammatory biomarkers and 
nearly 50% of the associations were only detected in the present study. The associations were also stronger, with 
lower p-values, compared to those identified with genotyped/imputed data, suggesting that genotypes are in 
general more accurately determined using WGS compared to imputed data. Our results demonstrate the need 
of deep coverage WGS data with deeper coverage to be able to fully understand the genetic structure of common 
diseases and complex traits.

Gene 
name Biomarker

Top SNV 
(biomarker GWAS) Annotation

Top SNV 
(eQTL) LD

P (biomarker 
GWAS) P (eQTL)

CD40 CD40 (INF) rs1569723 intergenic (NCOA5;CD40) rs1569723 1 5.24 × 10−43 1.06 × 10−28

CD40 CD40 (ONC_CVD) rs4239702 intronic (CD40) rs4239702 1 1.01 × 10−49 1.26 × 10−34

CXCL5 CXCL5 (INF) rs352045 (cis)* upstream (CXCL5) rs352045 1 6.09 × 10−27 4.25 × 10−111

CXCL5 CXCL5 (ONC_CVD) rs425535 (cis)* exonic (CXCL5) rs425535 1 1.09 × 10−34 4.50 × 10−111

IL15RA IL-15RA rs3136630 intronic (IL15RA) rs3136630 1 2.64 × 10−19 5.21 × 10−6

CXCL5 CXCL5 (INF) rs10740118 (trans)** intronic (JMJD1C) rs10761779 0.856 2.93 × 10−13 1.82 × 10−7

CXCL5 CXCL5 (ONC_CVD) rs7088799 (trans)** intronic (JMJD1C) rs10761779 0.856 7.36 × 10−16 1.82 × 10−7

IL18R1 IL-18R1 rs12999517† intronic (IL1RL1) rs12999517 1 4.89 × 10−19 1.13 × 10−39

TNFSF14 TNFSF14 rs2291668† synonymous (TNFSF14) rs1077667 0.899 4.71 × 10−07 4.36 × 10−47

CCL23 CCL23 rs854671‡ intergenic (CCL23;CCL18) rs854671 1 1.48 × 10−08 3.21 × 10−27

Table 5. Overlapping top SNVs from our biomarker GWAS with WGS data and top SNVs from the eQTL 
analyses by Westra et al.51. Linkage disequilibrium (R2) is presented for biomarkers that had different top SNVs 
in ONC_CVD and INF, but are both in LD with a top eQTL. †From the conditional analysis, adjusted for the top 
variant. ‡From the second conditional analysis, adjusted for the top primary and secondary variant. *Top variant 
in cis, within 1 Mb of the gene encoding the biomarker. **Top variant in trans, on another chromosome than the 
gene encoding the biomarker.
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Methods
Study cohort. The NSPHS was initiated in 2006 to provide a health survey of the population in the par-
ish of Karesuando county of Norrbotten, Sweden, to study the medical consequences of lifestyle and genetics. 
Additional participants were recruited in a second phase from the neighboring village Soppero, in 2009. These 
parishes have about 2,000 inhabitants of which a total of 1,069 participated in the study, whereof 719 individuals 
participated from Karesuando (2006) while another 350 individuals participated from Soppero (2009). For each 
participant in the NSPHS, blood samples were taken and serum and plasma were separated and immediately 
frozen and stored at −70 °C23.

ethical considerations. The NSPHS was approved by the local ethics committee at the University of 
Uppsala (Regionala Etikprövningsnämnden, Uppsala, 2005:325, and extension of the project was approved 2016-
03-09) in compliance with the declaration of Helsinki41. Informed consent to the study was given by all partici-
pants, including the examination of environmental and genetic cause of disease. If a person was not of age (<18 
years), a legal guardian signed additionally. The procedure that was used to obtain informed consent and the 
respective informed consent form has recently been discussed in light of present ethical guidelines42.

Genetic data. A total of 1,041 samples were successfully sequenced using Illumina short read technology 
(X-ten) to 30x coverage per individual. The library preparation, sequencing, and variant calling were performed 
as previously described10. Briefly, WGS data were aligned to the GR37 using bwa-mem v0.7.1243. The raw align-
ments were then processed according to GATK best practice44 using GATK v3.3. Variants were called by the 
GATK HaplotyeCaller 3.3 followed by variant quality score recalibration (VQSR). Sample quality control (QC) 
was then performed to remove genetic outliers and identify potentially contaminated samples and individu-
als with sex discordance errors. After QC, 1,021 unique samples with WGS data remained. Before analysis, the 
VCF-files were converted to PLINK-format with the PLINK software, version 1.90b4.945. Only autosomes and 
biallelic single nucleotide variants (SNVs) were included in the analysis. If a position had more than two alleles, 
PLINK keeps the two most common variants and sets the third one to a missing genotype. SNVs within a deletion 
were also excluded (spanning deletion/overlapping deletion, denoted *). In the same process, the variants without 
an rs-id were renamed to chr:position. MAF and deviation from HWE information were assessed with the --freq 
and --hardy commands in PLINK. The GWA analyses were performed using the GenABEL package in R46,47. To 
make the files compatible with GenABEL, they were first transposed with the --recode transpose command in 
PLINK, and then imported into GenABEL. Variants were annotated with ANNOVAR v 2017.07.1648 using the 
refGene database.

Biomarker data. Out of 1,021 individuals with WGS data, up to 1,011 individuals also have measured 
levels of any inflammatory biomarkers using the Proximity Extension Assay (PEA) technology provided by 
Olink (https://www.olink.com/products/inflammation/). Inflammatory biomarkers have been measured at 

Biomarker Disease trait Mapped trait
SNV (biomarker 
GWAS)

Annotation 
(biomarker GWAS)

Associated 
SNP (GWAS 
catalog) LD§

CCL19 Asthma, Juvenile idiopathic arthritis, 
Rheumatoid arthritis

Asthma; systemic, polyarticular, rheumatoid factor negative, 
oligoarticular juvenile idiopathic arthritis; Rheumatoid arthritis rs149941420 intronic (HLA-DRB1) rs7775228 0.849

CCL4 Inflammatory bowel disease, Juvenile 
arthritis, Ulcerative colitis

Inflammatory bowel disease; systemic, polyarticular, rheumatoid 
factor negative, oligoarticular juvenile idiopathic arthritis; 
Ulcerative colitis

rs113010081 intergenic 
(CCRL2;LTF) rs113010081 1

CD40

Chronic hepatitis B infection, Chronic 
inflammatory diseases, Crohn’s disease, 
Inflammatory bowel disease, Kawasaki 
disease, Multiple sclerosis, Rheumatoid 
arthritis, Systemic lupus erythematosus

Chronic hepatitis B infection; Ankylosing spondylitis; Psoriasis; 
Ulcerative colitis; Sclerosing cholangitis; Crohn’s disease; 
Inflammatory bowel disease; Mucocutaneous lymph node 
syndrome; Multiple sclerosis; Rheumatoid arthritis; Systemic 
lupus erythematosus

rs1569723, rs4239702
intergenic 
(NCOA5;CD40), 
intronic (CD40)

rs1569723, 
rs4239702, 
rs1883832,
rs1569723,
rs6074022,
rs2425752,
rs4810485,
rs6032662

1,
1,
0.914,
0.914,
0.914,
0.843,
0.906,
0.914

CD6
Chronic inflammatory diseases, Crohn’s 
disease, Inflammatory bowel disease, 
Ulcerative colitis

Ankylosing spondylitis; Psoriasis; Ulcerative colitis; Sclerosing 
cholangitis; Crohn’s disease; Inflammatory bowel disease rs11230563 missense (CD6) rs11230563 1

CXCL5 Ulcerative colitis Ulcerative colitis rs352045, rs425535 upstream (CXCL5), 
exonic (CXCL5) rs2457996 0.944

IL-12B Ankylosing spondylitis, Chronic 
inflammatory diseases, Crohn’s disease

Ankylosing spondylitis; Psoriasis; Ulcerative colitis; Sclerosing 
cholangitis; Crohn’s disease rs10043720 ncRNA intronic 

(LOC285626)
rs6556416, 
rs6556411, 
rs10045431

0.993,
1,
0.884

IL-18R1
Celiac disease, Crohn’s disease, 
Inflammatory bowel disease, Pediatric 
autoimmune diseases

Celiac disease; Crohn’s disease; Inflammatory bowel disease; 
Autoimmune thyroid disease; Type I diabetes mellitus; Common 
variable immunodeficiency, Chronic childhood arthritis; 
Ankylosing spondylitis; Psoriasis; Ulcerative colitis; Autoimmune 
disease; Systemic lupus erythematosus

rs10190555 intronic (IL18R1)

rs13015714, 
rs917997,
rs990171, 
rs2058660, 
rs6708413, 
rs2075184

0.991,
0.954,
0,954,
0.954,
0.954,
0.954

TNFSF14 Multiple sclerosis Multiple sclerosis rs2291668 (secondary) synonymous 
(TNFSF14) rs1077667 0.879

Table 6. Disease-associations for the inflammatory biomarkers. Disease-associations with inflammatory 
diseases in the GWAS catalog are presented. If the variant has been reported in the catalog before, it is marked 
in bold. The other have not been previously reported, but are in strong LD with variants that have (R2 > 0.8). A 
more extensive Table is found in Supplementary material, Supplementary Table S6. §R2 between our SNV and 
the previously associated variants from the GWAS catalog.
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three different timepoints within the cohort. At the first two timepoints the panels Oncology I (ONC I)23 and 
Cardiovascular I (CVD I)25 were measured. These include 31 inflammatory biomarkers (ONC_CVD). A total of 
1,00525 samples were measured at the first two timepoints. At the third timepoint28, the panel INF I was used to 
measure biomarker levels (INF). Here, 92 biomarkers were measured in 903 individuals28. Of the inflammatory 
biomarkers from the ONC_CVD dataset, 30 had overlapping measurements in the INF panel, and thus served 
as technical replicates. The quality control of the biomarkers has been described previously23,25,28. After quality 
control, up to 957 individuals had available biomarker data in ONC_CVD and up to 892 from INF. Biomarkers 
with measurements in less than 400 individuals were excluded from downstream analyses.

GWAS. The GenABEL package was used to perform GWAS adjusting for relatedness among individuals. 
GenABEL utilizes a genetic kinship matrix which was estimated with the ibs function. The kinship matrix was 
estimated based on the SNPs listed for the HumanHap300v2_A chip. This chip contains >300,000 SNPs that are 
selected to be tagSNPs, i.e. that are not in high LD with each other. This was done to remove non-informative var-
iants in the construction of the kinship matrix. The phenotypic measurements and possible covariates, together 
with the kinship matrix, are passed to the polygenic function of GenABEL. The residuals from the polygenic 
model and the inverse covariance-matrix are then passed on to the mmscore, a linear mixed-effects model, 
which was used to perform the association analysis. All biomarker levels were rank-transformed to standard 
normal distributions with the rntransform function in GenABEL prior to the GWAS. All biomarker values were 
adjusted for sex, age and batch effect prior to, or in the GWA analyses. A Bonferroni adjusted p-value threshold 
was applied to account for the number of independent tests. To calculate the number of independent SNVs in 
the analysis, LD-pruning was performed in PLINK, using the --indep-pairwise function, with a window size of 
10 Mb and variant jump count of 1. This resulted in a p-value cut-off of pthreshold = 0.05 / 3,078,707 independent 
SNVs = 1.62 × 10−8. A MAF threshold of 0.15% in the primary analyses and HWE cut-off of 5 × 10−8 was used. 
The MAF threshold was determined from simulation by assuming that the individuals with the most extreme 
biomarker levels were the only carriers of the minor allele at a given position. The minimum p-values were esti-
mated depending on the number of individuals carrying one copy of the minor allele, as well as on sample size 
(Supplementary Fig. S1). Given a sample size of 700–1,000 individuals, which corresponds to the sample size for 
the biomarkers analyzed, a minimum of four individuals with one copy of the minor allele is needed to reach the 
genome wide significance threshold of our study. Since three copies in 1000 individuals corresponds to a fre-
quency of 0.15%, we therefore used 0.15% as the MAF threshold in the primary GWA analyses of our study (more 
than three copies per 1000 individuals).

Biomarker chr:position† SNV
MAF WGS 
(effect allele)

MAF imputed 
(effect allele)

Genotype quality 
(sd) WGS

Imputation 
quality P WGS P imputed28

ADA 20:43255220 rs11555566 0.019 0.019 86.50 (14.78) 1 4.91 × 10−18 1.35 × 10−08

CASP-8 2:202178477 rs116010659 0.165 0.141 90.00 (12.94) 0.968 3.63 × 10−09 7.55 × 10−03

CCL11 3:42906116 rs2228467 0.070 0.069 87.10 (14.11) 1 2.19 × 10−09 2.93 × 10−08

CCL20 11:102742761 rs17368659 0.160 0.154 96.12 (7.33) 0.999 1.40 × 10−09 9.42 × 10−01

CCL23 17:34326215 rs712048*** 0.087 0.085 95.65 (7.46) 0.993 1.28 × 10−12 7.90 × 10−11***
CD244 1:160802681 rs71517284 0.378 NA** 91.14 (13.84) NA** 1.16 × 10−13 NA**
CDCP1 3:45176513 rs78521038 0.225 NA** 94.40 (9.59) NA** 2.62 × 10−12 NA**

CST-5 20:23859017 rs4239743 0.499 0.494 94.61 (9.83) 0.990 8.61 × 10−21 Biomarker not 
analysed28

CX3CL1 16:57374418 rs9921681 0.309 0.366 82.93 (18.48) 0.984 3.37 × 10−10 4.00 × 10−06

CXCL1 4:74734668 rs3117604 0.331 0.321 91.77 (12.80) 0.989 2.46 × 10−19 3.80 × 10−01

CXCL11* 4:76943947 rs11548618 0.035 0.034 92.21 (10.60) 1 3.44 × 10−13 8.96 × 10−01

CXCL9* 4:76943947 rs11548618 0.035 0.035 92.21 (10.60) 1 6.19 × 10−10 4.33 × 10−01

FGF-5 4:81184341 rs16998073 0.335 0.334 93.58 (11.26) 1 1.50 × 10−11 2.03 × 10−06

MCP-3 1:109407135 rs11102571 0.112 0.103 86.27 (21.81) 0.985 1.34 × 10−09 3.029 × 10−06

ST1A1 16:28595989 rs138534121 0.064 NA** 83.89 (16.79) NA** 2.51 × 10−13 NA**
STAMBP* 1:53206258 1:53206258§ 0.026 NA** 29.16 (20.59) NA** 3.32 × 10−09 NA**
TGFB1 19:41847860 rs1800472 0.040 0.041 88.09 (14.06) 1 1.35 × 10−12 1.55 × 10−08

TNFB 6:31540757 rs2229092*** 0.027 0.027 76.95 (17.90) 1 2.70 × 10−29 6.04 × 10−21***
TNFSF14 19:6665020 rs344560 0.065 0.066 91.63 (11.59) 1 3.72 × 10−17 7.18 × 10−01

uPA 19:44202855 rs346058 0.046 0.043 87.38 (14.18) 0.955 7.12 × 10−09 2.89 × 10−03

Table 7. Location and annotation of novel top GWAS hits from the present WGS associations that were not 
reported in our previous studies with genotyped/imputed data. MAF is shown for both the WGS and imputed 
data set as well as genotype quality for the WGS data and imputation quality for the imputed data. The lowest 
p-value is shown from the WGS study and the p-value from combined analyses*** of the INF biomarkers 
published by Enroth et al.28. The genome-wide significant threshold used in the WGS study was 1.62 × 10−8 
and in the previous study using genotyped/imputed data, a more stringent threshold of 4.79 × 10−9 were 
used, adjusting for the total number of markers analyzed rather than the total number of independent tests 
performed. §Does not have an rs-id. †In hg19 coordinates. *Likely to be false positive findings (STAMBP) due 
to low genotype quality and CXCL9/ CXCL11 is discussed in the Supplementary (including Supplementary 
Figs S21–S25) **Did not pass imputation QC or were not present in the reference panel used for the 
imputations. ***Two associations were not reported in our previous study due to the two-stage design (discovery 
and replication) even though the p-value was significant in the combined analyses.
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QQ-plots and Manhattan plots were produced with the qqman package in R49. Regional association plots were 
constructed using Locuszoom50. The 1000 G Nov 2014 EUR population was used for the coloration based on LD. If 
one biomarker had different top SNVs in the technical replicates, the LD coefficient (R2) was calculated using PLINK 
within the study population itself (NSPHS). To assess the size of the associated regions, an SNV clumping was per-
formed in PLINK. A clump kb radius of 15 Mb (--clump-kb), a p-value threshold of 1 × 10−8 (--clump-p1) and an R2 
cut-off set to default (--clump-r2 0.1) was used. This function clumps SNVs together based on empirical estimates of 
LD. The range (in bp) of the clumps was then calculated for each biomarker and used to define biomarker-based loci. 
We also performed conditional analysis, where the top SNV, for each marker with a significant hit, was used as covariate 
in the mmscore function to see whether there was more than one independent association for each biomarker. These 
clump-defined loci were then used to calculate a biomarker-based significance threshold for results in the conditional 
analyses. SNVs with a conditional p-value below 0.05/number of SNVs tested in the predefined locus, were considered 
as an independent association. If the biomarker had a significant secondary (conditional) signal, a third analysis was 
performed, adjusting for both the primary and secondary signal. No MAF cutoff was used in the conditional analyses.

Narrow-sense heritability estimates. Narrow-sense heritability (h2) was estimated using the polygenic model 
in GenABEL. First, the heritability for the biomarker measurements was estimated only adjusting for age, sex, batch 
effects and kinship. Then, as an estimation of SNV heritability, the top variant was used as a covariate. The difference 
in heritability estimated between the models gives the variance explained by the top variant. If secondary and tertiary 
signals were present, they were added as additional covariates and SNV heritability was calculated for each separately. 
To test significance of heritability, the reported function minimum (twice the negative maximum log-likelihood) is 
compared to the reported function minimum in a polygenic model with a fixed heritability estimate set to zero. The 
difference gives a test approximately distributed as chi-squared with 1 degree of freedom.

Colocalization with published GWAS data and comparison with previous biomarker studies. If 
the top SNVs of two different GWASes are in LD (R2 > 0.8), the phenotypes are considered to be colocalized. In 
the study cohort, the LD pattern was calculated between each top SNVs and all SNVs within 2 Mb, using PLINK. 
All variants that were in LD (R2 > 0.8) with a top SNV were extracted. These were used as query to test for colo-
calization with data from the GWAS catalog (The NHGRI-EBI Catalog of published genome-wide association 
studies, https://www.ebi.ac.uk/gwas/home) to find out whether the variants have already been published in ear-
lier association studies of inflammatory biomarkers. Entries with p-values up to 1 × 10−6 in the GWAS catalog 
(version 1.0.2 – downloaded 2018-10-29) were included in the comparison. All entries for the top variants and 
variants in LD found in the catalog was extracted together with their metadata.

Our GWAS results were also tested for colocalization with the expression quantitative trait locus (eQTL) 
dataset from Westra et al.51. This dataset consists of both cis-eQTL and trans-eQTLs and is based on an eQTL 
meta-analysis in non-transformed peripheral blood samples. The names of the genes encoding the biomarkers 
were matched both in the cis and trans dataset to see if the top SNVs in this study had been reported as an eQTL. 
If not, LD was calculated between the top SNVs of our study and the most significant eQTL variant, using PLINK, 
also here within the study cohort (NSPHS).

Further replication was made using another population from Northern Europe. Circulation cytokines have 
been measured in Finnish populations by Ahola-Olli et al.29. We sought to replicate the results from the 19 
inflammatory biomarkers (i.e. cytokines) that were present in both studies: bNGF, CCL11, CCL3, CCL4 (MIP1b), 
CXCL1 (GROa), CXCL10 (IP10), CXCL9 (MIG), HGF, IL-4, IL-5, IL-5, IL-7, IL-8, IL-10. IL-13, IL-18, MCP-1, 
MCP-3, SCF, TNFB and TRAIL. However, IL-4, IL-5 and IL-13 did not pass QC in our study, and thus, only 16 
biomarkers could be compared. Only top SNVs were used in the replication.

Top variants were compared to the results from previous studies with genotyped/imputed data in the same 
cohort25,28. In the first study, the ONC_CVD biomarkers were analyzed25 in the whole cohort whereas in the second 
study28, the INF biomarkers were analyzed using a two-stage design by splitting the cohort into a discovery and 
replication cohort (genotyped using different arrays and imputed independently) followed by combined analyses for 
the SNVs that replicated. Even if the two previous studies were based on the same genotyping and imputation data, 
the quality control of the imputed genotypes where slightly different with one additional requirements of a genotype 
probability score of Info >0.9 in 95% of the individuals for the analyses of the INF biomarkers whereas the criteria 
of imputation quality >0.3 and HWE p-value >0.05/the number of SNPs within the sub cohorts based on different 
genotyping arrays as well as after combining the two sub cohorts. More information about genotyping, imputation 
and quality control of imputed variants is included in the previous articles25,28. In this comparison, the additional 
filters were also applied to the imputed data similar to the WGS data, i.e. only biallelic autosomal hits were compared. 
If an association was previously found with an indel or a variant in a spanning deletion, the biallelic variant with the 
lowest p-value after the indel or spanning deletion was used for comparison. For a subset of the non-overlapping 
hits, we also compared the WGS genotypes with the imputed dosage values form the previous studies.

Data availability
Summary statistics from the GWAS will be uploaded to the GWAS catalog.
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