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Abstract: Recent pharmacological studies indicated that the modulation of tripartite-synaptic trans-
mission plays important roles in the pathophysiology of schizophrenia, mood disorders and adverse
reactions. Therefore, to explore the mechanisms underlying the clinical and adverse reactions to
atypical antipsychotics, the present study determined the effects of the sub-chronic administration of
quetiapine (QTP: 3~30 µM) on the protein expression of 5-HT7 receptor (5-HT7R), connexin43 (Cx43),
cAMP level and intracellular signalling, Akt, Erk and adenosine monophosphate-activated protein
kinase (AMPK) in cultured astrocytes and the rat hypothalamus, using ultra-high-pressure liquid
chromatography with mass spectrometry and capillary immunoblotting systems. QTP biphasically
increased physiological ripple-burst evoked astroglial D-serine release in a concentration-dependent
manner, peaking at 10 µM. QTP enhanced the astroglial signalling of Erk concentration-dependently,
whereas both Akt and AMPK signalling’s were biphasically enhanced by QTP, peaking at 10 µM and
3 µM, respectively. QTP downregulated astroglial 5-HT7R in the plasma membrane concentration-
dependently. Protein expression of Cx43 in astroglial cytosol and intracellular cAMP levels were
decreased and increased by QTP also biphasically, peaking at 3 µM. The dose-dependent effects of
QTP on the protein expression of 5-HT7R and Cx43, AMPK signalling and intracellular cAMP levels
in the hypothalamus were similar to those in astrocytes. These results suggest several complicated
pharmacological features of QTP. A therapeutically relevant concentration/dose of QTP activates
Akt, Erk and AMPK signalling, whereas a higher concentration/dose of QTP suppresses AMPK
signalling via its low-affinity 5-HT7R inverse agonistic action. Therefore, 5-HT7R inverse agonistic
action probably plays important roles in the prevention of a part of adverse reactions of QTP, such as
weight gain and metabolic complications.
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1. Introduction

Quetiapine (QTP) is one of the most commonly utilised mood-stabilising atypical
antipsychotics; it is approved for the treatment of schizophrenia and several types of
mood disorders, such as major depression, bipolar depression and mania, in a number of
countries [1,2]. Furthermore, off-label uses for a variety of symptoms, including insomnia,
agitation, anxiety, dementia, obsessive-compulsive disorder and psychosis in patients
with Parkinson’s disease, are also well known [3,4]. Indeed, QTP has been ranked as
one of the 100 most commonly prescribed medications in the United States in the past
decade due to its wide clinical spectrum [5]. Several meta-analyses and systematic reviews
confirmed the findings regarding the clinical effectiveness of QTP [6–13]. Additionally,
these reports also suggested the existence of a dose-dependent clinical efficacy spectrum of
QTP: unipolar depression—150~300 mg/day, bipolar depression—300~600 mg/day and
mania and schizophrenia—more than 600 mg/day [3,6–13]. In contrast to the effectiveness
of a high dose of QTP, a daily dose of QTP of 300 mg/day was superior to 600 mg/day
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with respect to quality of life and metabolic complications [9]. Notably, a dose–response
meta-analysis revealed that the dose–response curve of weight gain induced by QTP was
approximately bell-shaped and its peak was 1.48 kg at around 600 mg/day [14].

The pathophysiology of the clinical effects and adverse reactions of QTP is not a sim-
ple mechanism, since QTP binds various transmitter receptors [15,16] and affects various
transmission systems [17,18]. QTP is a potent histamine H1 receptor (H1R) antagonist
(H1R: Ki = 11 nM) resembling clozapine (Ki = 1.13 nM), when compared to other atypical
antipsychotics [15] (Table 1). QTP presents relatively higher potencies to α1A adrenoceptors
and 5-HT2A receptor (5-HT2AR) as antagonists, but lower potencies to dopamine D2 recep-
tor (D2R) antagonism with 5-HT1A receptor (5-HT1AR) partial agonism [15]. According
to these unique receptor binding profiles of QTP, it can be speculated that QTP at a dose
lower than 50 mg/day acutely induces hypnotic and daytime sedation due to primarily
H1R and adrenoceptor antagonism [19]. With an increasing concentration, QTP increases
monoamine release via pre-synaptic disinhibition induced by 5-HT2AR suppression in
the frontal cortex [17]. Further increasing the QTP concentration, the somatodendritic
dopamine D2 receptor (D2R) on dopaminergic neurons in the midbrain is inhibited, result-
ing in the activation of dopaminergic transmission [17]; however, it has been questioned
whether the 5-HT1AR partial agonistic action of QTP contributes as a potential mechanism
underlying the pathophysiology of QTP [20].

Table 1. Receptor binding profiles of quetiapine and other mood stabilizing atypical antipsychotics.

Transmitter Receptor QTP NQTP Brex CLZ LUR ZTP

Histamine H1R 11 3.5 19 1.13 >1000 3.21

Serotonin 5-HT1AR 432 45 0.12 124 6.8 471
(5-HT) 5-HT2AR 100 48 0.47 5.4 2.0 2.7

5-HT7R 307 76 3.7 18.0 0.5 12.0

Norepinephrine α1A 22 144 3.8 1.62 47.9 7
α2A >1000 237 15 37 40.7 180

Dopamine D1R 712 214 160 266 262 71.0
D2R 245 196 0.3 157 1.7 25.0

Reference [15] [15] [21] [22,23] [24] [25]
Quetiapine (QTP), QTP metabolite, norquetiapine (NQTP), brexpiprazole (Brex), clozapine (CLZ), lurasidone
(LUR), zotepine (ZTP) against serotonin (5-HT) type 1A (5-HT1AR), type 2A (5-HT2AR), type 7 (5-HT7R),
dopamine receptors type 1 (D1R) and 2 (D2R) and adrenoceptor type α1A (α1A) and α2A (α2A) and histamine
type 1 (H1R) receptor. Data are equilibrium constant (Ki) values (nM).

In spite of these efforts, the features of the clinical action of QTP cannot be fully ex-
plained by its receptor binding profiles alone [18]. Recent pharmacodynamic findings have
been accumulated to support the possibility that functional abnormalities of tripartite synap-
tic transmission play important roles in the pathophysiology of mood disorders [26–28].
Furthermore, the expression of several monoamine receptors, including 5HT1AR and
5-HT7 receptors (5-HT7R), in astrocytes has been identified [18,29–31]. According to the
monoaminergic tripartite synaptic transmission hypothesis of mood disorders, it has been
suggested that the pharmacodynamic profile of astroglial transmission associated with
the hemichannel has a correlation with efficacy in mood disorders [26,28,32]. In particu-
lar, several pharmacogenetic studies reported that 5-HT7R inhibition played key roles in
the pathophysiology of mood disorders other than schizophrenia [26,33–35]. Indeed, a
5-HT7R and 5-HT transporter-inhibiting antidepressant, vortioxetine [36,37], suppresses
astroglial L-glutamate release via inhibition of connexin43 (Cx43) trafficking to the plasma
membrane [31]. Similar to vortioxetine, mood-stabilising antipsychotics, such as brex-
piprazole and lurasidone, which are effective for bipolar depression but not for mania,
also suppress astroglial L-glutamate release due to the same mechanism [18,28,38–41]. It
has been demonstrated that 5-HT7R inhibition probably plays an important role in the
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underlying effects of vortioxetine, brexpiprazole and lurasidone on the suppression of
Cx43 trafficking [31,38,39]. Contrarily, several mood-stabilising atypical antipsychotics,
such as clozapine, QTP and zotepine, which are effective for a wide spectrum of mood
disorders, including unipolar depression, bipolar depression and mania, increase astroglial
L-glutamate release via activation of Cx43 trafficking [18,26,28,40,41].

Both antidepressive mood-stabilising antipsychotics, lurasidone and brexpiprazole,
are evaluated to be the safest option in patients with a risk of developing metabolic
complications, since they are listed among the best atypical antipsychotics associated with
metabolic outcomes [14,42]. The mechanisms of similar clinical features between lurasidone
and brexpiprazole, which are of low risk for the development of metabolic complication,
are also probably involved in the 5-HT7R inverse agonistic action of these atypical an-
tipsychotics [38,39]. In particular, the 5-HT7R inverse agonistic actions of lurasidone and
brexpiprazole are speculated to contribute to the suppression of adenosine monophosphate-
activated protein kinase (AMPK) signalling, resulting in a low risk of developing metabolic
complications [38,39,43]; however, clozapine is also known to be a 5-HT7R inverse ag-
onist [44]. Clozapine acutely inhibits 5-HT7R functions and chronically downregulates
5-HT7R [44], whereas the binding affinity of clozapine to 5-HT7R (Ki = 18 nM) is relatively
lower compared to H1R (Ki = 1.1 nM) [22,23] (Table 1). The binding affinity of QTP to
5-HT7R (Ki = 307 nM) is also relatively weak compared to H1R (Ki = 11 nM) [15] (Table 1).
The inhibitory action of QTP on 5-HT7R and H1R has been speculated to provide the mech-
anisms inherent in the antidepressant effects of QTP [45]; however, considering the clinical
findings that the antidepressant effect of QTP is predominant at low doses, the low binding
affinity of QTP to 5-HT7R possibly contributes to the dose-dependent biphasic effect of
high doses of QTP on weight gain, rather than its antidepressive effects. Therefore, the
effects of QTP on 5-HT7R remain to be clarified. Based on these aspects, the present study
performed several experiments, to clarify the pathophysiology of the upper limit of the
therapeutically relevant concentration of QTP associated with 5-HT7R, considering (1) the
concentration-dependent effects of QTP on the release of gliotransmitter D-serine through
activated astroglial Cx43-containing hemichannel; (2) the concentration-dependent effects
of intracellular signalling, including protein kinase B (Akt), extracellular signal-regulated
kinase (Erk) and AMPK; (3) finally, the subchronic effects of the systemic administration of
QTP on AMPK signalling in the hypothalamus.

2. Results
2.1. Effects of Intracellular Signalling and QTP on Basal and Artificial Ripple-Burst Evoked
Astroglial D-Serine Release

Astrocytes release gliotransmitters via several systems, such as exocytosis [46,47],
transporters [48] and hemichannels [49]. During the resting state, the astroglial hemichan-
nel cannot release gliotransmitters due to its low opening probability, whereas depolar-
isation of the plasma membrane activates hemichannel activity, resulting in the release
of gliotransmitter through activated astroglial hemichannels [27,50–52]. To clarify the
concentration-dependent effects of QTP on physiological astroglial D-serine release, the
present study determined the basal and ripple-burst (which is observed during sleep spin-
dle burst and contributes to cognitive function) evoked astroglial D-serine release (detailed
method of artificial ripple-burst evoked stimulation is described in Section 4.3).

2.1.1. Effects of Intracellular Signalling on Basal and Artificial Ripple-Burst Evoked
Astroglial D-Serine Release

In our previous study, acute artificial ripple-burst evoked stimulations (100 sets) did
not affect astroglial L-glutamate release [51,53], whereas astroglial D-serine release was
increased by acute artificial ripple-burst evoked stimulations (100 set) (Figure 1A). Basal
astroglial D-serine release was not affected by 10 µM TAT-conjugated Gap19 (Gap19), a
selective Cx43-containing hemichannel inhibitor, whereas ripple-burst evoked D-serine
release was inhibited by 10 µM Gap19 (Figure 1A).
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Figure 1. Effects of 10 µM TAT-conjugated Gap19 (Gap19), connexin43 (Cx43) inhibitor, on acute
artificial ripple-burst evoked astroglial D-serine release (A), effects of intracellular signalling inhibitors
on basal (B) and ripple-evoked astroglial D-serine releases (C). In Panel A, during ripple-evoked
stimulation (100 sets), the cultured astrocytes were incubated in artificial cerebrospinal fluid (ACSF)
with or without (control) 10 µM Gap19. In Panel B: the cultured astrocytes were subchronically
(for 7 days) administrated by intracellular signalling inhibitors, protein kinase B (Akt) inhibitor,
10-[4-(N,N-diethylamino)butyl]-2-chlorophenoxazine hydrochloride (DEBC: 10 µM), extracellular
signal-regulated kinase (Erk) inhibitor, 5-(2-Phenyl-pyrazolo[1,5-a]pyridin-3-yl)-1H-pyrazolo[3,4-c]
pyridazin-3-ylamine (FR180204: 20 µM) and adenosine monophosphate-activated protein kinase
(AMPK) inhibitor (dorsomorphin: 10 µM). In Panel C: after subchronic applications of 10 µM DEBC,
20 µM FR180204 or 10 µM dorsomorphin, the cultured astrocytes were stimulated by ripple-burst
evoked stimulation (100 sets). Ordinates indicate the mean ± standard deviation (SD) of extracellular
D-serine level (µM) (n = 6). * p < 0.05, ** p < 0.01; relative to control, @@ p < 0.01; relative to ripple-burst
evoked release (Gap19 free) by one-way analysis of variance (ANOVA) with Tukey’s post-hoc test.

An Akt inhibitor, 10-[4-(N,N-diethylamino)butyl]-2-chlorophenoxazine hydrochloride
(DEBC: 10 µM), Erk inhibitor, 5-(2-Phenyl-pyrazolo[1,5-a]pyridin-3-yl)-1H-pyrazolo[3,4-c]
pyridazin-3-ylamine (FR180204: 20 µM) [18,31,39,40,52] and AMPK inhibitor, dorsomor-
phin (10 µM) [54], also did not affect basal astroglial D-serine release (Figure 1B), whereas
ripple-burst evoked D-serine release was inhibited by 10 µM DEBC and 20 µM FR180204,
but was not affected by 10 µM dorsomorphin (Figure 1C).

These results suggest that during the resting state, astroglial D-serine is not released
through the astroglial Cx43-containing hemichannel; however, during physiological repeti-
tive firing, such as ripple bursts, astrocytes release D-serine through the activated astroglial
hemichannel. Furthermore, Akt and Erk signalling play important roles in the electrophysi-
ological activation process of the astroglial hemichannel rather than AMPK.

2.1.2. Concentration-Dependent Effects of QTP on Astroglial D-Serine Release

The therapeutically relevant serum concentration of QTP was clinically reported to
approximately range from 0.3 µM to 3 µM [55,56]. A recent study using primary cultured
astrocytes demonstrated that basal astroglial L-glutamate release increased by higher than
10 µM QTP, whereas astroglial L-glutamate release through the activated hemichannel was
increased by higher than 1 µM QTP [18]. Based on these clinical and preclinical findings,
in the present study, cultured astrocytes were administrated with the upper limit concen-
tration (3 µM) and supratherapeutic concentration (10 and 30 µM) of QTP for 7 days [18].
Subchronic administration of QTP for 7 days did not affect basal astroglial D-serine release
(Figure 2A). After subchronic exposure to QTP, ripple-burst evoked stimulation (100 sets)
was enhanced by QTP, in a biphasically concentration-dependent manner [F (3,20) = 12.9
(p < 0.01)], since the concentration response to QTP of ripple-burst evoked D-serine release
was approximately bell-shaped and its peak concentration was 10 µM (D-serine induced
by 10 µM QTP was higher than that by 3 µM and 30 µM QTP) (Figure 2B).
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Figure 2. Concentration-dependent effects of subchronic administration of quetiapine (QTP) on
basal (A) and artificial ripple-burst evoked (B) astroglial D-serine releases. Ordinate indicates the
mean ± SD of extracellular D-serine level (µM) (n = 6). Abscissa indicates QTP concentration (µM).
* p < 0.05, ** p < 0.01; relative to control (QTP free) by one-way ANOVA with Tukey’s post-hoc test.

To clarify the mechanisms of the biphasically concentration-dependent effects of
QTP on ripple-burst evoked D-serine from astrocytes, after the subchronic administration
of QTP with 10 µM DEBC, 20 µM FR180204 or 10 µM dorsomorphin, the ripple-burst
evoked astroglial D-serine release was determined. The stimulatory effects of QTP on
astroglial ripple-burst evoked D-serine release were not affected by the AMPK inhibitor
(Figure 3C). Both DEBC [FQTP (3,30) = 112.0 (p < 0.01), FDEBC (1,10) = 4.9 (p > 0.05), FQTP*DEBC
(3,30) = 23.0 (p < 0.01)] and FR180204 [FQTP (3,30) = 39.4 (p < 0.01), FFR180204 (1,10) = 10.1
(p < 0.01), FQTP*FR180204 (3,30) = 9.5 (p < 0.01)] suppressed the ripple-burst evoked D-serine
release (Figure 3A,B).
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Figure 3. Interaction between subchronic administration of QTP and intracellular signalling inhibitors,
10 µM DEBC (A), 20 µM FR180204 (B) and 10 µM dorsomorphin (C) on astroglial ripple-burst evoked
D-serine release. Ordinates indicate the mean ± SD of extracellular D-serine level (µM) (n = 6).
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@@ p < 0.01; relative to control (inhibitor free) by two-way ANOVA with Tukey’s post-hoc test.

The Erk inhibition by FR180204 appeared to show greater suppression than that of
DEBC (Akt inhibitor). During the inhibition of Erk by FR180204, the biphasic effects
of QTP remained to be observed, whereas DEBC abolished the bell-shaped ripple-burst
evoked D-serine release induced by QTP. These results suggest that the concentration-
dependent biphasic action of QTP on ripple-burst evoked astroglial D-serine release is
possibly mediated by Akt signalling.
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2.2. Concentration-Dependent Effects of QTP on Protein Expression in Astrocyte
2.2.1. Effects of QTP on Intracellular Signalling in Astrocytes

Subchronic administration of QTP for 7 days did not affect the protein expression of
Akt, Erk or AMPK (Figure 4). Contrarily, subchronic administration of QTP increased the
phosphorylation of Akt, Erk and AMPK (Figure 4). Both pAkt [F (3,20) = 25.6 (p < 0.01)] and
pAMPK [F (3,20) = 8.1 (p < 0.01)] were increased by subchronic administration in a biphasi-
cally concentration-dependent manner, and the peak QTP levels for pAkt and pAMPK were
3 µM and 10 µM, respectively (Figure 4A,C). In contrast, pErk was increased by subchronic
administration concentration-dependently [F (3,20) = 14.0 (p < 0.01)] (Figure 4B).
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Figure 4. Concentration-dependent effects of subchronic administration (7 days) of QTP on protein
expression of pAkt (A), pErk (B) in the plasma membrane fraction and pAMPK (C) in the cytosol
fraction of cultured astrocytes. In upper side histograms, ordinate: mean ± SD (n = 6) of the relative
protein level of pAkt, pErk and pAMPK per Akt, Erk and AMPK, respectively. Abscissa: QTP level
(µM). * p < 0.05, ** p < 0.01: relative to control (QTP free), @ p < 0.05: relative to 10 µM QTP in panel A;
# p < 0.05: relative to 3 µM QTP in panel C by one-way ANOVA with Tukey’s post-hoc test. Lower
side panels indicate their pseudo-gel images, using capillary immunoblotting.

2.2.2. Effects of QTP on 5-HT7R and Cx43

The subchronic administration of QTP decreased 5-HT7R in the plasma membrane
fraction, in a concentration-dependent manner [F (3,20) = 9.4 (p < 0.01)] (Figure 5B). In
contrast to 5-HT7R, expression of Cx43 in the cytosol fraction was also decreased by QTP
[F (3,20) = 39.1 (p < 0.01)], but the peak reduction in Cx43 level was generated by the lowest
level of QTP (3 µM) (Figure 5A).
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expression of Cx43 in the cytosol fraction (A) and 5-HT7R in the plasma membrane fraction (B)
of cortical primary cultured astrocytes. In left side histograms, ordinate: mean ± SD (n = 6) of
the relative protein level of Cx43 and 5-HT7R per GAPDH. Abscissa: QTP level (µM). * p < 0.05,
** p < 0.01: relative to control (QTP free), @ p < 0.05, @@ p < 0.01: relative to 3 µM QTP in panel A
by one-way ANOVA with Tukey’s post hoc test. Right side panels indicate their pseudo-gel images,
using capillary immunoblotting.

2.3. Effects of QTP on Intracellular cAMP Level in Astrocytes

The concentration-dependent biphasic effects of QTP on pAMPK (upregulation) and
Cx43 (downregulation of transcription) appear to be inversely correlated. Transcription of
Cx43 is regulated by AMPK signalling via histone deacetylase [38,39,57,58]. AMPK is regu-
lated by cAMP-dependent protein kinase (PKA) and exchange protein directly activated by
cAMP (EPAC) [57,59], which is a major second messenger downstream of 5-HT7R [26,60].
Therefore, the concentration-dependent effects of the subchronic administration of QTP on
cAMP synthesis were determined.

According to our expectations, QTP biphasically affected cAMP levels in astrocytes
[FQTP (3,40) = 12.5 (p < 0.01), FSB269970 (1,40) = 6.1 (p < 0.01), FQTP*SB269970 (3,40) = 10.5
(p < 0.01)] and its peak concentration was at 3 µM QTP (Figure 6A). A 5-HT7R inverse ago-
nist, (2R)-1-[(3-Hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine
hydrochloride (SB269970: 10 µM), supressed the stimulatory effects of 3 µM and 10 µM
QTP on cAMP levels without affecting the basal cAMP level (Figure 6B). Therefore, these
results suggest that QTP increased cAMP synthesis, but a higher concentration of QTP
attenuated its stimulatory effects on cAMP synthesis via 5-HT7R inhibition.
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Figure 6. Concentration-dependent effects of subchronic administration of QTP (A) and interaction
between subchronic administrations of QTP and (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-
1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB269970: 10 µM) (B) on intracellular cAMP level in
astrocytes. Ordinates indicate mean ± SD (n = 6) of intracellular cAMP level in cultured astrocytes
(f mol/mg). ** p < 0.01: relative to control (QTP free), @ p < 0.05, @@ p < 0.01: relative to SB269970
free by two-way ANOVA with Tukey’s post-hoc test.

2.4. Effects of Subchronically Systemic Administration of QTP in Rat Hypothalamus In Vivo
2.4.1. Effects of Subchronically Systemic Administration of QTP on Expression of pAMPK
and Cx43 in the Hypothalamus

AMPK regulates energy homeostasis and the transcription processes of several ion
channels via histone deacetylase [38,39,43,57,58]. The resemblance of the effect of QTP
on AMPK signalling and the dose-dependent bell-shaped pattern on weight gain suggest
the possibility that AMPK signalling contributes to the biphasic weight gain induced by
QTP [42]. Therefore, to clarify the possible mechanisms regarding the pathophysiology of
QTP on weight gain, the subchronically systemic administration of QTP on hypothalamic
AMPK signalling in vivo was evaluated. Previous preclinical studies have reported that
the effective dose in the systemic administration of QTP against schizophrenia models
was 10 mg/kg/day [17,61–64]. In particular, 10 mg/kg QTP improved the phencyclidine-
induced deficits of prepulse inhibition [61]. Several microdialysis studies also demonstrated
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that the systemic administration of lower doses of QTP (lower than 5 mg/kg) and a
higher dose of QTP (higher than 10 mg/kg) increased norepinephrine and dopamine
release via inhibition of monoamine receptors, such as α1A adrenoceptor, 5-HT2AR and
D2R [17,62–64]. Based on the previous preclinical findings, in the present study, to explore
the dose-dependent effects of the systemically subchronic administration of QTP on cyclic
adenosine monophosphate (cAMP) levels and protein expression in the rat hypothalamus,
rats were subcutaneously administered QTP (10 or 30 mg/kg/day) for 7 days using an
osmotic pump (2ML_1, Alzet, Cupertino, CA, USA).

Subchronic administration of QTP (10 and 30 mg/kg/days) for 7 days biphasically
affected pAMPK levels in the rat hypothalamus [F (2,15) = 15.6 (p < 0.01)] (Figure 7A).
The effective dose (10 mg/kg/day) of QTP increased pAMPK, whereas a higher dose
(30 mg/kg/day) of QTP also increased pAMPK, but the increase in pAMPK was lower
than that induced by 10 mg/kg/day (Figure 7A). The biphasic action of QTP on Cx43
protein expression in the cytosol fraction of the hypothalamus displayed dose-dependent
biphasic action [F (2,15) = 24.3 (p < 0.01)] (Figure 7B) that was inverse to that on pAMPK.
The effective dose (10 mg/kg/day) of QTP decreased Cx43 expression, whereas a higher
dose (30 mg/kg/day) of QTP also decreased Cx43 expression but the level of Cx43 was
higher than that at 10 mg/kg/day (Figure 7B). In contrast to pAMPK and Cx43, subchronic
administration of QTP decreased 5-HT7R in the plasma membrane of the hypothalamus
[F (3,20) = 5.8 (p < 0.05)] (Figure 7C). Subchronic administration of 30 mg/kg/day QTP
decreased 5-HT7R, but 10 mg/kg/day QTP did not affect it (Figure 7C).
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Figure 7. Dose-dependent effects of systemically subchronic administration (7 days) of QTP on
protein expression of pAMPK (A), Cx43 (B) in the cytosol fraction and 5-HT7R (C) in the plasma
membrane fraction of rat hypothalamus. In upper side histograms, ordinate: mean ± SD (n = 6) of
the relative protein level of pAMPK per AMPK, Cx43 and 5-HT7R per GAPDH. Abscissa: QTP dose
(mg/kg/day). * p < 0.05, ** p < 0.01: relative to control (QTP free), @ p < 0.05, @@ p < 0.01: relative
to 10 mg/kg/day QTP by one-way ANOVA with Tukey’s post-hoc test. Lower side panels indicate
their pseudo-gel images using capillary immunoblotting.
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2.4.2. Effects of Subchronically Systemic Administration of QTP on cAMP Level in
the Hypothalamus

To clarify the mechanisms of the discrepant effects between 10 and 30 mg/kg/day
of QTP on AMPK signalling, we explored the effect of the subchronic administration of
QTP for 7 days on cAMP synthesis in the rat hypothalamus. Subchronic administration
of the effective dose of QTP (10 mg/kg/day) for 7 days increased cAMP levels in the rat
hypothalamus, whereas that of 30 mg/kg/day QTP did not affect them (Figure 8).
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3. Discussion
3.1. Effects of Subchronic Administration of QTP on 5-HT7R

QTP is considered to be a low-affinity 5-HT7R antagonist, but the detailed function
of QTP on 5-HT7R remains to be clarified [15]. It has been already demonstrated that
several mood-stabilising atypical antipsychotics and antidepressants, such as clozapine,
olanzapine, lurasidone, brexpiprazole and vortioxetine, are 5-HT7R inverse agonists, since
these agents acutely inhibited 5-HT7R and subchronically downregulated/desensitised
5-HT7R, similar to selective 5-HT7R inverse agonist, SB269970 [31,38,39,44]. Therefore,
the present study indicated the possibility that QTP is not a 5-HT7R antagonist but is a
candidate 5-HT7R inverse agonist, since QTP acutely inhibited 5-HT7R function and sub-
chronically downregulated 5-HT7R. The activation of 5-HT7R enhances adenylyl cyclase
via activation of the Gsα protein [26]. Indeed, both acute and subchronic administration of
SB269970 inhibits adenylyl cyclase [31,37–39]. In the present study, subchronic application
of a therapeutically relevant concentration of QTP (3 µM) increased cAMP levels without
affecting 5-HT7R expression in the plasma membrane fraction. In contrast to the therapeu-
tically relevant concentration, subchronic application of a higher concentration of QTP (10
and 30 µM) concentration-dependently downregulated 5-HT7R, whereas 10 µM and 30
µM QTP increased and did not affect the cAMP level, respectively. These results suggest
that the therapeutically relevant concentration of QTP could not affect 5-HT7R due to its
low affinity to 5-HT7R, but a higher concentration of QTP concentration-dependently sup-
pressed 5-HT7R function. In the present study, a potent 5-HT7R inverse agonist, SB269970,
attenuated the increasing cAMP level induced by 3 µM and 10 µM QTP but did not affect
that induced by 30 µM QTP. These results suggest that the 5-HT7R inverse agonistic ac-
tion of QTP was not able to act at a therapeutically relevant concentration, but a higher
concentration of QTP (30 µM) suppresses 5-HT7R.
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3.2. Effects of Subchronic Administration of QTP on Intracellular Signalling in Astrocytes

The present study also demonstrated the concentration-dependent biphasic effects of
QTP on intracellular signalling, including Akt, Erk and AMPK, but each type of signalling
exhibited a specific QTP concentration dependency. Indeed, the peak concentrations of
QTP for AMPK, Akt and Erk were lower than 3 µM and 10 µM and higher than 30 µM,
respectively. It is well known that Erk and Akt play important roles in the pathophysiology
of mood disorders and cognitive impairments [65], since D2R, 5-HT1A and 5-HT7R regulate
both Akt and Erk signalling’s [31,66–70].

It has been considered that Akt signalling is one of the key players in the pathophysi-
ology of schizophrenia, since Akt-deficit mice showed impaired prepulse inhibition [71].
Long-term administration of antipsychotics, such as haloperidol, clozapine, olanzapine,
QTP, risperidone and zotepine, enhance Akt signalling [18,40,69–71] due to Akt dephospho-
rylation [69]. Selective 5-HT reuptake inhibitors also enhance Akt signalling via activation
of 5-HT1AR [72]. Similar to Akt signalling, several antipsychotics, such as haloperidol,
clozapine and risperidone, activate Erk signalling [67,68], whereas these effects were not
observed in D2R-deficit mice [66]. Additionally, activation of 5-HT1AR and inhibition of
5-HT2AR enhance Erk signalling [73,74]. Considering these previous findings, the antago-
nistic actions toward D2R and 5-HT2AR of QTP activate both Akt and Erk signalling.

In contrast to Akt and Erk signalling, the effects of QTP on AMPK signalling need
detailed discussion. It has been established that AMPK plays fundamental roles in the regu-
lation of energy homeostasis/metabolism, since AMPK signalling is activated by increasing
energy expenditure, such as decreasing glucose and ATP, resulting in the activation of
hepatic gluconeogenesis and glycogenolysis [75]. It is well known that several antipsy-
chotics enhance AMPK signalling due to H1R inhibition [43,76]. The high-affinity H1R
antagonists clozapine and olanzapine are some of the strongest AMPK activators, whereas
the stimulatory effects of clozapine on AMPK signalling were not observed in H1R-deficit
mice [76]. Furthermore, the histaminergic stimulant betahistine suppressed the olanzapine-
induced activation of AMPK signalling [75]. Based on these findings, the activation of
AMPK signalling induced by H1R antagonistic antipsychotics has been considered to be
important in the pathophysiology of antipsychotic-induced weight gain and the develop-
ment of metabolic complications [43]. According to this hypothesis, it was reasonable that
the therapeutically relevant concentration of QTP enhanced AMPK signalling due to the
high-affinity H1R antagonistic action of QTP (Ki = 11 nM). With regard to the biphasically
concentration-dependent stimulatory effects of QTP on AMPK signalling (bell-shaped
pattern), the therapeutically relevant concentration (3 µM) enhanced AMPK signalling
but the stimulatory effects of the higher concentrations (10 and 30 µM) were attenuated
compared to the therapeutically relevant concentration, which is consistent with the dose
dependency of QTP on weight gain [14]. Exploring the mechanism by which the activation
of AMPK at higher concentrations of QTP diminishes compared to that of the therapeutic
concentration of QTP is clinically important for appropriate dose determination.

Both lurasidone and brexpiprazole have been evaluated as the safest options in pa-
tients with the risk of developing metabolic complications and weight gain, since these
antipsychotics are listed among the best atypical antipsychotics associated with metabolic
outcomes [14,42]. Lurasidone has the lowest affinity to H1R antipsychotics (Ki = >1000 nM);
however, brexpiprazole is a H1R antagonist (Ki = 19 nM), but is a low-risk antipsychotic
for metabolic complications [14,42]. Therefore, the contradiction between lurasidone and
brexpiprazole regarding the low risk for metabolic complications cannot be fully explained
by their affinity to H1R. Recently, the possible 5-HT7R inverse agonistic actions of lurasi-
done and brexpiprazole, which acutely inhibit but subchronically downregulate 5-HT7R,
contributed to the persistent prevention of the activation of AMPK signalling via suppres-
sion of adenylyl cyclase activity [38,39]. Therefore, a therapeutically relevant concentration
of QTP enhances AMPK signalling induced by H1R inhibition, whereas at a higher concen-
tration of QTP, the 5-HT7R inverse agonistic action probably is actuated, resulting in the
attenuation of its stimulatory effects on AMPK signalling induced by H1R inhibition.
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3.3. Dose-Dependent Clinical Action of QTP

The major purpose of this study was to explore the pathophysiology of a high dose of
QTP (higher than 600 mg/day), which is mainly related to the antipsychotic and anti-manic
effects and reduction in the risk of weight gain and metabolic complications compared to a
lower dose of QTP (300~600 mg/day). For this purpose, therefore, the present study also
determined the dose-dependent effects of QTP on AMPK signalling in the hypothalamus,
since the enhancement of AMPK signalling in the hypothalamus is one of the major
mechanisms of weight gain induced by several antipsychotics [38,39,43]. According to our
expectations, the therapeutically relevant dose of QTP activated hypothalamic AMPK, but
a high dose of QTP attenuated the enhanced hypothalamic AMPK signalling compared
to the therapeutically relevant dose. This attenuation is possibly associated with similar
mechanisms, namely the downregulation of 5-HT7R and attenuation of cAMP synthesis
observed in astrocytes. Therefore, the results from the in vitro experiment using cultured
astrocytes can be used to interpret the mechanism involved in clinical findings that the
5-HT7R inverse agonistic action of QTP plays important roles in the biphasically dose-
dependent effects of QTP (bell-shaped pattern) on weight gain [14]. In other words, the
5-HT7R inverse agonistic action probably contributes to the prevention of antipsychotic-
induced weight gain [38,39,44].

The 5-HT7R inverse agonistic action of QTP is also interesting in terms of the patho-
physiology of mood disorders associated with tripartite synaptic transmission. It has
been reported that the enhancement of astroglial Cx43-containing hemichannels plays
important roles in mood-stabilising action, since several mood-stabilising atypical antipsy-
chotics, such as clozapine, quetiapine, zotepine and brexpiprazole, enhance astroglial
L-glutamate release via activated Cx43-containing hemichannels [18,38–40]. The thera-
peutically relevant concentration of QTP enhanced astroglial L-glutamate release via the
astroglial Cx43-containing hemichannel [18]. In the present study, QTP increased astroglial
D-serine release through the activated hemichannel. D-Serine is a gliotransmitter and
an endogenous, potent co-agonist with the NMDA glutamate receptor. It is known that
the NMDA receptor antagonist esketamine has been approved for the treatment of con-
ventional monoaminergic antidepressant-resistant depression [77]; however, conversely,
both clinical and preclinical investigations revealed that D-serine exhibited antidepressant
action [78]. Contrarily, an NMDA receptor agonist generates severe cognitive impairments,
whereas D-serine is considered to be a candidate cognitive enhancer [79]. The mechanisms
of the similar antidepressive efficacies and opposite effects against cognition among NMDA
receptor agonists and antagonists remain to be clarified [80], whereas the stimulatory effects
of QTP on astroglial D-serine release through astroglial hemichannels are possibly involved
in the clinical efficacy, antidepressive and cognitive enhancement effects of QTP. Trafficking
of Cx43 to the plasma membrane is positively regulated by Akt signalling [27,28,31,37,52],
which is activated by a therapeutically relevant concentration of QTP. However, therapeuti-
cally relevant concentration of QTP unexpectedly did not increase Cx43 protein expression
in the astroglial plasma membrane, whereas, under histone deacetylate inhibition, QTP in-
creased Cx43 expression in the plasma membrane [18]. The present study probably revealed
the underlying mechanism of the contradiction of therapeutically relevant concentration
of QTP on Cx43 protein expression in the cytosol and plasma membrane. In the present
study, the therapeutically relevant concentration of QTP enhanced and decreased AMPK
signalling and Cx43 protein expression in the astroglial cytosol fraction. The transcription
of Cx43 is suppressed by histone deacetylase, which is activated by AMPK signalling [57].
In other words, at the therapeutically relevant concentration of QTP, it appeared that there
was no change in Cx43 expression in the plasma membrane, due to the combination of the
contrasting effects between the suppression of Cx43 protein synthesis and enhancement of
trafficking Cx43 to the plasma membrane. QTP has been evaluated as a wide-spectrum
mood-stabilising antipsychotic, and QTP monotherapy is effective in the treatment of acute
mania and prevention of recurrence of mania and bipolar depression [7,9,10]. Additionally,
the efficacy of the combination therapy with valproate and QTP has also been established
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regarding its effectiveness for the treatment of various mood disorders [11,81]. Taken
together with this clinical evidence, the effectiveness of valproate as an adjunct therapy
to QTP is possibly modulated by the relative enhancement of Cx43 function due to the
activation of Cx43 transcription induced by histone deacetylase inhibition.

The high seizure risk during QTP treatment is well known [82,83], whereas, contrary
to clozapine [84], the dose dependence of the seizure risk of QTP remains to be clarified.
For QTP-induced seizure, the timing appears to range from several hours to one day after
the supratherapeutic dose of QTP is administered [85–87]. Tmax and T1/2 values of QTP
are approximately 1.5 and 6 h, respectively [88]. Therefore, the delay onset of QTP-induced
seizure following QTP intake is peculiar in light of the pharmacokinetics of QTP. In other
words, the pathophysiology of QTP-induced seizure is probably not attributed to the recep-
tor binding profiles of QTP. Considering the turnover of Cx43 (several hours), at least more
than several hours after QTP administration are required to increase the release of excitatory
gliotransmitters, including L-glutamate and D-serine, through activated hemichannels via
the activation of various processes, such as transcription, folding, trafficking and activation
of Cx43. Recent clinical physiology explored the impacts of high-frequency oscillations on
brain function and identified that high-frequency oscillations exhibit both physiological and
pathological functions in a frequency-dependent manner. Physiological high-frequency os-
cillation, ripple-burst (80~250Hz), which is synchronised with the sleep-spindle burst, plays
important roles in cognitive function, whereas pathological fast ripple-burst (250~500 Hz)
contributes to epileptic discharge and neuronal damage [51,89]. The results that QTP
could not directly activate the astroglial hemichannel, but enhanced astroglial excitatory
gliotransmitters (L-glutamate and D-serine) release through the activated hemichannel,
suggest the possible pathophysiology of a delayed-onset QTP-induced seizure. A recent
study reported that ripple burst could be involved in ictogenesis in the networks that have
acquired vulnerability to epileptogenesis [49,51]. Considering these previous findings, this
study can propose a working hypothesis regarding delayed-onset QTP-induced seizure.
A therapeutic dose of QTP suppresses the excessive functioning of the Cx43-containing
hemichannel via inhibition of Cx43 transcription by the activation of AMPK signalling,
whereas a supratherapeutic dose of QTP generates an excessive increase in the Cx43-
containing hemichannel in the plasma membrane via the combination of inhibited AMPK
and activated Erk signalling. The increased Cx43-containing hemichannel in the plasma
membrane persists for at least several hours (half-life of Cx43 in the plasma membrane).
During this condition, the supratherapeutic concentration of QTP is rapidly decreased
due to the short T1/2 kinetics feature of QTP, resulting in the generation of disinhibition.
Therefore, the positive interaction between disinhibition and increasing Cx43-containing
astroglial hemichannels plays important roles in the pathophysiology of delayed-onset
QTP-induced seizures [85].

4. Materials and Methods
4.1. Chemical Agents and Drug Administration

Quetiapine fumarate (QTP), selective Cx43 inhibitor, TAT-conjugated Gap19 (Gap19),
Akt inhibitor, 10-[4-(N,N-diethylamino)butyl]-2-chlorophenoxazine hydrochloride (DEBC)
and AMPK inhibitor, dorsomorphin hydrochloride were obtained from Funakoshi (Tokyo,
Japan). Erk inhibitor, 5-(2-Phenyl-pyrazolo [1,5-a]pyridin-3-yl)-1H-pyrazolo[3,4-c]pyridazin-
3-ylamine (FR180204) was obtained from Tokyo Chemical Industry (Tokyo, Japan). 5-HT7R
inverse agonist, (2R)-1-[(3-Hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]
pyrrolidine hydrochloride (SB269970), were obtained from Cosmo-Bio (Tokyo, Japan). All
agents were prepared on the day of the experiment. Gap19, DEBC, SB269970 and dor-
somorphin were directly dissolved in Dulbecco’s modified Eagle’s medium containing
10% foetal calf serum (fDMEM) or artificial cerebrospinal fluid (ACSF). QTP and FR180204
were initially dissolved in dimethyl sulfoxide at 25 mM. The final dimethyl sulfoxide
concentration was lower than 0.1% (v/v).
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The therapeutic-relevant serum concentration of QTP was reported to be approxi-
mately ranged from 0.3 µM to 3 µM. Based on the clinical findings, in the present study,
cultured astrocytes were administrated by 3, 10 and 30 µM QTP for 7 days. Previous studies
have reported that the effective dose of systemic administration of QTP was 10 mg/kg/day.
Based on the previous reports, in the present study, to explore the dose-dependent effects
of systemically subchronic administration of QTP on cyclic adenosine monophosphate
(cAMP) levels and protein expression in the rat hypothalamus, rats were subcutaneously
administered by QTP (10 or 30 mg/kg/day) for 7 days using an osmotic pump (2ML_1,
Alzet, Cupertino, CA, USA).

4.2. Preparation of Primary Astrocyte Culture

Experimental procedures and animal care in this study were performed according
to the ethical guidelines established by the Institutional Animal Care and Use Committee
at Mie University, Japan (No. 2019-3) and the ARRIVE (Animal Research: Reporting
of In vivo Experiments) guidelines. The protocol of astrocytes preparation was mainly
followed the previous study. Each pregnant Sprague–Dawley rat (SLC, Shizuoka, Japan)
was housed individually in a cage (in air-conditioned rooms: temperature, 22 ± 2 ◦C) with
12 h light/dark cycle. Each rat freely accesses to food and water.

Neonatal Sprague–Dawley rats (n = 42), which were sacrificed by decapitation at
0–48 h of age. The cerebral hemispheres were removed under the dissecting microscope.
The cerebral tissue was chopped by fine pieces using scissors, and then triturated briefly
with a micropipette. The suspension was filtered using 70 µm nylon mesh (BD, Franklin
Lakes, NJ, USA) and then centrifuged at 200 rpm. The pellets were resuspended in 10
mL Dulbecco’s modified Eagle’s medium (D6546; Sigma-Aldrich, St. Louis, MO, USA)
containing 10% foetal calf serum (fDMEM). The day after culturing for 14 days (DIV14),
contaminated non-astrocytes were removed by shaking in a standard incubator for 16 h at
200 rpm. Astrocytes were removed from flasks by trypsinisation and seeded directly onto a
translucent polyethylene terephthalate (PET) membrane (1.0 µm) with 24 well plates (BD)
at a density of 100 cells cm2. The culture medium (fDMEM) was changed twice a week,
and QTP and other target agents were administered subchronically (for 7 days, DIV21–28).

4.3. Artificial Ripple-Burst Evoked Stimulation

To clarify the physiological electrostimulation on astroglial transmitter release, in the
present study, cultured astrocytes were electrically stimulated using ripple-burst evoked
stimulation, using a busdrive amplifier (SEG-3104MG, Miyuki Giken, Tokyo, Japan). Sleep
spindle bursts are generally considered to be coupled with ripple-bursts, as determined
using wide-band electrocorticogram. Recently, ripple-bust plays important roles in the
he sleep-dependent memory consolidation. Ripple-burst evoked stimulation was set at
a square-wave direct current pulse output, with a magnitude of 300 mV/mm2. A set of
ripple-burst evoked stimulations was composed of 10 stimuli at 200 Hz and 10 bursts (50%
duty cycle) at burst intervals of 100 ms per 1 s. These stimulation patterns of ripple-burst
evoked stimulations were regulated using LabChart version 8.2 software (AD Instruments,
Dunedin, New Zealand). Cultured astrocytes were stimulated by ripple-burst evoked
stimulation in artificial cerebrospinal fluid (ACSF: comprised NaCl 150.0 mM, KCl 3.0 mM,
CaCl2 1.4 mM, MgCl2 0.8 mM and glucose 5.5 mM, and was buffered to pH 7.3 with 20 mM
HEPES buffer).

4.4. Extraction of Preteins and cAMP from Cultured Astrocytes and Rat Hypothalamus

On DIV28, before extraction, the cultured astrocytes were washed out by ACSF. After
the systemically subchronic administration of effective doses of QTP, the rat hypothalamus
was dissected according to the method of Glowinski and Iversen. To analyse the protein
levels using capillary immunoblotting system, after the washout, the cytosol and plasma
membrane fractions of cultured astrocytes and rat dissected hypothalamus were extracted
by Minute Plasma Membrane Protein Isolation Kit (Invent Biotechnologies, Plymouth, MN,
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USA). To analyse the intracellular cAMP level, after the washout, the cultured astrocytes
and rat dissected hypothalamus were placed into respective 0.5 mL and 1.5 mL microtubes,
and homogenised by ultrasonic cell disrupter (VP-050N, Taitec, Koshigaya, Japan) in
chilled 0.1 N HCl, and then the homogenised sample was centrifuged at 10,000× g for
20 min at 4 ◦C. Filtered aliquots (5 µL) were injected into the ultra-high-performance
liquid-chromatography (UHPLC) with mass spectrometry system (LC-MS).

4.5. Capillary Immunoblotting Analysis

The protein expression level was determined using capillary immunoblotting Wes
system (ProteinSimple, Santa Clara, CA, USA), according to mainly instruction protocol.
The lysates of the primary cultured astrocytes and hypothalamus were mixed with a mas-
ter mix solution (ProteinSimple). The mixture (final concentration of 1× sample buffer,
1× fluorescent molecular weight marker and 40 mM dithiothreitol) was heated at 95 ◦C for
5 min. The samples, blocking reagents, primary antibodies, HRP-conjugated secondary
antibodies, chemiluminescent substrate (SuperSignal West Femto; Thermo Fisher Scien-
tific, Waltham, MA, USA) and separation/stacking matrices were also dispensed into the
designated 25 well plate. After loading, separation electrophoresis and immunodetec-
tion steps were performed in the capillary system, which was fully automated at room
temperature, and the instrument’s default settings were used. Capillaries were first filled
with a separation matrix, followed by a stacking matrix, with approximately 40 nL of the
sample used for loading. During electrophoresis process, the proteins were separated by
molecular weight through the stacking/separation matrices at 250 V for 40–50 min and then
immobilised on the capillary wall using proprietary photo-activated capture chemistry. The
capillaries were incubated with blocking reagent for 15 min, and the target proteins were
probed with primary antibodies, followed by HRP-conjugated secondary antibodies (Anti-
Rabbit IgG HRP, A00098, 10 µg/mL, GenScript, Piscataway, NJ, USA). Antibodies against
GAPDH (NB300-327, 1:300, Novus Biologicals, Littleton, CO, USA), connexin43 (C6219,
1:100, Sigma-Aldrich), 5-HT1AR (NBP2-21590, 1:00, Novus Biologicals), 5-HT7R (NB100-
56352, 1:00, Novus Biologicals), Erk (AF1576, 10 µg/mL, R&D systems, Minneapolis, MN,
USA), phosphorylated-Erk (AF1018, 5 µg/mL, R&D Systems), Akt (AF1775, 1 µg/mL,
R&D Systems), phosphorylated-Akt (AF877, 5 µg/mL, R&D Systems), AMPKα (2603, 1:50,
Cell Signalling Technology, Danvers, MA, USA) and phosphorylated-AMPKα (2535, 1:50,
Cell Signalling Technology) were diluted in an antibody diluent (Immuno Shot Platinum,
CosmoBio, Tokyo, Japan).

4.6. UHPLC and LC-MS

Extracellular levels of D-serine were analysed by UHPLC (xLC3185PU, Jasco, Tokyo,
Japan) equipped with fluorescence detector (xLC3120FP, Jasco): excitation/emission wave-
lengths were set at 280/455 nm. The sample was derivatised with isobutyryl-L-cysteine
and o-phthalaldehyde. The derivatised samples (5 µL aliquots) were automatically injected
by autosampler (xLC3059AS, Jasco), and separated by analytical column (YMC Triat C18,
particle 1.8 µm, 50 × 2.1 mm, YMC, Kyoto, Japan) maintained at 500 µL/min and 45 ◦C. A
linear gradient elution program was used for over 10 min with mobile phases: A (0.05 M
citrate buffer, pH 5.0) and B (0.05 M citrate buffer containing 30% acetonitrile and methanol,
pH 3.5).

The cAMP levels in rat hypothalamus were analysed by UHPLC (Acquity UPLC
H-Class system; Waters, Milford, MA, USA) with mass spectrometry (Acquity SQ detector;
Waters). The samples (5 µL aliquots) were automatically injected by autosampler (Acquity
UPLC Sample Manager FTN; Waters), and separated by analytical column, graphite carbon
column (particle 3 µm, 150 × 2.1 mm; Hypercarb, Thermo) maintained at 450 µL/min at
40 ◦C. A linear gradient elution programme was used for over 10 min with mobile phases: A
(1 mM ammonium acetate buffer, pH 11) and B (100% acetonitrile). The nitrogen flows of the
desolvation and cone were set at 750 and 5 L/h, respectively. The desolvation temperature
was set at 450 ◦C. The cone voltage for the determination of cAMP (m/z = 330.3) was 42 V.
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4.7. Data Analysis

According to previous studies, all experimental designs in this study were set at
equally sized animal groups (n = 6), without conducting formal power analyses. All
data are represented as mean ± standard deviation (SD), and p < 0.05 (two-tailed) was
considered statistically significant. Agent concentrations of subchronic administration were
adopted according to previous studies. To randomise and blind the determination of levels
of D-serine, cAMP and protein expression, the samples were set on autosampler according
to the random number tables.

All statistical analyses in this study were performed using Bell Curve for Excel ver3.2
(Social Survey Research Information Co., Ltd., Tokyo, Japan). The concentration-dependent
and dose-dependent effects of QTP on cAMP levels and protein expression levels were
analysed using one-way analysis of variance (ANOVA) with Tukey’s multiple comparison.
The interaction between QTP and SB269970 on cAMP level in the astrocytes was analysed
by two-way ANOVA with Tukey’s multiple comparison. Effects of inhibitors of Cx43,
Akt, Erk and AMPK on ripple-burst evoked astroglial D-serine release were analysed by
student T-test. Concentration-dependent effects of subchronic administrations of QTP
on astroglial D-serine release were analysed by one-way ANOVA with Tukey’s multiple
comparison. Interaction between QTP and inhibitors of Akt, Erk and AMPK on astroglial
D-serine release were analysed by two-way ANOVA with Tukey’s multiple comparison.
The data and statistical analysis comply with the recommendations of the British Journal of
Pharmacology on experimental design and analysis in pharmacology.

4.8. Nomenclature of Targets and Ligands

Key protein targets and ligands in this report are hyperlinked to corresponding entries
in http://www.guidetopharmacology.org accessed on 19 July 2022, the common portal for
data from the IUPHAR/BPS Guide to PHARMACOLOGY, and are permanently archived
in the Concise Guide to PHARMACOLOGY 2021/22.

5. Conclusions

The present study determined the effects of the subchronic administration of a thera-
peutically relevant and supratherapeutic concentration/dose of QTP on astroglial signalling
associated with 5-HT7R, to explore the mechanisms underlying mood-stabilising antipsy-
chotic effects and metabolic complications of QTP. Subchronic administrations of QTP
downregulated 5-HT7R concentration-dependently, whereas the therapeutically relevant
concentration of QTP (3 µM) did not affect 5-HT7R expression. The fact that QTP acutely
inhibited 5-HT7R function but downregulated 5-HT7R suggests the possibility that QTP
is a candidate low-affinity 5-HT7R inverse agonist, similar to clozapine and olanzapine.
QTP enhanced astroglial Erk signalling concentration-dependently, but 3 µM QTP did
not affect Erk signalling. QTP also enhanced astroglial D-serine release, cAMP synthe-
sis and Akt and AMPK signalling, displaying a bell-shaped pattern. These complicated
concentration-dependent effects of the subchronic administration of QTP were observed in
the rat hypothalamus in vivo. Therefore, these results suggest that the therapeutically rele-
vant concentration/dose of QTP cannot affect 5-HT7R, but a higher concentration/dose of
QTP suppresses 5-HT7R function via the acute inhibition and subchronic downregulation
of 5-HT7R. Importantly, the adverse reactions to QTP, namely weight gain and metabolic
complications, showed bell-shaped responses to the QTP dose, peaking at 600 mg/day.
Therefore, the 5-HT7R inverse agonistic action probably plays important roles in the pre-
vention of some adverse reactions to QTP, such as weight gain and metabolic complications.
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