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Abstract

Family history of disease can provide valuable information in case-control association studies, but 

it is currently unclear how to best combine case-control status and family history of disease. We 

developed an association method based on posterior mean genetic liabilities under a liability 

threshold model, conditional on case-control status and family history (LT-FH). Analyzing 12 

diseases from the UK Biobank (average N=350K), we compared LT-FH to genome-wide 

association without using family history (GWAS) and a previous proxy-based method 

incorporating family history (GWAX). LT-FH was +63% (s.e. 6%) more powerful than GWAS and 

+36% (s.e. 4%) more powerful than the trait-specific maximum of GWAS and GWAX, based on 

the number of independent genome-wide significant loci across all diseases (e.g. 690 loci for LT-

FH vs. 423 for GWAS); relative improvements were similar when applying BOLT-LMM to 

GWAS, GWAX, LT-FH phenotypes. Thus, LT-FH greatly increases association power when family 

history of disease is available.

Introduction

Family history of disease can provide valuable information about an individual’s genetic 

liability for disease, potentially increasing the power of case-control association studies1, the 

focus of this study. More broadly, leveraging data from ungenotyped but phenotyped 

relatives has a rich history in genetic risk prediction2 and analyses of quantitative traits in 

humans3 and livestock4–6. Standard case-control genome-wide association studies (GWAS) 

ignore family history information (Fig 1a). A recent method, genome-wide association by 

proxy1 (GWAX), compares disease cases and “proxy cases” (controls with family history of 
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disease) to controls without family history of disease (Fig 1a). This approach has proven 

successful in studies of Alzheimer’s disease7,8, and has provided a valuable contribution in 

highlighting the value of family history information, but more accurate modeling of family 

history — for example, distinguishing disease cases from proxy cases — may be beneficial1.

We propose a new association method based on posterior mean genetic liabilities under a 

liability threshold model, conditional on both case-control status and family history (LT-FH); 

the liability threshold model, in which an individual is a disease case if and only if an 

underlying continuous-valued liability lies above a threshold, has proven valuable in a wide 

range of settings2,9–13. LT-FH computes association statistics via linear regression of 

genotypes and posterior mean genetic liabilities; association statistics can also be computed 

using efficient mixed-model methods14,15. LT-FH captures the fact that controls with family 

history have higher genetic liability than controls without family history (and likewise for 

disease cases) (Fig 1a). In contrast to GWAX, which assigns the same binary phenotype to 

disease cases and proxy cases, LT-FH accurately models a broad range of case-control status 

and family history configurations, greatly increasing power for diseases of both low and high 

prevalence in analyses of 12 diseases from the UK Biobank.

Results

Overview of methods

The LT-FH method relies on the liability threshold model9, and consists of two main steps 

(Fig 1b): (1) compute posterior mean genetic liabilities for each genotyped individual, 

conditional on available case-control status and/or family history information; (2) compute 

association statistics via linear regression of genotypes and posterior mean genetic liabilities. 

In step 1, we first compute posterior mean genetic liabilities for every possible configuration 

of case-control status and family history (377 configurations, accounting for parental history, 

sibling history, missing data, etc.) and then perform a lookup for each genotyped individual, 

avoiding redundant computation. The posterior mean genetic liability for each configuration 

is computed via Monte Carlo integration, incorporating estimates of disease prevalence and 

parental disease prevalence from the target samples and estimates of narrow-sense 

heritability (which differs from SNP-heritability16) from the literature; we show that Monte 

Carlo integration outperforms an analytical approach (the Pearson-Aitken(PA) 

formula2,17,18) in analyses of sibling history data.

Step 2 generalizes the Armitage trend test19, and we show that it is equivalent to a score test; 

an alternative is to apply BOLT-LMM14,15 (see Code availability) to posterior mean genetic 

liabilities, increasing power in large samples. We emphasize that we utilize posterior mean 

genetic liabilities. We note that raw LT-FH effect sizes are not on the liability scale, but can 

nonetheless be transformed to the observed scale. Details of the LT-FH method are provided 

in the Methods section; we have publicly released open-source software implementing the 

method (see Code availability). We consider a simple example of a disease with a prevalence 

Code Availability
We have publicly released open-source software implementing our LT-FH method; LT-FH software (v1 and v2): https://
data.broadinstitute.org/alkesgroup/UKBB/LTFH/. BOLT-LMM v2.3 software: https://data.broadinstitute.org/alkesgroup/BOLT-LMM. 
LTSOFT software: https://data.broadinstitute.org/alkesgroup/LTSOFT/. PLINK software: https://www.cog-genomics.org/plink2.
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of 5% and narrow-sense heritability of 50%, utilizing parental history only. The posterior 

mean genetic liability is −0.10 for a control with 0 affected parents vs. 0.39 for a control 

with 1 affected parent, but GWAS treats these individuals identically. In addition, the 

posterior mean genetic liability is 1.56 for a case with 2 affected parents vs. 0.39 for a 

control with 1 affected parent, but GWAX treats these individuals identically. On the other 

hand, LT-FH appropriately differentiates all case-control and family history configurations.

Simulations

We performed simulations by simulating genotypes at 100,000 unlinked SNPs and case-

control status plus family history (parental history for both parents) for 100,000 unrelated 

target samples; we did not include sibling history in these simulations. We simulated 

genotypes for both parents, used these to simulate genotypes for target samples (offspring), 

and simulated case-control status for both parents and target samples using a liability 

threshold model; target samples were not ascertained for case-control status. Our default 

parameter settings involved 500 causal SNPs explaining h2 = 50% of variance in liability, 

disease prevalence K = 5% (implying liability threshold T = 1.64 and observed-scale h2 = 

11%), and accurate specification of h2 and K to the LT-FH method; other parameter settings 

were also explored. We compared three methods: GWAS, GWAX, and LT-FH. Further 

details of the simulation framework are provided in the Methods section. We note that 

simulations using real LD patterns are essential for methods impacted by LD between SNPs; 

however, the LT-FH method (like GWAS and GWAX) is not impacted by LD between SNPs, 

because no genotype data is used to compute posterior mean genetic liabilities, and thus LD 

between the focal SNPs and other SNPs cannot impact the power of the LT-FH method at a 

focal SNP (aside from the fixed loss of information due to incomplete tagging of causal 

SNPs). We further note that simulations with LD using a subset of individuals from UK 

Biobank would not be feasible, as simulations of family history require genotypes of both 

target samples and relatives (in order to simulate the case-control status of both target 

samples and relatives), but genotypes of relatives are not available for (nearly all) UK 

Biobank samples.

We assessed the calibration of each method using average χ2 statistics at null SNPs (Figure 

2a and Supplementary Table 1). All methods were correctly calibrated, with an average χ2 

of 1.00 for GWAS, GWAX and LT-FH. Accordingly, false-positive rates at various a levels 

(5 * 10−2 to 5 * 10−6) matched the corresponding a level (Supplementary Table 2), as 

indicated by QQ plots for null SNPs (Extended Data Figure 1).

We assessed the association power of each method using both average χ2 statistics at causal 

SNPs and formal power calculations (proportion of causal SNPs with p < 5 * 10−8) (Figure 

2b,c and Supplementary Table 1). LT-FH was the most powerful method, with a +22% 

increase in average χ2 and a +55% increase in power compared to GWAX, which 

outperformed GWAS at default parameter settings.

We performed 14 secondary analyses (see Supplementary Note and Supplementary Tables 

1–13 and Extended Data Figure 1). Our main findings were that LT-FH outperformed both 

GWAX and GWAS, regardless of the underlying disease prevalence; that the second best 

method after LT-FH was GWAX for lower-prevalence diseases and GWAS for higher-
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prevalence diseases; that the impact of a misspecified value of disease prevalence or 

liability-scale heritability on the association power of LT-FH was negligible; that shared 

environment led to slightly smaller improvements for LT-FH compared to GWAS; and that 

family history reporting bias led to smaller improvements for LT-FH compared to GWAS but 

no increase in type I error. We caution that the generative model in all of our simulations was 

the same as the liability threshold model that we used for inference, and thus these 

simulations should be viewed as a best-case scenario for LT-FH.

Analysis of 12 diseases in the UK Biobank

We analyzed 12 diseases in the UK Biobank20 with genotype and case-control and/or family 

history data available for up to 381,493 unrelated individuals of European ancestry (20 

million imputed SNPs with MAF >0.1%) and family history of disease available for most 

individuals (Methods, Table 1, Supplementary Table 14,Supplementary Table 15). Disease 

prevalence ranged from 0.001 for Alzheimer’s disease to 0.32 for hypertension; for lower-

prevalence diseases, we applied stricter MAF thresholds to avoid type I error in unbalanced 

case-control settings21 (Supplementary Table 16, Supplementary Table 17). Family history 

information was available for each disease, including parental history (presence or absence 

of disease in each respective parent) and sibling history (number of brothers and sisters + 

presence or absence of disease in the set of all siblings). Averaged across the 12 diseases, 

88% of target samples had complete parental history information and 93% of target samples 

had complete sibling history information (Supplementary Table 18); the accuracy of family 

history information is assessed below. We defined GWAS, GWAX and LT-FH phenotypes 

accordingly (Methods, Supplementary Table 19; Extended Data Figure 2) and compared 

these three methods. We included 20 principal components (PCs), assessment center, 

genotype array, sex, age and age squared as covariates in association analyses for each 

method. In this data set, the computational cost of computing LT-FH phenotypes (posterior 

mean genetic liabilities) was 1–2 orders of magnitude lower than the cost of computing 

association statistics (Supplementary Table 20).

We assessed the calibration of GWAS, GWAX and LT-FH using stratified LD score 

regression (S-LDSC) attenuation ratio15,22–24, defined as (S-LDSC intercept −1)/(mean χ2 − 

1) (Methods and Supplementary Table 21a). Attenuation ratios were similar for each 

method, with averages across 12 diseases of 0.18, 0.16 and 0.15, respectively (and inverse 

variance-weighted averages close to 0.1, consistent with ref.15); we note that attenuation 

ratios slightly above 0 may be caused by attenuation bias15. Although there can be no 

guarantee that analyses of UK Biobank data using PC covariates are completely devoid of 

confounding25, these results confirm that that LT-FH is well-calibrated and there is no 

confounding that is specific to the LT-FH method.

We assessed the association power of each method by computing the number of independent 

genome-wide significant loci identified for each disease, as defined similar to ref.15 

(Methods, Figure 3a and Supplementary Table 21b); we computed standard errors (s.e.) on 

relative improvements via block-jackknife (Methods). Across all diseases, LT-FH was +63% 

(s.e. 6%) more powerful than GWAS and +36% (s.e. 4%) more powerful than the trait-

specific maximum of GWAS and GWAX (e.g. 690 independent loci for LT-FH vs. 423 for 
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GWAS). For the 8 lower-prevalence diseases (K < 5%), LT-FH was +39% (s.e. 7%) more 

powerful than the trait-specific maximum of GWAS and GWAX, and GWAX was more 

powerful than GWAS, consistent with simulations at lower prevalence. For the 4 higher-

prevalence diseases (K > 5%), LT-FH was +35% (s.e. 4%) more powerful than the trait-

specific maximum of GWAS and GWAX, and GWAS was more powerful than GWAX, 

consistent with simulations at higher prevalence; GWAS vs. GWAX results were dominated 

by hypertension, the disease with highest prevalence. We also evaluated the association 

power of each method using relative effective sample size15; the average relative effective 

sample size for was 1.31 for LT-FH vs. GWAS and 1.27 for LT-FH vs. the trait-specific 

maximum of GWAS and GWAX (Supplementary Table 22). Finally, we assessed the 

association power of each method across all 12 diseases by computing the average χ2 across 

all genome-wide significant SNPs identified by any method (Supplementary Table 21c) and 

average χ2 across all SNPs (Supplementary Table 21d); we determined that these quantities 

were much larger for LT-FH than for the other methods.

We assessed whether GWAS, GWAX and LT-FH phenotypes reflect the same underlying 

genetic architectures by estimating pairwise genetic correlations between these phenotypes 

using BOLT-REML26 (Table 2). Genetic correlations were high, much higher than the 

corresponding phenotypic correlations (e.g. 0.97 and 0.70 respectively for correlations 

between LT-FH and GWAS, averaged across 12 diseases), indicating that incorporating 

family history preserves the same underlying genetic architecture but provides substantial 

independent information. Phenotypic correlations for LT-FH (or GWAX) vs. GWAS were 

particularly low for low-prevalence diseases, for which family history is more informative 

than case-control status. We also computed correlations between −log10 association p-

values, which mirrored the phenotypic correlations (Supplementary Table 23). Notably, LT-

FH phenotypes had higher values of sample size times observed-scale SNP-heritability (a 

measure of total genetic signal23) than GWAS phenotypes for all 12 diseases (59% higher on 

average; Supplementary Table 24). These findings support the use of the LT-FH method to 

increase association power.

We performed a replication analysis using independent data to assess whether the novel 

associations identified by LT-FH are genuine. We analyzed 4 diseases (CAD, T2D, breast 

cancer and prostate cancer) with publicly available summary statistics for case-control data 

independent from UK Biobank (see Methods). For both genome-wide significant loci 

identified by GWAS and genome-wide significant loci identified by LT-FH, we computed 

the replication slope (the slope of a regression of standardized effect sizes in case-control 

replication data vs. UK Biobank discovery data27); association statistics for case-control 

replication data were always computed using GWAS. The replication slopes were similar for 

GWAS (slope=0.81, se=0.02, 124 loci) and LT-FH (slope=0.79, se=0.01, 243 loci) (Figure 4 

and Supplementary Table 25). In addition, the replication slopes were similar for loci 

detected only by GWAS (slope=0.67, se=0.06, 7 loci) and loci detected only by LT-FH 

(slope=0.69, se=0.03, 126 loci); as expected, these slopes were lower than 0.81 and 0.79 

since loci detected by only one method represent weaker effects that are more susceptible to 

winner’s curse. These results indicate that the novel loci identified by LT-FH are genuine 

associations, as assessed by the GWAS method in replication data.
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We performed six secondary analyses (see Supplementary Note, Supplementary Tables 27–

34, Extended Data Figure 3). Our main findings were that using only parental history was 

slightly less powerful than using parental and sibling history; that downweighting family 

history information based on its accuracy had little impact on association results; that 

explicitly accounting for age when computing posterior mean genetic liabilities had little 

impact on association results; and that our (Monte-Carlo) LT-FH method attained higher 

power than the (analytical) PA formula when using parental and sibling history. In summary, 

LT-FH was well-calibrated and more powerful than all other methods in all primary and 

secondary analyses.

BOLT-LMM increases GWAS, GWAX and LT-FH association power

BOLT-LMM, a method for efficient Bayesian mixed-model analysis, has been shown to 

increase association power (for GWAS phenotypes) as compared to linear regression14,15. 

We thus investigated the application of BOLT-LMM to GWAS, GWAX and LT-FH 

phenotypes, analyzing the same data for 12 UK Biobank diseases as above. We first 

confirmed that GWAS, GWAX and LT-FH remained well-calibrated (Supplementary Table 

35a). We then assessed association power (Figure 3b and Supplementary Table 35b). Across 

all diseases, LT-FH was +67% (s.e. 6%) more powerful than GWAS and +39% (s.e. 4%) 

more powerful than the trait-specific maximum of GWAS and GWAX (e.g. 736 independent 

loci for LT-FH vs. 442 for GWAS), implying similar relative power among the three methods 

when using BOLT-LMM; the absolute increases in power attained by using BOLT-LMM 

were modest (Figure 3b vs. Figure 3a) and smaller than in analyses of highly heritable UK 

Biobank traits15, because disease traits have lower observed-scale SNP-heritability 

(particularly for lower-prevalence diseases) and the increase in power attained by BOLT-

LMM scales with SNP-heritability15. Analyses of average χ2 across all genome-wide 

significant SNPs identified by any method (Supplementary Table 35c) and average χ2 across 

all SNPs (Supplementary Table 35d) yielded similar conclusions.

Our above analyses using both linear regression and BOLT-LMM were restricted to 

unrelated target samples (up to 381,493 unrelated individuals of European ancestry), 

consistent with previous studies leveraging family history using GWAX1,7,8. We investigated 

the consequences of including related individuals in BOLT-LMM analyses. We first applied 

BOLT-LMM to GWAS, GWAX and LT-FH phenotypes of target samples defined without 

applying any filter for relatedness (up to 459,256 related individuals of European ancestry). 

We determined that GWAX and LT-FH suffered poor calibration (average S-LDSC 

attenuation ratios equal to 0.26 for GWAX and 0.22 for LT-FH, vs. 0.14 for GWAS) 

(Supplementary Table 36a), rendering moot the increases in power due to larger sample size 

(Supplementary Table 36b). A likely explanation for the poor calibration is the extreme 

concordance between sibling pair phenotypes (close to 100% for GWAX) arising from 

nearly identical family histories. Our results indicate that BOLT-LMM is unable to correct 

for inflation in test statistics in such extreme cases, as it does not have the flexibility to 

model excess phenotypic concordance for sibling pairs specifically. Thus, BOLT-LMM 

analysis of GWAX and LT-FH phenotypes should not be applied to target samples without 

any filter for relatedness.

Hujoel et al. Page 6

Nat Genet. Author manuscript; available in PMC 2020 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We thus applied BOLT-LMM to LT-FH phenotypes for all target samples (up to 459,256 

related individuals of European ancestry) that were modified to incorporate only case-

control status (ignoring family history information) for each individual from a sibling pair or 

parent-offspring pair within the set of target samples (also see secondary analysis below). 

We determined that this approach was well-calibrated, with an average S-LDSC attenuation 

ratio of 0.14 for LT-FH, vs. 0.14 for GWAS (and inverse variance-weighted average close to 

0.1, consistent with ref.15) (Supplementary Table 37a). We compared the power of this 

approach to applying BOLT-LMM to GWAS for all related Europeans (see above) and 

GWAX for all unrelated Europeans (as previously recommended1,7,8; see above). Across all 

diseases, LT-FH was +54% (s.e. 5%) more powerful than GWAS and +44% (s.e. 4%) more 

powerful than the trait-specific maximum of GWAS and GWAX (e.g. 908 independent loci 

for LT-FH vs. 590 for GWAS) (Extended Data Figure 4 and Supplementary Table 37b), 

similar to our previous analyses (Figure 3). Thus, BOLT-LMM analysis of LT-FH 

phenotypes defined using only case-control status for all sibling pairs and parent-offspring 

pairs within the set of target samples is the recommended approach; we have publicly 

released LT-FH association statistics computed using this approach (see Data availability).

We performed a secondary analysis in which we instead applied BOLT-LMM to LT-FH 

phenotypes for all target samples (up to 459,256 related individuals of European ancestry) 

that were modified to incorporate family history information for exactly one sibling for each 

set of siblings within the set of target samples (with no filter on family history information 

for parent-offspring pairs). We note that this approach may suffer from residual concordance 

between sibling pair phenotypes (and parent-offspring phenotypes) arising from redundancy 

between the family history of one target sample and the case-control status of the other 

target sample. Indeed, we determined that LT-FH phenotypes defined in this way were 

slightly but significantly miscalibrated (average S-LDSC attenuation ratio equal to 0.15 for 

LT-FH, vs. 0.14 for the recommended LT-FH approach; p < 10−6 for difference in inverse-

variance weighted means) (Supplementary Table 38a), rendering moot the slightly higher 

power of this approach (Supplementary Table 38b).

In summary, BOLT-LMM analysis increases the power of LT-FH (and GWAS and GWAX), 

but care is required to avoid poor calibration of LT-FH (and GWAX) due to extreme 

concordance in sibling pair phenotypes. Our recommendation is for BOLT-LMM analysis of 

LT-FH phenotypes defined using only case-control status for all sibling pairs and parent-

offspring pairs within the set of target samples.

Discussion

We have introduced a new method, LT-FH, that accurately models a broad range of case-

control status and family history configurations to increase association power compared to 

prevailing methods1; in particular, LT-FH differs from other methods, including methods 

Data Availability
This study analyzed data from the UK Biobank, which is publicly available by application (http://www.ukbiobank.ac.uk/). We have 
publicly released summary association statistics computed by applying our LT-FH method to UK Biobank data; LT-FH summary 
association statistics for 12 diseases: https://data.broadinstitute.org/alkesgroup/UKBB/LTFH/sumstats/. A Life Sciences Reporting 
Summary is available.
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developed in the livestock genetics community4–6, by allowing for complex modes of 

reporting family history (e.g. binary response for sibling history, i.e. at least one sibling has 

the disease), instead of requiring phenotypes for each relative. Across 12 diseases from the 

UK Biobank, LT-FH was +63% (s.e. 6%) more powerful than GWAS and +36% (s.e. 4%) 

more powerful than the trait-specific maximum of GWAS and GWAX, while maintaining 

correct calibration. LT-FH attained similar increases in power when using BOLT-LMM to 

compute association statistics for all three methods, and when incorporating related 

individuals. These findings provide a strong motivation to apply LT-FH to genetic data sets 

for which family history information is available, and to collect family history information 

in future genetic studies.

Although LT-FH greatly increases association power, it has several limitations. First, self-

reported family history information may be inaccurate. Indeed, we determined that the 

sibling concordance of self-reported family history was substantially lower than 100% 

(Supplementary Table 28); however, our efforts to account for this had little impact on 

association power (Supplementary Table 29). Second, family history may reflect a different 

underlying genetic architecture than case-control status, e.g. due to differences in the 

etiology of early-onset vs. late-onset disease or differences in diagnostic criteria over time; 

however, we observed high genetic correlations between GWAS and LT-FH phenotypes 

(average of 0.97 across diseases; Table 2). Third, real diseases may not adhere to the liability 

threshold model used by LT-FH, which may explain why increases in power in analyses of 

real diseases (Figure 3) were not as large as in simulations (Figure 2c). Moreover, posterior 

mean genetic liabilities inferred from family history information may be biased by 

unmodeled effects. This might reduce the power of the LT-FH method, but would not cause 

its test for additive association with genetic variants to produce false positives 

(Supplementary Table 7 and Supplementary Table 8) Fourth, just like standard GWAS 

analysis, LT-FH may require MAF thresholds stricter than our default value of 0.001 to 

avoid type I error in unbalanced case-control settings21. Although the number of diseases 

requiring stricter MAF thresholds was reduced from 8 for standard GWAS analysis to 2 for 

LT-FH (due to lower kurtosis; Supplementary Table 16), more sophisticated approaches 

(generalizing ref.21) could be explored. Fifth, just like GWAX, LT-FH should not be applied 

to target samples without any filter for relatedness, because extreme concordance in sibling 

pair phenotypes leads to miscalibration — even when applying BOLT-LMM, an efficient 

mixed-model method that is intended to account for phenotypic concordance among related 

individuals. Specifically, GWAS analysis of related target samples can induce miscalibration 

because target samples have correlated genotypes and correlated phenotypes. Mixed model 

methods, such as BOLT-LMM, are designed to correct this miscalibration. However, if 

related target samples have extremely concordant phenotypes due to inclusion of family 

history information, BOLT-LMM may fail to correct this miscalibration (Supplementary 

Table 36). Thus, scenarios of extreme concordance between phenotypes of related target 

samples should be avoided. We instead recommend applying BOLT-LMM to LT-FH 

phenotypes defined using only case-control status for all sibling pairs and parent-offspring 

pairs within the set of target samples; this approach is straightforward to implement and still 

greatly increases association power while maintaining correct calibration. Sixth, LT-FH does 

not currently incorporate family history information for genetically correlated diseases, 
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which could be highly informative; however, LT-FH association results for two or more 

genetically correlated diseases could be jointly analyzed using existing methods28. Seventh, 

the novel genome-wide significant associations detected by LT-FH explain less variance on 

average, such that the increase in variance explained by LT-FH compared to other methods is 

lower than the increase in number of genome-wide significant loci. However, small genetic 

effects can still produce important biological insights29,30. Eighth, posterior mean genetic 

liabilities can be computed using an analytical approach, the PA formula2,17,18, instead of 

LT-FH. However, the PA formula is not well-suited to data that includes sibling history as a 

binary response (i.e. at least one sibling has the disease). Indeed, we confirmed that LT-FH 

attains higher power than the PA formula in simulations with sibling history (Supplementary 

Table 11) and analyses of UK Biobank diseases (Supplementary Table 34). Finally, we have 

not explored the use of family history to improve the accuracy of genetic risk prediction2, 

which remains as a direction for future research. Despite all these limitations, we anticipate 

that LT-FH will attain large increases in power in future association studies.

Methods

LT-FH method: estimating posterior mean genetic liability

The liability threshold model can be written as ϵ = Xβ + ϵe, where ϵ is the liability, X is the 

genotypes at candidate SNPs (normalized to mean 0, variance 1), β are the effect sizes of 

SNPs on the liability scale, and an individual is a case (z = 1) if and only if ϵ ≥ T and is a 

control otherwise (z = 0). T determines the disease prevalence (Φ (T) = P (x ≥ T) where x ~ 

N(0, 1)). We further assume that ϵg = Xβ ~ N(0, h2), and assume that when testing a SNP g 

for association, the effect size is small enough such that the liability is βg + ϵ = βg + ϵg + ϵe 

where ϵ ~ N(0, 1), ϵg ~ N(0, h2), ϵe ~ N(0, 1−h2).

We assume a multivariate normal distribution for ϵ: for two individuals Cov(ϵ1, ϵ2) = K12h2, 

where K12 is the coefficient of relationship for the pair of individuals (e.g. 1/2 for parent-

offspring). We assume that we have the genotype and case-status of an individual, and 

potentially the disease status of family members. For example, to incorporate parental 

history and sibling history we assume

ϵo, e
ϵo, g
ϵp1
ϵp2
ϵs

MVN5

0
0
0
0
0

,

1 − h2 0 0 0 0
0 h2 0.5h2 0.5h2 0.5h2

0 0.5h2 1 0 0.5h2

0 0.5h2 0 1 0.5h2

0 0.5h2 0.5h2 0.5h2 1

(1)

where ϵo, e, ϵo, g are the environmental and genetic components of the liability of the target 

sample (offspring), ϵp1 and ϵp2 are the liabilities of the parents, and ϵs is the liability of the 

sibling(s) (for simplicity we include only one sibling here, but this can be extended to an 

arbitrary number of siblings). We estimate the posterior mean genetic liability 

 E[ϵo,g | zo, zp1, zp2, zs]  for each individual given the case-control status of the genotyped 

individual (zo), both parents (zp1, zp2), and sibling(s) (zs). When disease status is unknown 
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for subsets of these individuals, we condition only on known information. We are interested 

in genetic signal and therefore we estimate the posterior mean genetic liability, rather than 

the posterior mean liability; genetic association power is increased by integrating out the 

noise contributed by the environmental component of liability.

We estimate E[ϵo, g |zo, zp1, zp2, zs|] using Monte Carlo integration. Briefly, (1) we sample 

from a multivariate normal with the given covariance structure and compute the posterior 

mean genetic liability of the offspring in all possible configurations of case-control status 

and family history (using liabilities that fall above or below a given threshold to determine 

case-control status and family history). If the posterior mean genetic liabilities in any 

configuration has a standard error of the mean above 0.01, we resample from a conditional 

multivariate normal to ensure that we sample in a manner that represents the tails of the 

distribution appropriately. (2) We sample relevant liabilities conditional on the offspring’s 

case-control status (zo) or we sample conditional on the parents (i.e. zp1 + zp2 = {0, 1, 2}). 

(3) We then combine all samples of ϵo, g from given configurations. (4) We compute 

posterior mean genetic liabilities and assess the standard error of each posterior mean. We 

then repeat (2)-(4) until the standard error of the mean is less than 0.01 for all configurations 

(further details in Supplementary Note and Supplementary Table 39). We note that family 

history reporting bias may reduce the power of LT-FH, but would not lead to false positives 

(Supplementary Table 8). In addition, distinct from family history, non-random missingness 

of target sample phenotypes would equally impact GWAS and LT-FH. Specifically, LT-FH is 

identical to GWAS in the absence of family history information, because in this setting both 

methods exclude individuals with missing case-control status.

We considered the Pearson-Aitken (PA) formula as an approximate analytical approach and 

implemented this approximation for LT-FHno-sib
2,17,18 (Supplementary Note and 

Supplementary Table 32). However, in UK Biobank data, sibling history is provided as a 

binary response, i.e., at least one sibling has the disease. This “at least one” condition is 

complex to incorporate using analytical approaches but straightforward to incorporate using 

Monte Carlo integration. For a given number of siblings (S), we sample S liabilities (ϵs1, ϵs2,

…, ϵsS) and can easily assess the presence or absence of disease in the set of all siblings by 

comparing each sibling’s liability to the relevant threshold; the absence of disease 

corresponds to ϵsi < T for all i ∈ {1, 2,…, S} whereas the presence of disease corresponds to 

at least one i with ϵsi ≥ T. Thus, we estimate posterior mean genetic liabilities using Monte 

Carlo integration in our main analyses and open-source software.

LT-FH method: LT-FH association statistic

The LT-FH association statistic is a measure of association between genotype g and posterior 

mean genetic liability across samples. We can compute this statistic either using linear 

regression or using other methods such as BOLT-LMM14,15, while incorporating additional 

covariates such as principal components. If we treat the posterior mean genetic liability as a 

continuous variable and compute the number of samples times the squared correlation 

between g and posterior mean genetic liability (generalizing the Armitage trend test19), this 

is equivalent to the Score test (see Supplementary Note).
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LT-FH effect sizes

Although LT-FH estimates the posterior mean genetic liability, the raw effect sizes computed 

when using LT-FH are not on the liability scale. However, the raw effect sizes computed 

when using linear regression can be transformed to the observed scale by making use of the 

effective sample size15. In detail, to obtain per-allele observed-scale effect sizes for a non-

standardized phenotype (as is computed by BOLT-LMM software) we compute:

βLT‐FH,obs =   βLT‐FH
se βLT‐FH c*NGWAS

* K 1 − K
2 * MAF * 1 − MAF , (2)

where βLT‐FH is raw per-allele effect size, c is the relative effective sample size for LT-FH vs 

GWAS, K is the disease prevalence, and MAF is the minor allele frequency. We note that it 

is straightforward to use minor allele frequency (MAF) to convert between per-allele and 

per-standardized-genotype effect sizes, distinct from converting between liability and 

observed scales. Further details are provided in the Supplementary Note.

GWAS and GWAX methods

GWAS aims to discover associations between variants and disease by comparing cases to 

controls of a disease. GWAX compares cases and proxy cases (controls with a family history 

of the disease) to controls with no family history of disease. GWAX can be particularly 

valuable when the case-control status of the genotyped individual is unknown, however 

when the case-control status of the genotyped individual is known incorporating this 

information increases power1, and as such we incorporate the case-control status of the 

genotyped individual (if known) when computing GWAX association statistics. For both 

GWAS and GWAX, association statistics can be computed using methods such as linear 

regression, logistic regression, BOLT-LMM15, or SAIGE21.

For GWAX-2df test we perform an F-test, regressing genotype on case status and control 

with family history status (two binary variables) and testing whether the coefficients 

associated with these two indicator variables are both 0 (see Supplementary Note). When no 

covariates are included, results are virtually identical to a Pearson-χ2 test on a 2×3 table.

Simulations

We simulate genotypes at 100,000 unlinked SNPs and case-control status plus family history 

(parental history for both parents) for 100,000 unrelated target samples; we do not include 

sibling history in these simulations. We simulate genotypes for both parents and use these to 

simulate genotypes for target samples (offspring); the underlying MAF is ~ U(0.01, 0.5). 

Using these genotypes we simulate case-control status for both parents and target samples 

using a liability threshold model in which we normalize genotype to a mean of 0 and 

variance of 1 according to the true MAF, set the effect sizes for the C causal SNPs on the 

liability scale to be h2/C, and add environmental noise with a variance of 1 − h2. Target 

samples are not ascertained for case-control status. Our default parameter settings involve 

500 causal SNPs explaining h2 = 50% of variance in liability, disease prevalence K = 5% 

(implying liability threshold T = 1.64 and observed-scale h2 = 11%), and accurate 

Hujoel et al. Page 11

Nat Genet. Author manuscript; available in PMC 2020 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specification of h2 and K to the LT-FH method. For each parameter setting we compute 10 

simulation replicates in which there is a different underlying MAF distribution for each 

simulation replicate. Further details are provided in the Supplementary Note.

UK Biobank data sets

We analyzed genetic data from the UK Biobank20 consisting of 381,493 unrelated 

individuals or 459,256 related individuals of European ancestry (based on self-reported 

white ethnicity; sample sizes depended on the trait analyzed; Table 1; Supplementary Table 

14) and ~20 million imputed variants with MAF >0.1%15. We identified pairs of siblings 

(full siblings and MZ twins) as outlined previously20,31. We note that it is easy to distinguish 

sibling pairs from parent-child pairs using identity-by-descent (IBD). We identified parent-

offspring pairs as individuals having a kinship in (0.177, 0.354) and having proportion of 

SNPs with identity-by-state equal to 0 (IBS0) < 0.0012. We computed association statistics 

applying either linear regression or default BOLT-LMM analysis (both implemented in 

BOLT-LMM software). We note that for this default analysis, BOLT-LMM association 

statistics reduce to infinitesimal mixed model association statistics (BOLT-LMM-inf) when 

the non-infinitesimal BOLT-LMM association statistics are not expected to increase 

power14,15. We controlled for assessment center, genotype array, sex, age, age squared, and 

the first 20 principal components15.

We considered 12 diseases in UK Biobank for which family history of disease was available 

(Table 1); these 12 diseases were considered when GWAX was proposed1. These 12 diseases 

had a wide range of narrow-sense heritabilities (Supplementary Table 15). We assigned case-

control status for all genotyped individuals based on the presence or absence of ICD-9 

codes, ICD-10 codes, or other relevant codes (Supplementary Table 14). Individuals with no 

ICD-9 or ICD-10 codes were selected assigned as controls. An alternative would be to 

assign missing phenotypes to individuals with no ICD9/10 codes, which reduces sample size 

while increasing disease prevalence (Supplementary Table 40). We decided against this 

possibility, because we determined that it slightly but consistently reduces sample size times 

observed-scale SNP-heritability (a measure of total genetic signal23) and has very little 

impact on GWAS power (Supplementary Table 41)

Parental history and sibling history information was available for all 12 diseases. Parental 

history information consisted of presence or absence of disease in each respective parent; we 

note that the parental prevalence was often greater than the disease prevalence (Table 1). 

Sibling history information consisted of number of brothers and sisters + presence or 

absence of disease in the set of all siblings. Family history information is self-reported and 

thus there is a risk of misreporting, recall bias, or phenotype misclassification. For example, 

participants were asked about their family history of “diabetes” but we assume that this 

family history corresponds to that specifically of type II diabetes, consistent with previous 

studies1. To assess the accuracy of family history information we compute the correlation of 

self-reported family history between siblings. When computing the correlation of self-

reported sibling history we restricted to concordant sibling pairs (e.g. both cases or both 

controls) and for sex-specific diseases (breast and prostate cancer) we restricted to 

concordant sibling pairs of the relevant sex, sibling pairs of the non-relevant sex, and sibling 
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pairs of discordant sex where the relevant sex is a control. We observed a moderately high 

concordance of self-reported family history among siblings (Supplementary Table 28).

LT-FH in UK Biobank

There are 377 possible configurations of case-control status and family history of disease. 

For example, there are 2 configurations when case-control status is available but no family 

history is available (case or control) and 4 configurations when case-control status and one 

parent’s disease status is available (case with affected parent, case with unaffected parent, 

control with affected parent, control with unaffected parent). In detail, there are 252 

configurations when case-control status is available: 2 configurations of case-control status 

with no family history (see above); 4 of case-control status and one parent’s disease status 

(see above); 6 of case-control status and both parents’ disease status; 40 of case-control 

status and sibling’s disease status (1–10 siblings; at least one or none affected); 80 of case-

control status, one parent’s disease status, and sibling’s disease status; 120 of case-control 

status, both parents’ disease status, and sibling’s disease status. There are 125 configurations 

when case-control status is unavailable: 2 of one parent’s disease status; 20 of sibling’s 

disease status; 3 of both parents’ disease status; 40 of one parent’s disease status and 

sibling’s disease status; 60 of both parents’ disease status and sibling’s disease status. A 

comprehensive list of configurations is provided in Supplementary Table 42.

We condition on known information to compute the posterior mean genetic liability. We 

computed E[ϵo, g| ·] (where · is all known disease status information) through Monte Carlo 

integration as described above. We allow for genotyped individuals and their siblings to have 

a different disease prevalence than their parents. We select the prevalence for genotyped 

individuals and their siblings using the prevalence of the disease in genotyped (unrelated 

European) individuals, and the prevalence for parents using the parental disease prevalence 

(for parents of unrelated European individuals). h2 values were obtained from the published 

literature (Supplementary Table 15). We used h2 estimates from twin studies, but we note the 

existence of h2 estimates based on family history32.

For individuals who report having 0 siblings, more than 10 siblings, or who do not know or 

prefer not to answer how many brothers and/or sisters they have, we ignore sibling history 

and use parental history only for LT-FH; for all other individuals we incorporate both the 

number of siblings as well as whether or not at least one is affected in the computation of 

E[ϵo, g| ·]. For sex-specific diseases our exclusion criteria remains consistent however we 

now incorporate the number of siblings of the relevant sex as well as whether or not at least 

one is affected in the computation of E[ϵo, g| ·]. Further details are provided in the 

Supplementary Note.

GWAS and GWAX in UK Biobank

We implemented GWAS considering the case-control status of the genotyped individual only 

(Supplementary Table 19; Table 1). Due to the increased risk of a type I error in unbalanced 

case-control settings, for some diseases we selected a stringent MAF threshold when 

computing the number of independent loci15,21. However, one could also use a method such 

as SAIGE that controls type I error in unbalanced case-control settings21.
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We considered the case-control status of the genotyped individual and the disease history of 

parents and siblings when implementing GWAX (Supplementary Table 19). The GWAX 

prevalence (i.e. prevalence of proxy cases) was generally more than double the parental 

prevalence and many times larger than the disease prevalence (see Supplementary Table 43). 

For individuals with at least 1 sibling or who do not know or prefer not to answer how many 

brothers and/or sisters they have we assign using sibling and parental disease history; for 

individuals with 0 reported siblings we assign using parental disease history only 

(Supplementary Table 19). For sex-specific diseases (breast and prostate cancer) the 

conditions are replaced with siblings of the relevant sex.

Assessing calibration in UK Biobank

We assessed the calibration of each method using stratified LD score regression (S-LDSC) 

attenuation ratio15,22–24. We report two estimates for the mean attenuation ratio (and mean 

attenuation ratio difference) across all traits. Let xi denote the attenuation ratio (or 

attenuation ratio difference) for trait i and σi the reported jackknife standard error (for the 

ratio or the difference of ratios). We compute a simple average across traits, with standard 

error computed as 1
12 ∑iσi

2. We also compute an inverse-variance weighted mean where the 

weights are determined by the variance of the GWAS attenuation ratio. The inverse-variance 

weighted estimate is ∑i xi/σgwas,i
2 /∑i 1/σgwas,i

2 , with standard error computed as 

∑i σi
2/σgwas,i

4 /∑i 1/σgwas,i
2 . Further details are provided in the Supplementary Note.

Assessing power in UK Biobank

We computed the number of independent loci as defined similar to ref.15. The relative 

improvement for a method M versus a method m is defined as 
∑t #t,M − ∑t #t,m

∑t #t,m
 where #t, M 

is the number of independent loci for trait t and method M; the standard error is computed 

via block jackknife of the genome (200 blocks). Further details are provided in the 

Supplementary Note.

Assessing heritability and correlation in UK Biobank

We estimate observed-scale SNP-heritability (hg,o
2

) for each method by applying BOLT-

REML26 to unrelated European individuals. Observed-scale SNP-heritability is converted to 

liability-scale SNP-heritability using the in-sample disease prevalence10. Genetic correlation 

is estimated using BOLT-REML26. The phenotypic correlation and correlation of −log10 (p) 

(across all variants with a minimum MAF determined by case prevalence; Supplementary 

Table 16) is estimated in R. For both genetic and phenotypic correlation we restrict attention 

to individuals with non-NA values for both methods being compared.

Replication analysis

We conducted a replication analysis of loci identified by GWAS and/or LT-FH in 

independent non-UK Biobank data sets (4 diseases: coronary artery disease, type 2 diabetes, 

breast cancer, and prostate cancer) with publicly available summary statistics33–36 

(Supplementary Table 25). The replication summary statistics are from studies consisting of 
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predominantly non-UK Europeans and were always computed using GWAS (not LT-FH). 

For both genome-wide significant loci identified in UK Biobank by GWAS and genome-

wide significant loci identified in UK Biobank by LT-FH, we computed the replication slope 

(the slope of a regression of standardized effect sizes in case-control replication data vs. UK 

Biobank discovery data).

In detail, we restricted association results from linear regression on unrelated Europeans for 

GWAS and LT-FH to SNPs which (1) appear in the replication studies SNP set, (2) meet the 

MAF threshold for that trait from our main analysis, and (3) are significant in GWAS or LT-

FH. We then LD-clumped this restricted set of association statistics (stringent 5Mb window 

and R2 threshold of 0.01 for LD clumping). For GWAS (and LT-FH, respectively) for each 

LD clump with at least one significant SNP, we selected the most significant SNP as the lead 

SNP. When an LD clump contained only SNPs that were significant for LT-FH (resp. 

GWAS), this was considered a LT-FH only locus (resp. GWAS only). The replication 

slope27,37 was then computed as the slope of a regression of standardized effect sizes of lead 

SNPs in case-control replication data vs. GWAS or LT-FH UK Biobank discovery data. 

Standardized effect sizes were computed as Z/ Neff, where Z denotes z-score, for GWAS 

(and GWAS replication data) Neff was computed as 4
1 NA + 1 NU

, and for LT-FH Neff was 

computed as Neff,GWAS *c (where c is the relative effective sample size of LT-FH vs GWAS; 

see Supplementary Table 22).

Extended Data
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Extended Data Fig. 1. QQ plots from simulations with default parameter settings.
We report quantile-quantile (QQ) plots for null SNPs in simulations with default parameter 

settings. Results are based on 10 simulation replicates. These QQ plots compare the 

observed distribution of p-values with the standard uniform distribution. We plot the 

observed – log10(p) as a function of −log10
rank
n + 1  and the 95% confidence bands are 

constructed pointwise using the beta distribution.
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Extended Data Fig. 2. Distribution of LT-FH phenotypes for 12 UK Biobank diseases.
We plot the distribution of the LT-FH phenotype for each disease. We also report the kurtosis 

for both GWAS and LT-FH; Pearson’s measure of kurtosis, κ =
E X − μ 4

E X − μ 2 2 , is calculated 

using the R package moments.

Hujoel et al. Page 17

Nat Genet. Author manuscript; available in PMC 2020 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 3. Impact of modifying the LT-FH method to incorporate age information as 
a function of the liability threshold model parameter for age for 12 UK Biobank diseases.

We plot the increase in number of independent loci for LT‐FHno − sib, age
PA  relative to for 

LT‐FHno − sib
PA  (Table S32) against the liability threshold model parameter |cage| (Table S30).
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Extended Data Fig. 4. LT-FH increases association power across 12 diseases from the UK 
Biobank in analyses incorporating related individuals.
We report results of GWAS using BOLT-LMM on related Europeans, GWAX using BOLT-

LMM on unrelated Europeans, and LT-FH using BOLT-LMM on related Europeans using 

only case-control status for all sibling pairs and parent-offspring pairs within the set of target 

samples. Numerical results are reported in Table S37.
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Extended Data Fig. 5. Strong concordance between GWAS BOLT-LMM-inf effect sizes and 
transformed LT-FH BOLT-LMM-inf effect sizes.
We plot GWAS BOLT-LMM-inf effect sizes and transformed LT-FH BOLT-LMM-inf effect 

sizes for genome-wide significant effect sizes (P ≤ 5 * 10−8 for both GWAS and LT-FH 

BOLT-LMM-inf).

We note that BOLT-LMM only outputs effect size estimates for BOLT-LMM-inf, the BOLT-

LMM approximation to the infinitesimal mixed model. Our effect size for GWAS is the 

outputted βGWAS,BOLT - LMM - in f (per-allele observed scale) and for LT-FH we estimate a 

(per-allele observed scale) effect size as 

β =
βLT−FH, BOLT − LMM − in f

se βLT−FH, BOLT − LMM − in f NGWAS * c
K 1 − K

2 MAF 1 − MAF , where c is the boost in 

Neff for LT-FH relative to GWAS, K is disease prevalence in GWAS and MAF is the minor 

allele frequency of the SNP.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Overview of LT-FH and other methods.
(a) GWAS uses binary case-control status, ignoring family history; GWAX uses binary 

proxy-case-control status, merging controls with family history of disease with disease 

cases; LT-FH uses continuous-valued posterior mean genetic liability, appropriately 

differentiating all case-control and family history configurations. (b) LT-FH computes 

posterior mean genetic liabilities (left panel) and then tests for association between genotype 

and posterior mean genetic liability (right panel).
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Figure 2: LT-FH is well-calibrated and increases association power in simulations.
(a) Distribution of average χ2 for null SNPs (the dashed grey line shows the expected null 

value of 1). (b) Distribution of average χ2 for causal SNPs. (c) Distribution of power, 

defined as the proportion of causal SNPs with p < 5*10−8. Each grey boxplot represents 

estimates from 10 simulations, each simulation consists of 100,000 SNPs (500 causal SNPs). 

The center line denotes the median, the lower and upper hinges correspond to first and third 

quartiles, respectively, whiskers extend to the minimum and maximum estimates located 

within 1.5 × interquartile range (IQR) from the lower and upper hinge, respectively. Black 

points and error bars represent the mean and ± 1 standard error of the mean. Numerical 

results are reported in Supplementary Table 1.
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Figure 3: LT-FH increases association power across 12 diseases from the UK Biobank.
We report results of GWAS, GWAX and LT-FH using either (a) linear regression or (b) 
BOLT-LMM on unrelated European individuals. Numerical results are reported in 

Supplementary Table 21 and Supplementary Table 35.
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Figure 4: Loci identified by LT-FH replicate in independent data sets.
We plot standardized effect sizes (Z/ Neff) in the non-UK Biobank replication data (average 

Neff = 99K for GWAS) vs. the UK Biobank discovery data (average Neff = 62K for GWAS, 

102K for LT-FH), aggregated across 4 diseases (CAD, T2D, breast cancer and prostate 

cancer), for (a) the 124 loci identified by GWAS, (b) the 243 loci identified by LT-FH, (c) 
the 7 loci identified by GWAS but not LT-FH, and (d) the 126 loci identified by LT-FH but 

not GWAS. Numerical results are reported in Supplementary Table 25.
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Table 1:
Overview of 12 diseases in the UK Biobank.

We report the prevalence, parental prevalence, liability-scale SNP-heritability, and number of samples 

analyzed by GWAS, GWAX and LT-FH. GWAX sample sizes are lower than GWAS and LT-FH sample sizes 

due to incomplete family history data.

Trait UKBB Prevalence UKBB Parental Prevalence hg
2

s.e. (hg
2

) NGWAS NGWAX NLT-FH

AD 0.001 0.065 0.12 0.11 381493 324512 381493

PD 0.003 0.020 0.15 0.05 381493 318792 381493

Lung cancer 0.006 0.064 0.10 0.03 381493 323838 381493

Bowel cancer 0.013 0.054 0.14 0.018 381493 322887 381493

Stroke 0.023 0.14 0.08 0.011 381493 332468 381493

COPD 0.035 0.082 0.17 0.0092 381493 329495 381493

Prostate cancer* 0.037 0.075 0.30 0.019 175450 331458 368940

T2D 0.042 0.092 0.36 0.0093 380180 330267 381390

Breast cancer* 0.061 0.082 0.20 0.012 206043 348170 371064

Depression 0.073 0.052 0.11 0.0058 381493 328186 381493

CAD 0.083 0.25 0.20 0.0058 381493 341810 381493

HTN 0.32 0.26 0.31 0.0037 381493 354208 381493

*
denotes sex-specific diseases (for which GWAX and LT-FH incorporate family history data from samples of both sexes). Estimates of (liability-

scale) narrow-sense heritability (h2) from the literature, which are used by the LT-FH method, are reported in Supplementary Table 15. Diseases are 
listed in order of disease prevalence. AD: Alzheimer’s disease/dementia. PD: Parkinson’s disease. COPD: Chronic bronchitis/emphysema. T2D: 
Type 2 diabetes. CAD: Coronary artery disease. HTN: Hypertension.

Nat Genet. Author manuscript; available in PMC 2020 October 20.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hujoel et al. Page 28

Table 2:
Genetic and phenotypic correlations between GWAS, GWAX and LT-FH phenotypes.

We report the genetic correlation (estimated using BOLT-REML) and phenotypic correlation between each 

pair of GWAS, GWAX and LT-FH phenotypes. BOLT-REML estimates are constrained to be ≤ 1.00. Standard 

errors of genetic correlation estimates are reported in parentheses. Standard errors of phenotypic correlation 

estimates are ≤ 0.003 in each case.

Trait

Genetic Correlation (rg) Phenotypic Correlation

GWAS/GWAX GWAS/LT-FH GWAX/LT-FH
GWAS/GWAX GWAS/LT-FH GWAX/LT-FH

rg s.e. rg s.e. rg s.e.

AD 1.00 0.38 1.00 0.34 1.00 0.002 0.09 0.30 0.96

PD 1.00 0.16 1.00 0.10 1.00 0.009 0.26 0.57 0.93

Lung cancer 1.00 0.14 1.00 0.12 1.00 0.004 0.20 0.49 0.91

Bowel cancer 0.95 0.06 0.97 0.03 0.99 0.006 0.30 0.64 0.91

Stroke 0.83 0.07 0.88 0.04 0.99 0.008 0.24 0.62 0.86

COPD 0.90 0.02 0.95 0.01 0.99 0.003 0.40 0.77 0.87

Prostate cancer 1.00 0.03 1.00 0.006 1.00 0.005 0.56 0.88 0.89

T2D 0.97 0.01 0.99 0.004 0.99 0.002 0.38 0.77 0.86

Breast cancer 1.00 0.02 1.00 0.006 1.00 0.004 0.58 0.87 0.89

Depression 0.88 0.02 0.93 0.007 0.98 0.003 0.58 0.84 0.89

CAD 0.89 0.02 0.96 0.005 0.98 0.005 0.31 0.76 0.78

HTN 0.95 0.006 0.98 0.001 0.98 0.003 0.52 0.86 0.75

Average 0.95 0.97 0.99 0.37 0.70 0.88
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