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Abstract: The integration of infectious disease modeling with the data collection process is crucial
to reach its maximum potential, and remains a significant research challenge. Ensuring a solid
empirical foundation for models used to fill gaps in data and knowledge is of paramount importance.
Personal wireless devices, such as smartphones, smartwatches and wireless bracelets, can serve
as a means of bridging the gap between empirical data and the mathematical modeling of human
contacts and networking. In this paper, we develop, implement, and evaluate concepts and archi-
tectures for advanced user-centric proximity estimation based on smartphone radio environment
monitoring. We investigate innovative methods for the estimation of proximity, based on a person-
radio-environment trace recorded by the smartphone, and define the proximity parameter. For this
purpose, we developed a smartphone application and back-end services. The results show that, with
the proposed procedure, we can estimate the proximity of two devices in terms of near, medium, and
far distance with reasonable accuracy in real-world case scenarios.

Keywords: radio environment fingerprinting; proximity estimation; user-centric; WiFi; BLE

1. Introduction

Infectious disease models are both concise statements of hypotheses and powerful
techniques for creating tools from hypotheses and theories. As such, they have tremendous
potential for guiding data collection in experimental and observational studies, leading
to more efficient testing of hypotheses and more robust study designs [1,2]. Although
person-to-person contact is a major factor in virus spread, recent studies have shown that
a person can be infected even after an infected person has left the room [3]. When shar-
ing the same indoor space, close contact can cause viruses to spread via the air, objects,
or floor, even after two to three days, if the recommended protective equipment is not used,
or disinfection is not carried out [4]. Thus, appropriate monitoring of person-to-person,
person-to-place and person-to-object interactions is a crucial issue for post COVID-19
re-opening and for better understanding of disease spread in general [3,5]. Moreover,
the spread of communicable diseases in a population is an inherent spatial and temporal
process that is of great importance to modern society. For this reason, spatially explicit
epidemiological models of infectious diseases are of great importance for improved under-
standing of the spatial spread of disease through a network of human contacts. Clearly,
infectious disease modeling can only reach its full potential if it is more closely integrated
with the data collection process, which remains one of the greatest challenges [1]. In partic-
ular, ensuring a solid empirical basis for models used to fill data and knowledge gaps is
of paramount importance.

Due to the recent pandemic in which social distance has proven to be a critical factor,
information about social interactions between users has become essential. Thus, proximity de-
tection is a current research topic. In addition to the disease control domain, proximity detection
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approaches are also applicable in social sciences to better understand human interaction [6,7],
in healthcare where monitoring the number of social interactions could help in the care of pa-
tients with certain diseases [8,9], and in the security domain for access control [10], intruder
detection [11] and surveillance [12]. Occupancy and proximity detection also have interesting
applications in the building control domain for activating heating, ventilation, and air condition-
ing (HVAC) systems, lighting and other equipment [13,14], emergency management [15], and
space utilization and monitoring of occupancy and movement patterns, which are important
in pandemic conditions, and more generally in shared workspace environments [16–18]. The
wide range of applicability of proximity/occupancy detection approaches confirms the need
for further research toward non-intrusive, accurate, and energy-efficient solutions.

Various proximity detection technologies have been investigated, such as vision sen-
sors (cameras) [19], infrared [20], audio [21], ultrasonic [22], and radio-frequency-based
technologies, such as WiFi [23–26], Bluetooth low energy (BLE) [27–29], RFID [30], and
ultra-wideband (UWB) [31]. Most of these approaches (infrared, ultrasound, RFID, audio,
cameras) require the deployment of a dedicated infrastructure, which increases the main
barrier to entry and, therefore, are not suitable for widespread use. Although some of the
methods are very accurate, they can also be very intrusive (audio, cameras) and are usually
not well accepted by users. This leaves BLE and WiFi as the two most viable options
because wireless infrastructure is extremely widespread, and wireless devices, i.e., smart-
phones, smartwatches, wireless bracelets, etc., have become ubiquitous personal devices,
which makes the approach non-intrusive. In this regard, information and communication
technologies (ICTs) can serve as a means of bridging the gap between empirical data and
the mathematical modeling of human contacts and networking.

Shortly after the COVID-19 pandemic outbreak, many ad hoc sensor-based technolo-
gies emerged for combating COVID-19 [3,32–34]. Many of these were based on the use
of digital contact tracing solutions [34,35] to evaluate and limit the spread of COVID-19.
Various combinations of close-range, proximity-based sensing technologies, such as smart-
phones, wearables [36], Bluetooth low energy (BLE) beacons [29,34], and positioning-based
solutions [37] that use anonymous or randomly coded locations [38], were used. The main
goal of the proposed solutions was to identify and inform those who may have been ex-
posed to the COVID-19 virus, so that they could take appropriate actions, such as isolation,
care, and treatment [39].

To exploit existing solutions in terms of infrastructure independency, and to pursue the
communication trend in which the user is placed at the center, we proposed a novel approach
to traffic modeling in [40]. In this approach, the environment is monitored by the user and
the infrastructure does not “trace” the user, as occurs with telcos, Internet service providers,
Google, etc. In the proposed user-centric approach, the user is completely anonymous and has
full control over the data collected by their wireless device(s). It is worth noting, that the user
does not need to be connected to any AP/base station to obtain the SSID and RSSI, or any other
radio channel parameter. In this way, any user can collect the traces of all radio environment
parameters for different networks.

The proposed solution is focused on and exploits existing wireless communication
systems consisting of a wireless infrastructure and numerous wireless devices. The wireless
communication infrastructure is a complex ecosystem of separate, yet interconnected, sys-
tems. It comprises a variety of wireless networks, infrastructure-based or infrastructure-less,
both public and private, to which users can connect. Wireless networks consist of multi-
ple base stations/access points connected to the Internet. To be periodically recognized,
they transmit their identity and the information required by wireless devices to establish
a wireless connection. A common feature of most wireless base stations/access points is
that they can be detected by wireless devices without requiring infrastructure intervention.
Moreover, in most cases, the infrastructure is not even aware of the wireless devices nearby.
A set of detected base stations/access points and estimated radio channel characteristics
at a particular location is often called the “radio environment” [41]. The radio waves propa-
gating from the transmitter to the receiver interact with this environment. The interaction is
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reflected in the received signal as path loss, fading, delay, etc. The radio receivers estimate
distortions to improve detection of the transmitted information. If the radio environment is
known for all points in a geographical area (i.e., a radio environment map), this information
can be applied to locate the user terminal using radio fingerprinting algorithms [42–44].
Radio environment maps are obtained through extensive measurement campaigns or by
applying calibrated combined deterministic and empirical channel models, which require
a perfect knowledge of the geometry and electromagnetic characteristics of the propagation
environment. In our research, we use the estimated channel parameters, not to local-
ize the user, but, instead, to estimate the proximity of two users, by exploiting the fact
that smartphone terminals that are close to each other have similar or correlated channel
distortions.

The main objective of the paper is to propose a user-centric approach that exploits the above-
mentioned characteristics of wireless networks to estimate the proximity and, consequently,
the “contact intensity“ of a user to other users (or possibly infected individuals). Modern
wireless personal devices periodically monitor the radio environment using at least three
wireless technologies, i.e., cellular (GSM, USM, LTE), WiFi, and Bluetooth (BT), observing,
at minimum, the received signal strength and the identity of all transmitters within range.
In the case of WiFi access points (AP), the user monitors the SSID (service set identifier), or MAC
address and received signal strength indicator (RSSI), from all the AP in range. Observations
of the radio environment can be time-stamped and stored in the wireless device’s memory,
thus building a local radio environment trace. When a user wants to determine proximity
to an infected person or model their contacts, a user’s radio environment trace is compared
to the radio environment traces of others. By delaying the overlap of the traces, it can be
determined if the user was still in a room or next to a device (e.g., a coffee maker) later, even
though there was no overlap of the traces at that time.

The contribution of the paper is the development of concepts/architectures for ad-
vanced user-centric proximity estimation based on radio environment monitoring, and its
implementation and evaluation in a testing environment. We define proximity of “person-
to-person”, “person-to-place” and “person-to-object”, and investigate innovative methods
for the estimation of proximity, based on person-smartphone-recorded radio environment
traces. The results show that, with the proposed procedure, we can estimate the proximity
of two devices in terms of near, medium and far, with reasonable accuracy in real scenarios.

The remainder of the paper is organized as follows: Related work is discussed in
Section 2. In Section 3, we focus on the proposed approach and describe the develop-
ment of the platform and smartphone application. The proximity estimation procedure
is presented in Section 4, while Section 5 evaluates the results for different indoor and
outdoor scenarios. In Section 6, we discuss lessons learned, and both the limitations and
positive features of the proposed approach. In Section 7, we conclude the paper and identify
possible further research directions.

2. Related Work

Radio-frequency-based technologies are widely used in research for localization, prox-
imity and occupancy detection, as well as monitoring of movement patterns, since they
are widely available and inexpensive while providing data with high accuracy. Important
advantages compared to well-known vision and audio solutions include their ability to
preserve privacy, and their unobtrusiveness.

Important areas of application include smart buildings, health and safety and security. The
application of RFID technology is a mature, widely available and cost-effective solution for track-
ing, occupancy detection and localization, which has high detection accuracy [45]. Although
deployment costs can be relatively high, the technology is frequently used also for indoor
locations and sensing solutions to improve the utilization and maintenance of buildings [46].
Due to widely available enabled smartphones, BLE offers a low-cost alternative for occupancy
and proximity detection. For instance, in [47], an occupancy estimation approach for indoor
environments using BLE technology for emergency management is proposed. The system con-
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sists of BLE tags, with a mobile application sending the data to the server site where calculation
of building occupancy using different machine learning approaches is performed. Another
non-intrusive occupancy monitoring approach, which leverages BLE technologies, is proposed
in [48]. In this approach, BLE beacons are programmed to continuously scan the BLE-enabled
smartphones in their vicinity. Based on their MAC address and RSSI values, the occupancy
and movement patterns are defined. In addition, the approach applies a machine learning
model to infer the occupants’ zone-level location. Several studies exist on occupancy predic-
tion for improving facility control and the energy efficiency of buildings, exploiting existing
WiFi infrastructure. A solution proposed in [49] utilizes WiFi probe technology to scan active
WiFi devices (smartphones) based on a Markov feedback recurrent neural network (M-FRNN)
algorithm model for the prediction of occupancy profiles. An occupancy-based HVAC actua-
tion solution, based on existing WiFi infrastructure and enabled WiFi interfaces of occupants’
smartphones, is proposed in [13].

Recently, proximity detection, space occupancy location and tracking have become
indispensable for disease control purposes. Especially during the COVID-19 pandemic,
contact tracing has became a key measure to reduce virus spread [50]. In [51], the authors
showed that mobility patterns were strongly correlated with virus spread. The findings
were based on captured daily movement patterns from mobile signals from cell towers
in 25 U S. counties. Contact tracing can create an infectious disease transmission network
that enables the visualization of actual virus transmission routes, evaluation of outbreak
trends, prediction of transmission processes, and development of more effective prevention
and control strategies [51]. Proximity/occupancy approaches can be efficiently exploited
to count the number of people in a particular area, to identify them and track movement
patterns. In [52], the movement patterns of people indoors, based on smartphone WiFi data,
was captured. Similarly, the authors in [53] used a WiFi dataset to track the flow of people
through buildings. During the pandemic, IoT sensors were used to measure human density,
monitor crowd movement, and observe facility usage for crowd monitoring [52]. A mobile
crowd monitoring application, which used data from occupancy sensors, cameras, and
ticket validation to determine human density in specific areas, was tested in [54].

In [55], the authors proposed an edge-computing prototype to monitor physical dis-
tancing that measures the forehead temperature and keeps track of the person count
when managing the flow of visitors in public spaces. However, the ad hoc IoT solutions
described are unable to interoperate with each other as they are developed using different
sensors, data models, communication protocols, and applications without any interop-
erable means of interconnecting these heterogeneous systems and exchanging data [56].
Thus, the authors in [56] proposed, designed, implemented, and evaluated an interop-
erable, standard-based, scalable IoT architecture for integrating the disparate Internet
of COVID-19 Things (IoCT). The solution contains an effective post-COVID-19 information
system for evaluating the transmission risk for both people and places using disparate IoT
systems, including proximity-based beacons or global navigation satellite system (GNSS)-
based tracking, camera-based COVID-19 risky behavior detection, and contextual indoor
geospatial information [56].

Many studies on proximity/occupancy detection have exploited machine learning
(ML) approaches on RSSI of BLE and WiFi systems. The Comm2Sense [23] system uses
ML to classify the proximity of two devices using the WiFi RSSI, while Virtual Compass,
described in [24], in addition to WiFi also includes BLE RSSI values. Additional information
exchange (between smartphones) on the distances to known neighbors improved estimated
distance. A system involving collaborative processing is presented in [28] which also con-
siders smartphone orientation in proximity detection. The authors of [15] further proposed
an improved path-loss model which considers the relative orientation of the smartphones.
A comparison between classical modeling approaches and ML when estimating the distance
between a transmitter (device) and receiver (device) of BLE signals based on RSSI values
is provided in [29]. In [57], the authors present an approach based on fingerprints and
Gaussian mixture models to classify the proximity of two devices. Unlike other approaches,
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the authors use several features, not just a distance metric, to describe the fingerprints
collected by the devices. A similar approach was presented in [26], where the authors
provided a very detailed analysis of the features used on a much larger dataset.

To leverage and evolve existing solutions and approaches, in the spirit of unob-
trusiveness and environmental (home, office, outdoor) independence, without the need
for dedicated infrastructure, we have adopted an approach that focuses entirely on the use
of radio fingerprints. To create a WiFi or BLE radio fingerprint, all that needs to be collected
is information about what devices are available (using MAC address or the SSID of the
transmitting device) and what the RSSI value was when the radio environment is scanned
by smartphones. Proximity estimation is based on comparing the similarity of the radio fin-
gerprints of different smartphone devices, which means that smartphone terminals that are
nearby have similar channel distortions and, consequently, similar radio fingerprints. Thus,
users’ smartphones never need to announce their availability. Therefore, the proposed
approach is completely independent of the infrastructure as it uses the existing wireless
communication systems. In the proposed user-centric approach, the radio environment
is monitored by the user, so the user is completely anonymous and has full control over
the collected data.

3. Concept and Platform Development

The concept of radio-environment-based proximity estimation is graphically pre-
sented in Figure 1. Different users are either in a similar or completely different radio
environment. As an example, the radio environment of users U1 and U2 is (BS1;WiFi1) and
(BS1;WiFi1,Wifi2;BT1), respectively. There is a certain radio environment overlap; however,
as user U1 is not within BT1 and WiFi2, we can assume that the proximity is medium. U3
and U4 exhibit almost the same radio environment, thus the proximity is denoted as close.
Note that, if there is no common radio environment, there is no proximity and consequent
“contact intensity” (i.e., users U1 and U3) which we denote as f ar. As people are moving,
their radio environment is changing in time. An interesting example is a bus with WiFi5
where the AP is moving with a bus; thus, the users which have the radio environment
denoted as WiFi5 at the same time could be in close contact.

Figure 1. Concept of radio-environment based proximity estimation.

The aim of the proposed solution is not only to collect empirical data for mathematical
modeling, but also to develop methodologies for practical use of the developed platform,
which will be examined by mimicking a real epidemic scenario. In the envisaged real-world
scenario, users monitor the radio environment using their devices (e.g., smartphones), but
they do not send any data to the server, so they are completely anonymous. Only when
a user is identified as infected is anonymized data sent to the server, but only for the period
of potential contagion defined by a physician/epidemiologist. The other users are then
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notified through their devices and can send their anonymized radio environment trace
for the same period to the server for evaluation. It is worth noting that the proposed
concepts can be used on a smaller scale in local environments (e.g., within a large company,
campus, school, etc.) for modeling human contacts and networking in general, and for devel-
oping mathematical models and notifying users of potential contagion within the observed
local environment. However, in this paper, we focus only on the algorithms for determining
the proximity between persons, based on radio fingerprinting.

3.1. Monitored Radio Environment

In our research, we limited the wireless technologies to those that can be easily moni-
tored with a smartphone, without any additional features (i.e., an administrative account
or additional equipment), so that anyone can run the application. We monitored the follow-
ing radio technologies and their parameters:

• BLE: Scanner runs for a few seconds and obtains the following information used
for fingerprinting:

- Device MAC (e.g., 08:EF:3B:63:44:A5);
- Device Name (e.g., LG CM2460);
- RSSI (e.g., −75 dBm).

• WiFi: Internal Android Wifi ScanResult callback is used and provides the following
information used for fingerprinting:

- Device MAC: (e.g., 38:2c:4a:65:42:d0);
- SSID: (e.g., K-58);
- RSSI: (e.g., −48 dBm);
- Frequency: (e.g., 2417 MHz).

• Mobile (GSM, UMTS, LTE, (5G)): Only radio information of the currently selected
technology (e.g., LTE) of the selected mobile operator can be retrieved from the phone.
Although this is not particularly useful for proximity detection, we collect mobile cell
information for possible further use. Without additional knowledge of the operator’s
base station parameters, the information cannot be compared between users, especially
if they are connected to different operators.

3.2. Smartphone Application and Platform Development

For research and testing purposes, we developed a smartphone application that regu-
larly, or on demand, scans the BLE and WiFi networks and also monitors the current mobile
network. We consider the environment within a single scan interval as static, assuming that
there are small differences in the environment conditions within the scan interval, although
the phones are not synchronized. The measurement data is then converted to JSON format
and sent to the Postgres SQL database in real-time. The system architecture is shown
in Figure 2.

All interactions between the smart application and the back-end are handled via REST
API, which is fronted by Nginx. All the operations on data and documentation are also
handled through REST API which is implemented by the NodeJS Express [58] program.
The data is managed by the Postgres SQL server [59] and interfacing with it is enabled
only through the NodeJS server. Postgres was chosen because of its support for JSON
storage and full-text search over documentation descriptions. Interaction in NodeJS with
Postgres is performed using the Sequelize ORM (Object-Relational Mapper) library [60].
For further processing, data analysis, visualization, and proximity calculation, we use
Python scripts that retrieve measurements via REST API. It is important to note that we
developed the application only for Android phones from API 28 upwards.
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Figure 2. System architecture of testing environment.

4. Proximity Estimation Procedure

With proximity estimation, we want to determine whether a person (smartphone) is
near another person (smartphone) or another device (e.g., coffee maker, elevator) that emits
a beacon (i.e., BLE) based on the radio fingerprint. In the latter case, we can also define
proximity in terms of a time difference (e.g., when two people used the same elevator
within a few minutes). It is worth noting that our research does not focus on the possibility
of virus transmission between two people, as this is the work of epidemiologists.

We analyzed numerous measurements in different environments, indoor (office and
home) and outdoor. In Table 1 there is an example of the radio environment of three
phones in different locations in a home environment. A total of 6 WiFi and 3 BLE networks
were detected. From the measurements it is quite obvious that Phone 1 and Phone 2 are
in the same room, which is the case in this example. The RSSI of two WiFi AP with the best
signal (K-58 and K-58-2) are similar, the same is true for two BLE beacons. Phone 3 is
obviously in a different location, in a different radio environment.

Table 1. An example of three indoor measurements (home environment).

WiFi Phone 1 Phone 2 Phone 3

SSID: ‘K-58’ Freq: 2417 MHz RSSI: −31 dBm −35 dBm N/A
SSID: ‘K-58-2’ Freq: 2417 MHz RSSI: −73 dBm −76 dBm −83 dBm
SSID: ‘K-58-2 5G’ Freq: 5180 MHz RSSI: −90 dBm N/A −90 dBm
SSID: ‘NEO’ Freq: 5180 MHz RSSI: −90 dBm N/A −85 dBm
SSID: ‘default’ Freq: 2437 MHz RSSI: N/A −86 dBm N/A
SSID: ‘GNX3C5BAA’ Freq: 2437 MHz RSSI: N/A N/A −79 dBm

BLE Phone 1 Phone 2 Phone 3

MAC: ‘09:28:2C:3A:D3:D6’ RSSI: −86 dBm −80 dBm N/A
MAC: ‘08:EF:3B:63:44:A5’ RSSI: −81 dBm −76 dBm N/A

The graphical representation is depicted in Figure 3. The left figure shows the radio
environment of Phone 1 (#1) and Phone 2 (#2), while the middle and right figures show
the other two combinations. Please note that N/A is shown as −110 dBm for clarity.
The WiFi signal is marked in red, while the BLE signal is in blue. The green diagonal



Sensors 2022, 22, 5609 8 of 17

line indicates where the same signal is received on both compared phones. In general,
measurements closer to the green diagonal line (same RSSI on both phones) and closer
to the lower left corner (higher RSSI) indicate close proximity.

Figure 3. Graphical presentation of phone proximity based on the radio environment. Red stars
denote WiFi RSSI measurements, blue stars Bluetooth measurements, and the green line indicates
the same signal from both phones. The −110 dBm RSSI level denotes the access points out of the
terminal range.

Considering the radio propagation properties and preliminary measurements, the fol-
lowing challenges were identified in the development of the proximity algorithm:

• the positions of transmitters are not known (triangulation is not possible);
• the radiated power of transmitters is not known;
• the geometry and the materials of environment (i.e., walls, floors, ceiling) are not known.

The main consequences of the above challenges are that calculating the distance,
or the difference in distance, based on the RSSI received from the same transmitter between
two devices is not useful. In particular, since small changes in RSSI lead to large changes
in distance due to the exponential function, which is especially true for weaker signals
(e.g., lower than −85 dBm in the case of WiFi), the method for calculating the range
of distance (from dmin to dmax) between two phones (in an empty space) is presented in
Equations (1) and (2), respectively.

dmin =
c

4π f
10

Pt
20 |10−

Pr2
20 − 10−

Pr1
20 | (1)

dmax =
c

4π f
10

Pt
20 (10−

Pr2
20 + 10−

Pr1
20 ) (2)

where:

dmax: maximum distance between receivers (rec. at opposite side of trans.) in [m];
dmin: minimum distance between receivers (rec. at the same side of trans.) in [m];
c: speed of light in [m/s];
f : transmitting frequency in [Hz];
Pt: transmitter power in [dBm];
Pr1: received signal strength at receiver r1 in [dBm];
Pr2: received signal strength at receiver r2 in [dBm].

As we do not know the positions of the smartphones, the range of distance could be
between dmin (both phones on the same side) and dmax (phones in opposite directions). An-
other issue is that, even at the same location, there is a small difference (a few dBm) between
the RSSI measurements from different phones, particularly from different brands/chipsets
used. Therefore, based on measurements, experiments, and heuristics, considering the ra-
dio propagation properties, we propose the procedure for proximity calculation presented
in Figure 4. The main objective is to define three categories, denoted as:

• near: the phones are close to each other (i.e., few meters, same room);
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• medium: the phones are still in the same environment (i.e., same office, neighboring
rooms);

• f ar: the phones are not in the same environment.

Figure 4. Proximity estimation procedure flow diagram.

In the proposed procedure, we first clean the data by removing duplicate measure-
ments belonging to the same transmitter based on frequency, MAC address and SSID.
Next, we create two sorted lists of measurements based on the reception of the signal from
the observed transmitters. The first list contains the measurements of the transmitters
that are within range of both receivers, and the second list contains the measurements
where only one receiver is within the range of the transmitter. If there are no transmitters
within the range of both receivers or the signal levels are very low, the proximity is labeled
as f ar. If there are many transmitters within range of both receivers, we consider only
the transmitters with the highest signal level and calculate the difference in signal levels. If
the signal level is high and the difference is low, and there are also no transmitters with a
high signal at one transmitter and not in range of the other, the proximity is labeled as near.
More precisely, the proximity parameter Prox(m, n) between Phone (measurement) m and
n is calculated as follows:

Prox(m, n) = wvvProx(m, n)vv + wnvProx(m, n)nv (3)
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Prox(m, n)vv = max(0,
Nmn

∑
i=1

(|RSSIm(i)− RSSIn(i)| − w(
RSSIm(i) + RSSIn(i)

2
− RSSIstrong))) (4)

Prox(m, n)nv =
Nm

∑
i=1
−RSSIm(i) +

Nn

∑
i=1
−RSSIn(i) if RSSIm(i) > RSSIstrong, if RSSIn(i) > RSSIstrong (5)

where:

Prox(m, n): proximity parameter between phone m and n;
Prox(m, n)vv: proximity calculation for transmitter within range of both receivers;
Prox(m, n)nv: proximity calculation for transmitter within range of only one receiver;
wvv; wnv: weighting factors;
Nmn: number of all transmitters within range of both receivers/phones;
Nm: number of all transmitters within range of receiver/phone m;
Nn: number of all transmitters within range of receiver/phone n;
RSSIm(i): received RSSI at receiver m from transmitter i;
RSSIn(i): received RSSI at receiver n from transmitter i;
RSSIstrong: −70 dBm (WiFi); −90 dBm (BLE);
w: the weighting factor (the better the signal, the more relevant the measurement).

In summary, the closer the two transmitters are and the stronger the signal is, the lower
the proximity Prox(m, n) is. When the proximity Prox(m, n) is lower than a threshold T1,
the receivers are classified as near; when it is higher than T2, the receivers are classified as f ar,
while all others are classified as medium. The weighting factors and thresholds were defined
based on extensive measurements, optimizations, and heuristics for different environments,
namely indoor (office/home) and outdoor. First, we performed the optimization process
for different indoor environments and found the appropriate thresholds. Then we repeated
the process for different outdoor environments. We paid special attention to the determination
of the thresholds T1 and T2, which proved to be most sensitive to the radio environment (indoor
vs. outdoor) during the optimization process, while other parameters were not so sensitive. This
is understandable because outdoors the signals are weaker, so the difference between thresholds
T1 and T2 must be smaller, which, in turn, reduces the success of the proximity estimation.
Please note that special cases like: no received signal at all, only a few very weak signals,
etc., are treated separately, resulting in a classification as f ar, as the above algorithm works
well only if there is a sufficient number of transmitters (networks).

5. Results
5.1. Measurement Campaign

To simplify the labeling process of measurements for development and evaluation pur-
poses, we perform the measurements in a way that adjacent measurements (index or time
domain) are labeled as near, those adjacent to a neighbor as medium, while all others are labeled
as f ar in terms of proximity. In this manner, we can easily perform exhaustive measurement
campaigns and collect a lot of data for development (i.e., optimization and definition of all
weights and thresholds) and evaluation purposes. We performed the measurements in different
environments, denoted as indoor (office/home) and outdoor. The significant difference between
the two is that, in indoor environments, there are at least some networks with a good signal,
while, in outdoor environments, there may be many networks with a very weak signal. First,
we calibrated the system and defined the parameters and thresholds for the different envi-
ronments. The parameters obtained through extensive measurements campaigns for different
environments for WiFi and BLE are summarized Table 2.
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Table 2. Parameters for (WiFi; BLE).

Parameter Indoor Environment Outdoor Environment

T1 30 20
T2 55 30

wvv WiFi→ 1/BLE→ 1.3 WiFi→ 1/BLE→ 1.3
wnv WiFi→ 0.5/BLE→ 0.8 WiFi→ 0.5/BLE→ 0.8
w WiFi→ 0.2/BLE→ 0.2 WiFi→ 0.2/BLE→ 0.2

RSSIstrong
WiFi→−70/BLE→

−90 dBm
WiFi→−70/BLE→

−90 dBm

5.2. Evaluation Results

In the first set of results, we present, as an example, the proximities from selected
measurements to all other measurements for indoor and outdoor scenarios. The examples
presented are selected in a way that shows one with high accuracy and one with low
accuracy. We define accuracy as:

Accuracy =
Number_o f _All − Number_o f _False

Number_o f _All
100%. (6)

Figure 5 shows the two examples for the indoor environment. The red and yellow
lines denote T1 and T2 thresholds, respectively; thus points below the red line are near,
points above the yellow line are f ar, and points in between are medium. If the proximity is
more than 200 or out of range, it is shown as 200. On the left side, we show the proximity
of the measurement #7, where the accuracies for near, medium and f ar are 100%, 97%
and 100%, respectively. On the right side, we show an example of the proximity of mea-
surements to measurement #19, where the accuracies are 97%, 93% and 97%, respectively.
The accuracy is high due to the large number of spaced-apart transmitters throughout
the office buildings.

Figure 5. Proximity for indoor measurements. The red and yellow lines are thresholds T1 and T2,
and green dots denote proximity to location #7 (left) and #19 (right).

Similarly, in Figure 6, we show the results for the outdoor environment. On the left side,
we show the results for the proximity of the measurements to measurement #6, with good
accuracy (94%, 82% and 94% for near, medium and f ar, respectively), while on the right
side, we show an example of the proximity of the measurements to the measurement #12,
where the accuracies are only 61%, 64% and 67% for near, medium and f ar, respectively.
Further investigation shows that, on the left side at point #6, we can see 13 networks, while,
at point number #12, we can see only two networks with a weak signal.
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Figure 6. Proximity for outdoor measurements. The red and yellow lines are thresholds T1 and T2,
and green dots denote proximity to location #6 (left) and #12 (right).

In the second set of results, the accuracy for a set of measurements in two real sce-
narios is shown in Figure 7. The accuracy of a single measurement is depicted as a red,
blue, or green marker for near, medium and f ar paired devices, respectively. The average
accuracy of the experiment is illustrated as straight color lines, namely red, blue, and green
for near, medium and f ar paired devices, respectively. For the indoor environment (left
side), the average accuracy for near is 95.8%, while the average accuracy for medium is
93.4%, and the average accuracy for f ar is 96.2%. For the outdoor environment (right side),
the average accuracy for near is 73.7%, while the average accuracy for medium is 70.0%, and
the average accuracy for f ar is 73.4%. As expected, the results for the indoor environments show
significantly better results than for the outdoor environment where the accuracy is below 50%
for some measurements with only one or two transmitters within range with a weak signal.

Figure 7. Overall accuracy for indoor (left) and outdoor (right) real scenario. The red, blue, and green
dots denote the single measurement accuracy for near, medium, and far paired devices, respectively,
while the red, blue, and green lines illustrate the average accuracy for near, medium, and far paired
devices, respectively.

6. Discussion

During the measurement campaigns, the development of the proposed approach, and
development of the system architecture of the testing environment, we encountered several
interesting features and limitations, which are discussed below.

The measurement campaigns were chosen to be as realistic as possible, showing only
limited areas that proved to be the most challenging. For the larger areas the accuracy
was even better, since the individual measurements were farther apart and thus easily
recognized as f ar. We also used the real environments, with the positions of the WiFi and
BLE transmitters in their original positions. However, from the results, with respect to
“lessons learned”, we can summarize that the accuracy was highly dependent on the distri-
bution of the radio transmitters. Therefore, to achieve significantly better results, it is of the
utmost importance to position the transmitters appropriately when deploying WiFi or BLE
networks. This means that the positions must not only be optimized for good coverage, but
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must also be distributed appropriately throughout the building so that the radio fingerprint
changes sufficiently between different rooms.To achieve better results the transmitters
should not be placed in the center of the building, which is, unfortunately, usually the case,
but at the edges. In addition, locations of special interest (e.g., coffee maker, toilet, elevator)
can be supplemented with BLE transmitters, installed to improve proximity estimation. By
considering the above additional measures, the accuracy can be significantly improved.

In addition to person-to-person proximity estimation, for person-to-object or person-
to-place proximity estimation, we must first scan the environment at the particular object,
or in the room, and label the radio fingerprint. By comparing the user’s radio fingerprint
with the radio fingerprint, we can estimate the proximity using the same procedure,
if the user was near an object (e.g., coffee maker ) or within some place (e.g., canteen).

With respect to the mobility of nodes, there are basically two cases: either users move
with a node (e.g., on a bus/train with WiFi) or the node is displaced, i.e., moved to a new
location. In the first case, users are in the vicinity of moving nodes and within the range
of the transmitter, and, due to the metallic structure of the cabin, are isolated from the
outside radio environment; consequently, the proximity will be close. In the second case,
if the node is displaced or is moving, it may affect the proximity procedure as scanning
is not synchronized between users. It may happen that only one user is within the range
and another is not, or the signal difference between users is high due to the movement
of the node within the scanning period. Since we consider the environment within a sin-
gle scan interval as static, a moving node may degrade the result, but this also depends
on the number, distribution and signal strength of other nodes within the range. The mo-
bility of the node can be detected if there is significant change in the signal level of one
transmitter (i.e., the moving one) while the others remain the same.

The battery consumption depends strongly on the Android version used. The reason
for this is that the scan functions are implemented differently in the different Android
versions but also depend on the battery management of the respective manufacturer. For
test purposes, and to collect data for modeling people’s movements, the consumption is not
problematic, but, for everyday use, it is necessary to optimize the scanning (e.g., by only
performing scanning when the phone is moved). Similar to battery management, measure-
ments are also affected by the model of smartphone or the chipset used. However, since
the proposed procedure is robust, small difference in signal strength between smartphones
do not significantly affect the outcome of the procedure.

The main limitation of the proposed procedure is the possible lack of transmitters
with a good signal in the range. This is often the case in outdoor environments, as we have
shown, but, in the home environment (private house) too, there could be only one WiFi and
some BLEs. However, the latter is not problematic from an epidemiological point of view,
since all members of the household, and even visitors, can be marked as near.

7. Conclusions

Smartphones that leverage existing wireless communication infrastructure can serve
as a means to bridge the gap between empirical data and the mathematical modeling
of human contacts and networking. In this paper, we propose a user-centric approach that
exploits the properties of wireless networks to estimate the proximity and, consequently,
the “contact intensity“ of a user to other users or places. The main challenges that arise
are that the positions of transmitters and their radiated power, and the geometry and
the materials of the environment (i.e., walls, floors, ceiling), are not known. To overcome
these challenges, we propose a procedure based on radio propagation properties and a
heuristic. For the proposed proximity measurement concept, we define the proximity
parameter and classify the proximity of two devices in terms of near, medium and f ar with
reasonable accuracy. The results show that the accuracy is better in indoor environments
as there are more transmitters with better signals within range.

In future work, based on the proposed proximity estimation procedure, we aim
to evaluate networking or contacts between individuals within a single department and
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within an entire company. In this way, we aim to identify and evaluate individual bubbles
or critical points that may have a significant impact on future measures to prevent contacts
in the event of an epidemic. Another possible direction is the use of machine learning
technologies for proximity estimation. A first step in the machine learning workflow will
be to extract features from the raw data that will affect the proximity classification for both
sub-environments, namely, the BLE radio environment and the WiFi radio environment.
Then the appropriate machine learning algorithm can be selected and evaluated.
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