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Abstract

During the last decades experimental studies have revealed that single cells of a growing bacterial population are
significantly exposed to molecular noise. Important sources for noise are low levels of metabolites and enzymes that cause
significant statistical variations in the outcome of biochemical reactions. In this way molecular noise affects biological
processes such as nutrient uptake, chemotactic tumbling behavior, or gene expression of genetically identical cells. These
processes give rise to significant cell-to-cell variations of many directly observable quantities such as protein levels, cell sizes
or individual doubling times. In this study we theoretically explore if there are evolutionary benefits of noise for a growing
population of bacteria. We analyze different situations where noise is either suppressed or where it affects single cell
behavior. We consider two specific examples that have been experimentally observed in wild-type Escherichia coli cells: (i)
the precision of division site placement (at which molecular noise is highly suppressed) and (ii) the occurrence of noise-
induced phenotypic variations in fluctuating environments. Surprisingly, our analysis reveals that in these specific situations
both regulatory schemes [i.e. suppression of noise in example (i) and allowance of noise in example (ii)] do not lead to an
increased growth rate of the population. Assuming that the observed regulatory schemes are indeed caused by the
presence of noise our findings indicate that the evolutionary benefits of noise are more subtle than a simple growth
advantage for a bacterial population in nutrient rich conditions.
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Introduction

In recent years it has become clear that many biological

processes are intrinsically noisy leading to strong variations in

composition and properties of individual cells belonging to the

same population of genetically identical cells [1]. Important

examples include the delay times in uptake of nutrients [2],

variations in chemotactic tumbling behavior [3], entry into a

dormant state [4], [5], [6], sporulation and competence [7], [8]. In

many cases these variations are caused by noise at the

transcriptional or translational level [1], [9], [10]. Studies in

ecology and population genetics have shown that stochastic

variability in phenotype can have an advantageous effect on

populations growing in fluctuating environments. This effect is

known as bet-hedging [11]. Typically, in these systems members of

a population follow individual noise-induced strategies in prepa-

ration of environmental fluctuations. In particular, fluctuations in

the transcription process might result in synthesis of proteins that

are not required for growth in the given environment. Heteroge-

neous populations have been observed in different instances

especially if the environmental fluctuations pose a severe danger

for the population. An important example is that of entry into a

dormant state [4], [5], [6]. During dormancy cells cannot grow,

therefore, reducing the effective growth rate of the population.

However, in hostile environments, for example if the population is

exposed to antibiotics, the dormant cells do not die, and, thus,

guarantee the survival of the population. In a similar way, a

population can survive nutritional stress conditions by having

some non-growing cells that sporulate [12].

Generally, the production of unneeded proteins leads to an

additional burden reducing the growth rate [13], [14]. However,

there are situations where this burden is compensated. For

example, for a population growing in a fluctuating environment

(with varying nutrients) synthesis of these additional proteins could

be useful for the individual cells. It is a priori not clear if it is better

to just produce the molecular machineries required to grow on the

currently present nutrients or to produce additional machineries

required for other (currently not present) nutrients. The first

strategy has the advantage that the protein burden is lower thus

leading to a higher growth rate for the current nutrient. However,

the drawback is that after a shift in the medium (or if the current

nutrient is running out) new molecular machinery required for

growth has to be produced leading to a lag phase. This machinery

possibly includes transporters, metabolic or catabolic enzymes and

additional ribosomes. In the second strategy, there is no lag phase

but the higher protein burden leads to a slower growth rate for all

different nutrients. In fact, both strategies can be favorable

depending on the timescale of the environmental fluctuations, the

duration of the lag phase and the growth rates supported by the

nutrients in the medium. As reviewed in [15], both strategies have

been observed for Escherichia coli. For example, an E. coli

population grown under glucose-limited conditions with a
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doubling time of 0:6h{1 keeps growing without a lag-phase when

transferred to a medium with excess of fructose, mannose, maltose,

and ribose. However, a lag phase occurs when the population is

transferred to a galactose or arabinose rich medium [16].

At the population level there can also be problems associated

with phenotypic variations. For example, a specific phenotypic

variation may increase the growth rate of individual cells but put

the whole population in danger if too many cells have this

phenotypic variation. In this case additional mechanisms are

required to stabilize the population against this variation. An

example is that of ‘cheater’ cells in yeast populations that do not

express FLO1 [17]. This protein is essential for flocculation that

guarantees the survival of populations in hostile environments that

contain high concentrations of antimicrobials or ethanol by

building up a protected space for the cells inside the floc. The

cheater cells have a smaller protein burden and, thus, a higher

growth rate. However, this phenotypic variation is not favorable

for the population as a whole since cheater cells do not contribute

to the flocculation process.

Phenotypic variations are also apparent in populations of E. coli

growing in nutrient rich conditions. Although the macroscopic

properties of bacterial populations are characterized by a few well-

defined quantities such as growth rate, total cellular volume or

mass, DNA content, and the number of ribosomes [18] the

individual cells show large variations in birth size and even in

individual interdivision times [19], [20]. Interestingly, there are

also cellular processes that seem to be tightly regulated and that

are not affected by phenotypic variations. An important example is

cell division in E. coli. This process is precisely implemented and a

mother cell divides into two daughter cells that differ at most by 3–

10% in mass [19], [21], [22]. If this high precision is indeed a

consequence of a tight regulation, an evolutionary advantage in

cell division precision should be expected.

In this study we theoretically explore if there are evolutionary

benefits of phenotypic noise for a growing population of

genetically identical bacteria in non-hostile environments. In

particular, we analyze if specific experimentally observed regula-

tory responses to noise (i.e. suppression or allowance of noise) are

advantageous for a bacterial population growing in nutrient rich

conditions. We consider two specific examples: (i) Division site

placement in E. coli cells. In this process molecular noise is highly

suppressed. We theoretically analyze if a precise implementation

of the cell division process provides a growth advantage for a

bacterial population. (ii) The occurrence of noise-induced

phenotypic variations in fluctuating environments. Here, we

address the question if it is favorable for a bacterial population

to display phenotypic variations in a fluctuating environment, i.e.

to form a heterogeneous population in which both of the above

mentioned strategies are realized.

Results

Growth in non-fluctuating environments
We first analyzed the influence of single cell noise on

exponentially growing bacterial populations in a homogeneous

(non-changing) medium. As mentioned, there are many cellular

processes that could be affected by the presence of noise. Here, we

focused on its influence on the division process and we investigated

if the growth rate of a bacterial population depends on the

precision of cell division. In doing so we assume that an inexact

cell division event produces two sister cells of unequal length and,

consequently, of unequal mass. The smaller of the two daughter

cells has less mass and thus less ribosomes, less transporter proteins

and other molecular machinery needed to grow. We accordingly

assume that it has a larger interdivision time (the time between

birth and subsequent division) than its larger sister.

In our model the growth of a bacterial population is simulated

by a sequence of cell division events. We start from one single

newborn cell and simulate growth and division of this cell and its

daughter cells. The individual doubling time TD (the time a cell

needs to double its mass) is set by the growth medium [18].

Because there are strong indications that cell division is coupled to

mass [23] we assumed that the mass of the mother cell at cell

division has a fixed value mD (that depends on the growth

medium). In the absence of noise the mother cell, thus, divides into

two daughter cells with birth mass mB~mD=2. In this case, all

cells have the same interdivision time given by the prescribed

doubling time TD. However, if the division process is noisy, the

mother cell divides into two uneven daughter cells with mass mB

and mD{mB. In the simulations mB is given by a random number

drawn from a normal distribution centered around mD=2 with

standard deviation s (for details see ‘Exp. methods’). Moreover,

the two daughter cells of unequal size have different interdivision

times. We consider only the case of limited lack of precision to

make sure that both daughter cells contain a complete chromo-

some. To keep track of the division events in the population we

used the ‘‘time until division’’ (tud) that represents the time left

until an individual cell divides. At birth it is equal to the

interdivision time and in every time step of the simulations, the tud

of all cells is decreased by one (time unit). To calculate the tud

distribution from the mass distribution we used the fact that the

mass of an individual cell increases exponentially during its life

cycle [24], [25]. Correspondingly, the interdivision time of a cell

with birth math mB is given by TD ln(mD=mB)=ln 2. Thus, we

implicitly assume that (under the nutrient-rich conditions consid-

ered here) the smaller daughter cell only needs longer to reach the

doubling mass because of its smaller birth mass but does not have

a growth defect, as has been experimentally observed in [26].

Before using this model to investigate how cell division noise

affects the growth of the population, we first verified that in the

absence of noise our model produces an exponentially growing

population. To this end, we calculated an OD-plot by keeping

track of the total mass of the population as function of time. Figure

S1 clearly shows that the population indeed grows exponentially.

Similarly, we generated OD-plots for populations in the

presence of divisional noise. The doubling time of the population

Tpop is obtained from the slope of the OD plot. Surprisingly, we

found that Tpop does not depend on the standard deviation of birth

mass s that quantifies the divisional noise, see Figure S2. Thus,

noise in division site placement does not have any effect on the

growth rate of the population.

To find the origin of this interesting behavior, we developed an

analytical description of our numerical model. The key step is to

identify a formula for the tud distribution of the growing

population which can be obtained in a recursive fashion that

relates the tud distributions at time t and t{1

n(x,t)~n(xz1,t{1)zn(0,t{1)P(x): ð1Þ

Here, n(x,t) is the number of cells that have at time t a time until

division of x. In particular, n(0,t) is the number of cells that divide

at time t. P(x) is the probability distribution for the interdivision

times of the daughter cells that is obtained from the birth mass

distribution, for details see Eq. (15) in ‘Exp. methods’. It is

normalized to two, because every mother cell divides into two

daughter cells. The last equation states that a cell that has a tud of

x at time t either is a newborn cell or had a tud of xz1 at time

t{1. From Eq. (1) one can then show (as explained in detail in

Influence of Noise on Bacterial Populations
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section 1 of Text S1) that the time evolution of the growing

population obeys the following equation

L
Lt

n(x,t)~
L
Lx

n(x,t)zn(0,t)P(x): ð2Þ

Before analyzing Eq. (2) further we first tested if our method

reproduces the results of other approaches [27]. To do so we

calculated the steady state distribution ~nn(x,t)~n(x,t)=N(t) of the

tud in the population. Here, N(t) is the total number of cells. As

shown in Fig. 1, in the absence of noise this distribution scales as

2x with the tud x (cyan line). In this case, the age y of a cell obeys

y~TD{x, and our results are in agreement with the classical

results on age distribution in growing bacterial populations [27].

As mentioned, n(0,t) is the number of dividing cells and this

quantity can be directly read off from the distribution of tud times.

Fig. 1 shows that this quantity is independent of the standard

deviation s.

Given this good agreement of our approach with classical results

we proceeded with the theoretical analysis of Eq. (2) to analyze

which ingredient of our model is responsible for the independence

of Tpop on s. To do so we analyzed the time dependence of the

total mass in the population

M tð Þ~
ð?
0

m xð Þn x,tð Þdx, ð3Þ

which changes with time as

LtM tð Þ~{

ð?
0

n x,tð ÞLxm xð Þdx, ð4Þ

as follows from Eq. (2) (for details see section 2 of Text S1). Upon

using that individual cells increase their mass exponentially, i.e.

m(x)~mD2{x=TD ð5Þ

one then finds

L
Lt

M(t)~
ln(2)

TD

M(t): ð6Þ

The last equation shows that the change in total mass does not

depend on the number of cells N(t) in the population. Thus, a

population of cells with an exponential mass increase always grows

exponentially with prescribed doubling time TD independently of

how the total mass is partitioned between the different cells. For

this reason the divisional noise does not affect the growth of the

population. This analysis clearly demonstrates that the experi-

mental observation that E. coli cells increase their mass

exponentially is essential for our finding. For any non-exponential

individual mass increase [entering via Eq. (5) into Eq. (6)] the total

mass in the population depends on the number of cells leading to a

dependence on the precision of cell division.

Given the surprising result that single cell division noise has no

effect on the growth rate of a population we next asked whether noise

affects other population observables. Many cellular quantities such as

volume, mass, number of ribosomes proteins, or RNA content

change during the cell cycle, presumably in an exponential manner

[24], [25]. The distribution of all these quantities is easily calculated

from the tud distribution. For example, for the volume one has

V (x)~VD2{x=TD , ð7Þ

where VD is the volume at cell division. Thus, the volume distribution

is simply given by n x,tð ÞV xð Þ see Fig. S3. As one can see the tud

(Fig. 1) and the volume distribution look quite similar, they only have

a different scale on the x-axis. From this distribution one can easily

calculate the mean volume and the standard deviation, see Fig. S4. As

one can see these quantities have only a weak dependence on

divisional noise. This is, of course, a consequence of the rather small

differences in the tud distributions shown in Fig. 1 (for details see

section 3 of Text S1).

Growth in fluctuating environments
So far we have considered growth in homogeneous environ-

ments. In a next step we asked whether phenotypic variability

provides growth advantages in fluctuating environments. To

address this general question in a specific context we developed

a theoretical model that describes the growth of a bacterial

population in an environment with fluctuating supply of nutrients.

More specifically, we consider a situation where the nutrients in

the growth medium switch periodically (with period TS ). For

simplicity we consider the case of a periodic switching between two

limiting nutrients A and B.

There are mainly two strategies for how individual cells can

cope with these changing conditions. One strategy (in the

following referred to as strategy 1) is to synthesize only the

molecular machinery required to grow on the nutrient that is

currently present in the medium: if nutrient A is available only the

machinery for growth on A is produced and the machinery

required to grow on B is only produced if nutrient B is present.

Thus, if the nutrient switches, new molecular machinery has to be

synthesized. This requires an adaption time TA during which the

cells do not grow. After adapting to the presence of B and absence

Figure 1. Steady state distributions of time until division for
different noise levels. The steady state tud distributions n(x,t)=N(t)
(where n(x,t) is the number of cells that have at time t a tud of x and
N(t) is the total number of cells at time t) were calculated from our
model for different strength of divisional noise (quantified by the
standard deviation s of birth masses of the daughter cells). Data shown
are for s~0:2 (red), s~0:1 (green), s~0:05 (blue), s~0:02 (magenta)
and s~0 (cyan), where s is given in units of division mass. The
prescribed doubling time is TD~60 min for all populations. For s~0
(cyan line) the distribution scales as 2x.
doi:10.1371/journal.pone.0029932.g001
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of A cells grow with doubling time T1. For simplicity we assume

that the growth rate is identical for both growth conditions.

However, our results do not depend on this specific assumption.

A different strategy (in the following referred to as strategy 2) is

to produce all molecular machinery to grow on A and B

independent on whether A or B are currently present in the

medium. In this way, no adaption is required after a switch in

nutrients and the cells simply keep growing without a lag. Strategy

2 cells grow with doubling time T2 (again for both nutrients), and

because of the extra-burden of producing non-needed proteins one

expects T2wT1 (i.e in the growth phase strategy 2 cells have a

smaller growth rate than strategy 1 cells), see Fig. 2.

Both strategies have been observed experimentally in different

situations, see Ref. [15] and references therein. We therefore first

analyzed if our model reproduces the experimental findings that,

depending on the values of the relevant parameters (adaption,

doubling and switching time), different strategies are advanta-

geous.

To quantify this we determined the effective growth rate of

homogeneous populations (exclusively consisting either of cells that

use strategy 1 or strategy 2) in the fluctuating environment. For a

strategy 1 population the effective doubling time (calculated by

averaging over one period, see Fig. 2) is given by

T
eff
1 ~

T1TS

TS{TA

, ð8Þ

while for a strategy 2 population one has

T eff
2 ~T2: ð9Þ

Fig. 3 shows the ratio T
eff
1 =T

eff
2 calculated from the last two

equations as function of adaptation time TA and switching time

TS . The blue region in Fig. 3 corresponds to the region in

parameter space where this ratio is larger than 1 and in which the

strategy 2 population grows faster, i.e. for these parameter values

strategy 2 is advantageous over strategy 1. In contrast, strategy 1 is

advantageous in the red regions of Fig. 3. The phase boundary

between these two regions (shown as grey line in Fig. 3) is given by

TA~TS 1{T1=T2ð Þ: ð10Þ

As shown in Fig. 3, the strategy 2 population grows faster for long

adaptation times and short switching times, i.e. when the ratio

TA=TS increases. More generally, both strategies can be advanta-

geous depending on the adaptation time and the switching time.

Thus, both growth strategies are only advantageous in a limited

range of parameters (TA,TS). In a next step, we therefore asked if it

might be favorable for a population to display phenotypic variations

and form a population consisting of a noise-dependent mixture of

strategy 1 and strategy 2 cells. The idea behind this is that with such

a diversification a homogeneous population consisting of cells with,

say, strategy 1 might be able to extend the parameter range for

which it is advantageous by allowing some of its cells to convert to

strategy 2. To test this possibility, we need to investigate if there are

parameter values TA and TS for which such a diversified population

has the fastest growth.

To analyze this, we implemented two different models for

generating phenotypic variation as illustrated in Fig. 4. In both

models, the individual cells are either growing with strategy 1 or

with strategy 2. However, noise-induced fluctuations in gene

expression can lead to a change of the growth strategy of the

individual cells. For simplicity, we focus here on the case where

such a change occurs only in newborn cells right after birth. This

makes the following analysis easier but our conclusions do not

depend on this assumption. We consider two scenarios. In the first

scenario, described by model 1, only one of the two strategies is

stable meaning that one strategy is predominantly chosen by a

newborn cell. Here, the noise-induced fluctuations that lead to a

change in growth strategy at birth are short-lived and are diluted out

Figure 2. Growth curves of homogeneous populations in a
fluctuating environment. Time dependence of the number of cells
belonging to a homogeneous strategy 1 population (red curve) and a
homogeneous strategy 2 population (blue curve). Data shown are for a
switching time TS~300 min, adaptation time TA~180 min, and
doubling times T1~60 min and T2~80 min. In this example, strategy
2 is advantageous due to the high value of TA.
doi:10.1371/journal.pone.0029932.g002

Figure 3. Optimal growth strategy for homogeneous popula-
tions. The ratio T

eff
1 =T

eff
2 of doubling times of homogeneous

populations growing with either strategy 1 or strategy 2 is shown for
varying adaptation times TA and switching times TS . The effective
doubling time T

eff
1 of the population growing with strategy 1 is given

by Eq. (8), the effective doubling time T
eff
2 of the population growing

with strategy 2 is given by Eq. (9). In the parameter range where
T

eff
1 =T

eff
2 is larger than 1 (region shown in blue) a strategy 2 population

is advantageous (i.e. the population with strategy 2 grows faster). In the
region where T

eff
1 =T

eff
2 is smaller then 1 (shown in red), strategy 1 is

advantageous. The grey line represents the phase boundary parame-
terized by Eq. (10). Data shown are for T1~60 min and T2~80 min.
Here, and in the following Figs. only the range TAvTS=2, is shown. For
higher values of TA, strategy 2 is trivially advantageous since strategy 1
cells stop growing as TA approaches TS .
doi:10.1371/journal.pone.0029932.g003
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during one cell cycle. In the second scenario, described by model 2,

both strategies are stable and the system can switch between the two

strategies. In this case the noise-induced fluctuations are long-lived

and the choice of growth strategy can be passed from the mother to

the daughter cell. One possibility is to use an epigenetic inheritance

mechanism [28]. As a consequence, the switching event in a cell has

different effects on the growth strategy of its daughter cell in the two

models: for example, consider a mother cell that has switched from

strategy 1 to strategy 2. Then, in absence of any additional

fluctuations the mother and its daughter cells have different

strategies in model 1 but identical strategies in model 2.

Whenever a daughter cell has a different growth strategy than the

mother cell, it has to adapt to the external conditions. This also

requires an adaptation time, denoted by TB
A . This adaptation process

is either caused by the synthesis of additional metabolic machinery

(for cells that switch from strategy 1 to strategy 2) or by the

adjustment to a higher growth rate (for cells that switch from strategy

2 to strategy 1). For simplicity, we focus in the following on the

special case where these two adaption times are equal: TB
A~TA. The

influence of this specific assumption on our results is discussed below.

To formulate these models analytically it is again, as for the case

of growth in homogeneous environments, convenient to use a

continuum description. Then, one has at time t, ni(x,t) cells using

growth strategy i with time until division x. At birth the

interdivision time of a newborn cell with strategy i is drawn from

a normal distribution Pi(x) with mean Ti and standard deviation

si for i~1 and 2. In the following, we use s1~s2~0:08 a typical

value of cell division noise [19], [21], [22]. However, our general

conclusions do not depend on this choice. By repeating the same

analysis that led to Eq. (2) for two different distribution functions

and by denoting the probability that a newborn cell has strategy 2

by p the time evolution equation for model 1 becomes

Ln1(x,t)

Lt
~

Ln1(x,t)

Lx
z(1{p)n1(0,t)P1(x)z(1{p)n2(0,t)P1(x),

Ln2(x,t)

Lt
~

Ln2(x,t)

Lx
zpn1(0,t)P2(x)zpn2(0,t)P2(x):

ð11Þ

In both equations, the first term on the right hand side describes

the decrease of the tud of every cell with increasing time. The

second term accounts for cell division events of cells with strategy 1

that create newborn cells with strategy 1 and 2 with probability

12p and p, respectively. The third term accounts for the

corresponding cell division events of cells with strategy 2. Because

in this model there is no inheritance of growth strategy, the noise-

induced fluctuations are diluted out after one generation and the

probability p to have strategy 2 is independent of the strategy of

the mother cell. In contrast, in model 2 the strategy choice of a

newborn cell depends on the strategy of the mother. The

probability that mother and daughter cells have the same strategy

is 12p (i.e. p is the probability that a newborn cell has a different

strategy than its mother cell, see Fig. 4.). Correspondingly, for

model 2 one has

Ln1(x,t)

Lt
~

Ln1(x,t)

Lx
z(1{p)n1(0,t)P1(x)zpn2(0,t)P1(x)

Ln2(x,t)

Lt
~

Ln2(x,t)

Lx
zpn1(0,t)P2(x)z(1{p)n2(0,t)P2(x):

ð12Þ

In both models the total number of cells is given by

N tð Þ~
ð

dx n1 x,tð Þzn2 x,tð Þð Þ, ð13Þ

from which the growth curve of a diversified population can be

calculated. This allows the calculation of the doubling time Tdiv of

the diversified population (by fitting this growth curve with an

exponential).

To determine whether phenotypic variation can provide a

growth advantage in fluctuating environments we compared Tdiv

with the doubling times of the homogeneous populations by

calculating T
eff
1 =Tdiv and T

eff
2 =Tdiv. These quantities are shown as

function of adaptation and switching time for different diversifica-

tion probabilities p in Figs. 5 and 6. From inspection of these plots it

becomes clear that a population displaying phenotypic variation can

only grow faster than one of the homogeneous population (regions

shown in blue), but never faster than both homogeneous

populations. For example in model 1 with diversification probability

p = 0.99, TA = 60 min and TS = 200 min the diversified population

grows faster than a homogeneous strategy 1 population (see Fig. 5A).

Figure 4. Division scheme in the two models for phenotypic diversification. A newborn cell randomly chooses a growth strategy. In model
1, strategy 2 is chosen with probability p, strategy 1 with probability 1{p independent of the strategy of the mother cell. In model 2 this scheme is
different, since here the probability of having strategy 1 or 2 depends on the strategy of the mother cell. Here, p denotes the probability that a
newborn cell has a different strategy than its mother cell.
doi:10.1371/journal.pone.0029932.g004

Influence of Noise on Bacterial Populations
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However, for the same parameter values a homogeneous strategy 2

population grows faster (see Fig. 5B). Such a behavior is found for all

parameter values tested.

The conclusion that a homogeneous population is advantageous

over a heterogeneous population under all conditions tested is

surprising in light of earlier results [29],[30]. Several studies propose

that phenotypic variation can be advantageous in fluctuating

environments. To clarify which aspect of our model is responsible

for this different conclusion, we looked for advantages of

diversification under a variety of additional conditions.

As explained above, our model assumes periodic switching of

the external conditions. We asked if our findings change in a more

realistic scenario where TS is not constant but varies randomly. To

analyze this we implemented two different randomly switching

environments, where the switching time is drawn from a normal

distribution with mean TS and from an exponential distribution

with mean TS , respectively. As shown in Figure S5 and S6, both of

the ‘‘random switching environments’’ give rise to the same

population doubling times T
eff
1 ,T

eff
2 ,Tdiv as the environment with

periodic switching. This implies that the doubling times of all three

populations, T
eff
1 ,T

eff
2 ,Tdiv only depend on the average switching rate.

An important feature of our model is that cells have to adapt

when they have a different growth strategy than their mother cells.

Above, we assumed that this adaptation process takes the same

time as adaptation to an environmental switch, i.e. TB
A~TA. To

analyze the influence of this assumption, we systematically varied

the adaptation time TB
A . For TB

AwTA, we find, as above, that a

diversified population is always growing slower than one of the

homogeneous populations, since in this case the growth rate of the

diversified population is even further reduced. For decreasing

TB
AvTA, the doubling time of the diversified population Tdiv

decreases continuously. As we are looking for situations where

diversification is advantageous, we can focus on the case TB
A~0.

Systematic analysis showed that even in this case phenotypic

Figure 5. Comparison of doubling times of homogeneous populations and populations showing phenotypic variation according to
model 1. The doubling time of a diversified population Tdiv and a homogenous population are compared for different adaptation times TA and
switching times TS . Single cell diversification is implemented according to model 1, see Fig. 4. Here the ratios T

eff
1 =Tdiv (left column) and T

eff
2 =Tdiv

(right column) are shown. If this ratio is larger than 1 (shown in blue), the heterogeneous population grows faster. Data shown are for diversification
probabilities p~0:99 (A and B), p~0:5 (C and D), and p~0:01 (E and F). In all cases the birth mass noise is 8% and data are only shown for TAvTS=2
as in Fig. 3.
doi:10.1371/journal.pone.0029932.g005
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diversification as described by model 1 does not provide a growth

advantage. However, in model 2 diversification can be advanta-

geous, but only for large diversification probabilities pw0:5, see

Fig. 7. For example, for p~1, TA~50 min and TS = 140 min one

has both T
eff
1 =Tdivw1 and T

eff
2 =Tdivw1 (i.e. this point in

parameter space is blue in both Figs. 7A and 7B). However, as

can be seen from Fig. 7C, the diversified population is only

advantageous in a small region of phase space indicating that some

fine-tuning of growth parameters (T1,T2) with environmental

parameters (TS,TA) is required. For decreasing p the parameter

range for which the diversified population is growing the fastest is

getting smaller until it vanishes at p~0:5.

Discussion

In this study we address the question if the absence or presence of

noise on the single cell level leads to evolutionary benefits for growing

bacterial populations. It is well established that in hostile environments

phenotypic noise provides an advantage for a bacterial population [31].

For example, as shown experimentally an E. coli population that is

exposed to antibiotics survives by diversifying into a dormant

subpopulation [6]. Here, however, we study evolutionary benefits of

phenotypic noise for a growing population of genetically identical

bacteria in non-hostile and nutrient-rich environments.

Under these conditions we find that generally noise at the single

cell level has hardly any effect on the macroscopic properties of

bacterial populations and neither affects its growth nor its

composition (regarding e.g. mass and protein content). More

specifically, we analyzed if suppression of divisional noise or

allowance of noise in the transcriptional regulation of metabolic

machineries leads to an increased growth rate of a population.

Surprisingly, we found that in these scenarios the experimentally

observed regulatory scheme (i.e. suppression of noise in division

site placement and allowance of phenotypic variations for growth

Figure 6. Comparison of doubling times of homogeneous populations and populations showing phenotypic variation according to
model 2. The doubling times of a diversified population Tdiv and a homogenous population are compared for different adaptation times TA and
switching times TS . Single cell diversification is implemented according to model 2, see Fig. 4. Here the ratios T

eff
1 =Tdiv (left column) and T

eff
2 =Tdiv

(right column) are shown. If this ratio is larger than 1 (shown in blue), the heterogeneous population grows faster. Data shown are for diversification
probabilities p~0:99 (A and B), p~0:5 (C and D), and p~0:01 (E and F). In all cases the birth mass noise is 8% and data are only shown for TAvTS=2
as in Fig. 3.
doi:10.1371/journal.pone.0029932.g006
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in fluctuating environments) does not lead to an increase in the

growth rate of the population. While it is well established that

molecular noise is essential for populations to cope with hostile

situations that require random decision making (such as sporulation

or entrance into competence or dormancy [4], [5], [6], [7], [8]) it is,

as demonstrated here, difficult to identify an evolutionary relevant

role of noise for bacterial growth in nutrient rich conditions. In fact,

in the examples considered in this work, noise becomes only

relevant for unrealistically high switching rates.

We found that divisional noise has no effect on the growth rate

of a population of cells with exponential mass increase (such as E.

coli). This finding is a direct consequence of the fact that (under the

nutrient-rich conditions considered here) the growth rate of the

individual cells is independent of cell size. Such a behavior has

been observed experimentally in [26]. Of course, it cannot be

excluded that under different conditions ‘non-linear’ effects

become important. For example, one could imagine that in hostile

environments smaller cells have a growth disadvantage making a

symmetric cell division favorable. However, to be able to

theoretically analyze such scenarios a systematic experimental

characterization (along the lines of [26]) of the growth behavior of

individual cells in hostile environments is required.

Given the fact that (in the scenarios considered) noise has no

effect on the growth rate it is surprising that the Min system

together with the nucleoid occlusion system, that determine the

site of cell division in E. coli, shows such high precision with cell

division occurring within 3%–10% (of total length) from mid-cell

[19], [21], [22]. Z-ring formation is even more precise [32].

Because precise cell division does not result in faster growth the

astonishing precision of cell division in E. coli is not the result of

optimization of growth rate in nutrient-rich conditions. As

mentioned, the precision could have some advantages under

conditions different from those considered here. Another possibil-

ity is that the Min proteins simply keep the FtsZ ring from forming

at the poles while the cell division site is determined by the action

of nucleoid occlusion [33], [34], [35], [36]. In this way physical

interactions associated with the position of the chromosomes

would be responsible for division site placement. Such mechanisms

where, e.g., the site of cell division is determined by the physical

properties of the membrane and the associated turgor pressure

have been intensively discussed in the literature [37], [38], [39].

Our results also indicate that for populations the presence of gene

expression noise does not necessarily lead to evolutionary advantages at

least not in the scenarios considered here, where such noise affects the

metabolic program of individual cells in a fluctuating environment. We

implemented two different models for generating phenotypic variation.

Our model 1 describes short-term fluctuations that last only for one

generation and are not inherited to the daughter cells. These

fluctuations may originate from uneven partitioning of ribosomes or

from improper sensing of the growth environment. Long-term

fluctuations that persist for longer than one cell cycle are taken into

account in our model 2 where the system can switch between the two

growth strategies. Typical examples are bistable switches that are

turned on or off by uneven partitioning of regulator proteins as

explained in [1]. The phenotypic state of these switches can be

inherited to the next generation [28].

Interestingly, for all (realistic) parameter values it is unfavorable

to form a noise-induced mixture of cells with different strategies.

Figure 7. Population showing phenotypic variation according to model 2 growing without adaptation after a strategy switch. For
p~1 and TB

A~0, T
eff
1 =Tdiv and T

eff
2 =Tdiv are shown as function of switching time TS and adaptation time TA in Figs. A and B, respectively. Fig. C

shows min(T
eff
1 ,T

eff
2 )=Tdiv thus comparing the diversified population with the faster growing homogeneous population. In Fig. D the total number of

cells N(t) as function of time t is shown for the diversified population (black curve). The subpopulations growing with strategy 1 and 2 are shown in magenta
and cyan, respectively. Data shown are for TA~50 min and TS~140 min. In all cases the birth mass noise is 8% and data are only shown for TAv0:6TS .
doi:10.1371/journal.pone.0029932.g007
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Because at least one of the homogeneous populations is growing

faster noise-induced diversification is unstable. These findings can

be understood as follows: for given growth conditions either

strategy 1 or strategy 2 is advantageous. Let’s assume that, strategy

1 is advantageous. Then, the fastest growing population consists

only of strategy 1 cells. For such a strategy 1 population

diversification leads to formation of a subpopulation of cells with

strategy 2. However, because strategy 2 cells grow (under the given

conditions) slower than strategy 1 cells this diversification just

implements the wrong strategy in some of cells leading to a

decrease in growth rate of the population. For a strategy 2

population, however, diversification leads to an increase in growth

rate since now some of the cells grow faster with strategy 1. In

particular, this population grows the faster the larger the fraction

of (diversified) strategy 1 cells is. Thus, in both cases the noise-

induced fluctuations drive the system towards a homogeneous

population with strategy 1. Similarly, for growth conditions that

favor strategy 2 the noise-induced fluctuations drive the system

towards a homogeneous strategy 2 population.

Thus, from an evolutionary point of view a diversified

population is not stable: for populations with the better strategy

every noise-induced fluctuation leading to a diversified population

makes the population less fit and the fluctuations die out. Also for

populations with the non-optimal strategy noise-induced fluctua-

tions increase the growth rate. In this way the population is driven

towards a homogeneous population. This finding does not depend

on the details of the fluctuating environments and even holds for

random switching (where now TS is a random time) between the

two nutrients.

We found diversification to be favorable only for non-realistic

conditions. Namely, in our model 2 for phenotypic diversification

for a population that does not have to adapt to the change in

growth strategy at birth (TB
A~0) and that switches at high rates

pw0:5. That this corresponds to a rather artificial growth strategy

that also requires quite some fine-tuning of parameters can be

made clear by considering the case p~1. In this case all newborn

cells have a different strategy than their mother cell. Let’s consider

the case where a switching event occurs at t~0. Then, all strategy

1 cells stop growing (due to adaptation) while strategy 2 cells keep

growing and dividing. Because only strategy 2 cells divide and

p~1 the fraction of strategy 1 cells increases while that of strategy

2 cells decreases. Thus, for appropriately chosen TA the

population mainly consists of strategy 1 cells at t~TA. In this

way large parts of the population grow with the higher doubling

rate (T1){1 after the adaptation time is over. Thus, the

diversification strategy optimizes both, the growth in the lag

phase (by having a large fraction of strategy 2 cells for tvTA) and

the growth after adaption (by having a large fraction of strategy 1

cells for twTA). As growth proceeds the strategy 1 cells all divide

giving rise to a population that mainly consists of strategy 2 cells.

This leads to an oscillation of the composition of the population

(see Fig. 7D) that alternates between the two homogeneous

populations. Thus, the degree of diversification is not constant and

in contrast to the other scenarios there are no stable subpopula-

tions. It is also clear that this strategy only works if T1,T2,TS and

TA are chosen properly. In fact, the population can only increase

its growth rate if it is able to anticipate the fluctuations in the

growth medium and adjust its growth parameters accordingly.

Such fine-tuning to environmental fluctuations can indeed lead to

growth advantages as was shown experimentally for an engineered

yeast strain in an accordingly chosen periodic environment [40].

However, since it involves parameter fine-tuning and unrealistic

high switching rates we don’t believe that this scenario has any

relevance for real biological systems.

Our conclusion that diversification is (under realistic conditions)

not advantageous in fluctuating environments is very different

from those of other theoretical studies [29], [30]. However, we

believe that their findings are the consequence of an incomplete

comparison of all possible realizations of populations. In Ref. [29],

the authors consider a population with two subpopulations

growing at different growth rates. All cells can switch between

the two subpopulations. In this model an environmental change

simply leads to an exchange of growth rates of the subpopulations

that immediately continue growing with the new doubling time.

Thus, in contrast to our model the cells do not have to adapt to

environmental changes. Diversification is declared favorable, if a

population in which cells switch from the higher to the lower

growth rate grows faster than a population in which only switching

from low to high growth rate is allowed. However, this is only the

case if the population anticipates the fluctuations and the cells

switch into the state that will grow faster after the environment has

changed.

In Ref. [30], the authors consider two types of heterogeneous

populations. In one population, the cells choose the phenotype of

highest growth rate under the current conditions by sensing the

environment (responsive switching). In the other population, the

cells choose their phenotype randomly (stochastic switching). A

stochastic switching mechanism can lead to higher growth rate

than a responsive switching mechanism if the switching rates

between phenotypes follow the environmental changes. Thus, no

equivalent of our strategy 2 population (of cells that do not switch

phenotypes but grow with a burden) is considered.

In conclusion, these studies do not take into account that there

are two reference populations (in our terminology a homogeneous

strategy 1 and a homogeneous strategy 2 population) with which

the diversified population has to be compared. Most of the results

on advantageous effects of diversification are the consequence of

this incomplete comparison with the reference populations.

Furthermore, the models show that the strongest advantages

occur for populations that are able to anticipate the fluctuations in

the growth medium. As explained above, our model reproduces

these growth advantages for anticipating populations if the

adaptation process is neglected.

Our model is also applicable to more general situations than the

simple switching between two nutrients. For example, our results

and conclusions are not affected if a third nutrient C is present in

between the other nutrients A and B provided that the strategy 2

cells do not produce the machinery required to grow on C and

that both strategy 1 and strategy 2 cells need the same adaptation

time. Thus, our model not only describes the switching sequences

ABABAB but also ABCABC, ACBACB etc. and even scenarios

with non-periodic occurrences of C.

Things become more interesting if for optimal growth on C a

different strategy is required than for growth on A and B. But even

then our conclusion that a homogeneous population is always

favorable is not affected: both strategies lead to an effective

doubling time over the full switching time. The effective doubling

time of the mixture is then simply a linear superposition of the

effective doubling times of the 2 homogeneous populations. For

the case with two populations the optimal population then simply

implements the strategy with the lowest effective doubling time.

For more than 2 nutrients things are most interesting if the best

solution is to regulate the metabolic machinery of sugar B in the

presence of sugar A by one of the strategies and in the presence of

sugar C by the other strategy. But even in this case it is not

favorable to form a heterogeneous population because again the

doubling time of the mixture is a linear combination of those of the

homogeneous populations. Such a linear relation has its minimum
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at the boundaries, i.e. either at f ~0 or f ~1 (where f is the

fraction of the population with one of the two strategies). Thus,

again the fastest growing population is a homogeneous one. The

sum of doubling times during the intervals AB and CB determines

whether it is strategy 1 or 2.

Given our main results that homogeneous populations always

grow faster than a mixed one, it becomes clear that the observed

variation in bacterial populations does not reflect an evolutionary

advantage under the conditions considered here. We can only

speculate here about its origin. For example, it could simply be of

physical origin, namely that the costs for a more precise regulatory

system exceed the benefit of being homogeneous. Or it might

provide a mechanism to keep phenotypic variations alive that

guarantee survival of the population under more severe or

irreversible changes in the environment.

Materials and Methods

The simulation of the growth of a bacterial population in a

homogeneous environment started from a single newborn cell at

time t~0 that divides at t~TD. To determine when cells divide

we keep track of the time until division x of every cell. A simulation

step represents one time step and in every time step x is reduced by

one for all present cells. At a given time all cells with x~0 divide

into two daughter cells. In the absence of noise, both daughter cells

have the same birth mass mB~mD=2 (where mD is the division

mass of the mother cell) corresponding to an interdivision time of

TD. In the presence of noise, one daughter cell has birth mass mB

the other mD=2{mB, where mB is drawn from a normal

distribution with mean mD=2 and standard deviation s,

P(m)~
1

s
ffiffiffiffiffiffi
2p
p exp {

1

2

m{mD=2

s

� �2
 !

: ð14Þ

Birth mass is transformed into the tud according to

x~{TD log2

m

mD

� �
. Correspondingly, in Eqs. (2), (11) and (12)

one has then

P(x)~P(m(x))
m(x)ln2

TD

, ð15Þ

where P(m) is given by Eq. (14) and m(x)~mD exp {ln 2ð Þx=TDð Þ.
The growth of populations in fluctuating environments is

simulated by keeping track of the tud distributions n(x,t). For a

growing homogeneous population, the time evolution of the tud

distribution is given by Eq. (2). Strategy 1 and strategy 2 populations

behave like homogeneous populations except for the lag phase of

strategy 1 populations during which the tud distribution is kept

constant. The population doubling times are obtained by fitting the

total number of cells in the population

N(t)~

ð?
0

n(x,t)dx ð16Þ

at time t with an exponential.

The diversified populations grow according to Eqs. (11) and

(12). Again, during the lag phase, the tud distribution of the

strategy 1 subpopulation n1(x,t) is kept constant. The population

doubling time Tdiv is obtained by fitting the total number of cells,

Eq. (13), to an exponential.

For the simulations custom written C-programs were used.

Supporting Information

Text S1 Supporting text with derivation of equations.

(PDF)

Figure S1 OD-Plot of a growing population in the
absence of divisional noise. The OD plot was obtained by

calculating the total mass of the population M(t) as function of

time t. Mass is measured in units of the division mass mD, time t in

units of generation time TD. Population mass always doubles after

one generation showing that the population indeed grows with

prescribed doubling time TD.

(TIF)

Figure S2 Noise dependence of the population doubling
time Tpop. The doubling time of the population Tpop is obtained

by fitting the total mass of the population M(t) as function of time

t to an exponential. Tpop is shown in units of the prescribed

doubling time TD for different levels of birth mass noise quantified

bys.

(TIF)

Figure S3 Stationary volume distributions. The volume

histograms are shown for different strength of divisional noise:

s~0:2(red), s~0:1(green), s~0:05(blue), s~0:02(magenta) and

s~0(cyan).

(TIF)

Figure S4 Influence of noise on the mean volume �VV and
the standard deviation sV of a population. A: The mean

volume (as given by Eq. 14 in Text S1) is measured in units of its

value for s~0. B: The standard deviation (calculated from Eq. 15

in Text S1) of the volume in units of its value for s~0.

(TIF)

Figure S5 Effect of noisy switching on phenotypic
diversification described by model 1. T

eff
1 =Tdiv is shown

as function of average switching time TS and adaptation time TA.

The diversification probability is p~0:99. In figures A and B, the

population growth was followed for 8 switching periods. In A,

switching times are drawn from a normal distribution, in B from

an exponential distribution. Figures C and D show averages over

100 runs shown in A and B, respectively. Birth mass noise is 8%.

We only consider environmental switches with TSw2TA.

(TIF)

Figure S6 Effect of noisy switching on phenotypic
diversification described by model 2. T

eff
2 =Tdiv is shown

as function of average switching time TS and adaptation time TA.

The diversification probability is p~0:01. In figures A and B, the

population growth was followed for 8 switching periods. In A,

switching times are drawn from a normal distribution, in B from

an exponential distribution. Figures C and D show averages over

100 runs shown in A and B, respectively. Birth mass noise is 8%.

We only consider environmental switches with TSw2TA.

(TIF)
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