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Abstract
Unprotected exposure to UVB radiation from the sun and the resulting DNA
damage are thought to be responsible for physiological changes in the skin and
for a variety of skin cancers, including basal cell and squamous cell carcinoma
and malignant melanoma. Although the mutagenic effects of UVB have been
well documented and studied mechanistically, there is only limited information
as to whether UV light may also be responsible for inducing epigenetic changes
in the genome of exposed cells. DNA methylation is a stable epigenetic
modification involved in gene control. To study the effects of UVB radiation on
DNA methylation, we repeatedly exposed normal human keratinocytes to a
UVB light source. After a recovery period, we analyzed global DNA methylation
patterns in the irradiated and control cells using the methylated-CpG island
recovery assay (MIRA) method in combination with high-resolution
microarrays. Bioinformatics analysis revealed only a limited number of possible
differences between UVB-exposed and control cells. However, these minor
apparent changes could not be independently confirmed by bisulfite
sequencing-based approaches. This study reveals that UVB irradiation of
keratinocytes has no recognizable global effect on DNA methylation patterns
and suggests that changes in DNA methylation, as observed in skin cancers,
are not immediate consequences of human exposure to solar UVB irradiation.
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Introduction
Solar UV light is divided into three wavelength categories: UVA 
with a wavelength between 320 nm and 400 nm, UVB with a wave-
length between 280 nm and 320 nm, and far UV light (UVC) with a 
wavelength between 100 nm and 280 nm. UVC radiation is filtered 
by the atmosphere and technically does not exist on the earth’s sur-
face. However, a fraction of UVB and much of the UVA wavelength 
radiation reach the surface of the earth and have been implicated 
in skin cancers and other acute and chronic aberrations of the skin 
such as sunburn and premature skin aging, respectively. Most of 
the skin cancer-causing effects of sunlight have been ascribed to 
UVB radiation with a smaller contribution from UVA1,2. UVB  
induces direct DNA damage through the formation of cyclobutane 
pyrimidine dimers (CPDs) and another dipyrimidine lesion, the 
(6-4) photoproduct3–6. Of these two types of lesions, the CPD is 
thought to be responsible for the majority of mutations induced by 
UVB or sunlight irradiation7,8. These mutations are characterized 
by a preponderance of C to T transition mutations at dipyrimidine 
sites containing cytosine, for example 5′TC and 5′CC. Very often, 
5-methylcytosines (mC), when part of a dipyrimidine sequence, are 
seen as preferential sites of CPD formation and also as preferential 
mutational target sites in mammalian cells9–11. These types of muta-
tions, i.e. C or mC to T mutations at 5′TC, 5′CC, 5′TmC, and 5′CmC, 
are recognized as the major mutational events in human skin cancers, 
both in specific genes4 and in large-scale genomic sequencing stud-
ies analyzing thousands of different genes simultaneously12–14.

Besides mutations, the other frequent change observed at the DNA 
level of skin cancer genomes is the aberration of DNA cytosine 
methylation patterns. Like most cancer types, both nonmelanoma 
and melanoma skin cancers are characterized by substantially 
aberrant DNA methylation15–21. DNA hypermethylation is wide-
spread and affects many CpG islands, which are defined as CpG 
dinucleotide-rich genomic sequences, often found around promot-
ers of genes. This DNA hypermethylation can affect hundreds of 
genes in individual tumors, sometimes producing a cancer-driving 
event, for example if genes involved in growth control and/or DNA 
repair are involved22,23. Although the methylation changes were first  
described many years ago, the mechanisms of cancer-associated 
DNA hypermethylation or hypomethylation have remained  
obscure. One model proposes that environmental influences, in 
the form of exposure of humans to either chemicals or radiation, 
may produce these aberrant DNA methylation events24. For exam-
ple, one could conceive a scenario in which this exposure induces 
a signaling cascade and transcriptional changes inside cells that 
would affect DNA methylation patterns, for example by modulat-
ing the DNA methylation machinery or the chromatin state at genes 
that become susceptible to methylation. Such UV-induced heritable 
DNA methylation changes could lead to an altered phenotype and 
could provide a selective advantage to cells, perhaps when com-
bined with UVB-induced mutations, and could thus be viewed as a 
tumor-driving event. In this study, we examined this hypothesis by 
exposing human keratinocytes chronically to UVB radiation and by 
assessing DNA methylation patterns on a genomic scale following 
UV exposure of cells and a recovery period.

Materials and methods
Cells and biological materials
Normal human keratinocytes (Clonetics; San Diego) were grown 
in EpiLife Medium (Invitrogen; Carlsbad, CA). The restriction  
enzyme used for combined bisulfite restriction analysis (COBRA), 
TaqαI (5′-TCGA-3′), was obtained from New England Biolabs  
(Ipswich, MA).

UVB radiation treatment 
The UVB source we used consisted of three fluorescent light tubes 
(Philips TL 20 W/12R) filtered through a cellulose acetate sheet, 
which eliminates wavelengths below 295 nm. The source has a peak 
spectral emission at 312 nm. The keratinocytes were grown in 150 mm 
cell culture dishes. The cells were irradiated with doses of 260 J/m2 
(high dose) and 130 J/m2 (low dose) of UVB after the medium had 
been removed and cells had been washed three times with phos-
phate buffered saline. After UVB exposure, the cells were grown 
in new culture medium for three days. They were then irradiated 
again, and then nine more times with a two or three day recovery 
time between each irradiation cycle. After the final irradiation dose 
was delivered, the cells were grown for a recovery period of eight 
days or 18 days.

DNA isolation
The cells were trypsinized and collected by centrifugation.  
After a proteinase K treatment, DNA was isolated with a stand-
ard phenol/chloroform extraction method followed by ethanol  
precipitation25. 

MIRA and microarray
To detect potential genome-wide changes in DNA methylation 
patterns after the UVB treatments, the methylated-CpG island  
recovery assay (MIRA) combined with microarray analysis was 
used as described previously26,27. Nimblegen’s Signalmap program 
was used to visualize the DNA methylation data and for generation 
of profiling snapshots. 

Bioinformatics analysis
Loess normalization was applied to the raw intensity files of each 
array to correct intensity-dependent dye bias and obtain log2 ratios 
between MIRA and input samples. Then the log2 ratios across all 
the samples were quantile-normalized. Probes were considered 
positive if their normalized log2 ratios were above 2-fold. Peaks 
in each sample were called if a minimum of four consecutive 
positive probes were present with either one gap or no gaps. To 
identify hypermethylated and hypomethylated targets in UVB-
treated samples vs. untreated control samples, the average probe 
log2 ratio signals within the peaks identified in each UVB-treated 
sample were compared to the untreated samples. Only the peaks 
with an average log2 ratio signal difference of more than log2(3) 
were considered hypermethylated or hypomethylated peaks. These 
differential peaks were annotated to the Refseq transcript database 
downloaded from the UCSC genome database. The microarray 
data have been deposited into the GEO database (accession num-
ber GSE42943).
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DNA methylation analysis by COBRA
Candidate loci were investigated by combined bisulfite restriction 
analysis (COBRA)28. PCR was performed with primers and condi-
tions listed in Supplementary Table S1 and Supplementary Table  S2. 
Briefly, COBRA-PCR was performed with bisulfite-converted 
DNA-specific primers using 50 ng of bisulfite-modified genomic 
DNA as template for 60 cycles after a 15 min incubation at 95°C, 
then 30 s at the T

A
 (see Table S2) and 30 s at 72°C in a 25 µl volume 

containing 5 nmol dNTPs, 20 pmol primers, and 1.25 units of Hot start 
Taq DNA polymerase (Qiagen, Valencia, CA). Five microliters of the 
PCR product was analyzed on a 2% agarose gel. Equal amounts 
of PCR product were digested with the restriction enzyme TaqαI 
(5′-TCGA-3′).

Bisulfite sequencing
COBRA PCR products were created as described above. The PCR 
products were ligated into a cloning vector (TOPO® Cloning Kit; 
Invitrogen, Grand Island, NY, or the pGEM®-T-Easy Kit, Promega, 
Madison, WI) and transformed into competent cells. Different clones 
were picked randomly and the plasmids were isolated and sequenced. 
For the analysis of methylated and unmethylated cytosines, the free 
software program Bioedit was used. 

Results
Genome-scale DNA methylation analysis of UVB-irradiated 
keratinocytes
We irradiated human keratinocytes with two different doses of 
UVB, 130 J/m2 and 260 J/m2. These doses were well tolerated by 
the cells and did not produce overt losses in cell viability. Cells 
were irradiated chronically (11 times total) with these doses with a 
2–3-day recovery period between each irradiation cycle. Controls 
included cells that were not irradiated and cells irradiated once with 
130 or 260 J/m2 of UVB, but then harvested immediately after the 
irradiation. 

After the irradiation and final recovery times of eight or eighteen 
days, DNA was isolated from the cells. DNA was sonicated and 
the methylated fraction of the genome was enriched by use of the 
methylated CpG island recovery assay (MIRA) technique29. The 
methylated fraction was hybridized relative to input DNA onto 
NimbleGen CpG island plus promoter arrays. These arrays cover all 
~28,000 CpG islands of the human genome and all Refseq gene pro-
moters from -2.4 kb to +0.6 kb relative to the transcription start site. 
Analysis of methylation patterns using NimbleGen’s Signalmap 
display software indicated the excellent reproducibility of the data 
(Figure 1). The patterns of methylation peaks were remarkably sim-
ilar between all four controls and all three UVB-irradiated samples. 
Bioinformatics analysis was used to identify potential differences 
between the control and treatment groups. Methylation peaks were 
identified as described in Materials and Methods. Peaks with an 
average log2 ratio signal difference of more than log2(3) were con-
sidered as hypermethylated or hypomethylated peaks, respectively. 
Table 1 summarizes the number of differences identified between 
UVB and control treatment groups. Most comparisons revealed 
only a handful of differences and the numbers of differential peaks 
were generally below 100 for each comparison. In fact, comparison 
between two controls, non-irradiated cells grown for 18 days or  

Table 1. Hypermethylated and hypomethylated 
candidate gene targets in human keratinocytes 
following UVB irradiation.

Comparison Hyperb Hypob

H8d vs. Hcona 2 5

H8d vs. N8con 14 81

H18d vs. Hcon 2 4

H18d vs. N18con 7 51

L18 vs. Lcon 5 29

L18d vs. N18con 7 45

Hcon vs. N18con 16 50

Hcon vs. N8con 25 62

N18con vs. N8con 74 106

aTreatments: 
Lcon: 130 J/m2 UVB once, cells harvested immediately after 
irradiation
Hcon: 260 J/m2 UVB once, cells harvested immediately after 
irradiation
N8con: no UVB, cells harvested after 8 days
N18con: no UVB, cells harvested after 18 days
H8d: 260 J/m2 UVB, 11 times, cells harvested 8 days following 
final dose
L18d: 130 J/m2 UVB, 11 times, cells harvested 18 days 
following final dose
H18d: 260 J/m2 UVB, 11 times, cells harvested 18 days 
following final dose
bHyper- and hypomethylated peaks were defined as 
described in Materials and Methods

8 days (N18con vs. N8con), respectively, showed a greater number 
of differences than any comparison between a UVB-irradiated and a 
control sample (Table 1). Nonetheless, a small number of differential 
peaks could clearly be detected on SignalMap profiles (Figure 2). We 
show examples for the genes CXXC5, PPP3CB, IL17C, CCDC40 
and C21orf29, where either hypermethylation or hypomethylation 
in a UVB-irradiated sample was observed (Figure 2). 

Bisulfite-based DNA methylation assays
To verify the apparent methylation differences observed by microar-
ray analysis, we performed sodium bisulfite conversion-based DNA 
methylation assays. COBRA analysis is shown for the genes CXXC5, 
PPP3CB, IL17C, CCDC40 and C21orf29 in Figure 3. Cleaved mol-
ecules in these assays indicate methylated restriction sites that are 
resistant to bisulfite conversion and remain cleavable by the CpG- 
targeting restriction enzyme after PCR. Uncut molecules represent 
unmethylated DNA fragments. The COBRA assays indicated that 
the methylation patterns were the same or very similar between 
DNA isolated from control cells and DNA from UVB-irradiated 
cells.

COBRA assays, although generally indicative of the methylation 
status of a genomic target, can score only a limited number of 
CpG sites. Therefore, we performed sodium bisulfite sequencing 
to provide the methylation status of all CpG within the amplified 
target fragments. These assays also indicated no substantial differ-
ence between control and UV-irradiated cells (Figure 4). Similar 
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Figure 1. DNA methylation peaks in control and UVB-irradiated keratinocytes. A. A random segment of chromosome 1 is shown to 
indicate the reliability of the method and to show the uniform peaks between control and UVB-irradiated samples. The positions of transcripts 
and CpG islands are indicated. The samples labeled ‘low UVB control’ and ‘high UVB control’ represent DNA immediately harvested following 
a one-time irradiation of cells with either 130 J/m2 (low) or 260 J/m2 (high) of UVB. Samples labeled ‘8 days control’ or ‘18 days control’ 
were grown for the same time periods as the irradiated cells but were never irradiated. Samples labeled ‘18 days low UVB’ or ‘18 days high 
UVB’ were chronically irradiated with 130 J/m2 (low) or 260 J/m2 (high) of UVB followed by an 18 day recovery period. The sample labeled  
‘8 days high UVB’ was chronically irradiated with 260 J/m2 of UVB followed by an 8 day recovery period. B. Methylation peaks are shown for 
randomly selected genomic regions on chromosomes 1, 3, 5, 7, 11, 17 and X. The positions of transcripts and CpG islands are indicated. The 
chromosomal coordinates are shown above each snapshot.
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Figure 2. Apparent DNA methylation differences in control and UVB-irradiated keratinocytes. Methylation peaks are shown for the 
genes CXXC5, PPP3CB, IL17C, CCDC40, and C21orf29. The positions of transcripts and CpG islands are indicated. The chromosomal 
coordinates are shown above each snapshot. The signals framed by the red rectangles are significantly (*) differentially methylated pairs of 
a control sample and a UVB-treated sample, as determined by bioinformatics analysis. The description of the samples is shown in Figure 1.

Figure 3. DNA methylation analysis by COBRA of candidate differentially methylated genes. COBRA analysis of restriction enzyme sites 
indicates no substantial difference in DNA methylation in UVB-irradiated cells versus controls. Samples labeled ‘8 d high UVB’ and ‘18 d high 
UVB’ were chronically irradiated with 260 J/m2 of UVB followed by an 8 day or 18 day recovery period, respectively. Samples labeled ‘8 d 
control’ or ‘18 d control’ were grown for the same time periods as the irradiated cells but were never irradiated. The samples labeled ‘high UVB 
control’ represent DNA immediately harvested following a one-time irradiation of cells with 260 J/m2 of UVB. The genes CXXC5, PPP3CB, IL17C, 
CCDC40 and C21orf29 were analyzed by TaqαI digestion. The PCR products were cleaved with the enzyme (E) or were left uncleaved (-). The 
methylated and unmethylated control samples at the right side of the gel panels were fully CpG-methylated and unmethylated control DNAs.
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Figure 4. DNA methylation analysis by bisulfite sequencing of candidate differentially methylated genes. Bisulfite sequencing data are 
shown for the genes CXXC5 (A), PPP3CB (B), IL17C (C), CCDC40 (D), and C21orf29 (E). The chronic UVB dose was 260 J/m2. Open circles 
represent unmethylated CpG sites and black circles indicate methylated CpG sites. The percentage of methylated sites is indicated below 
the sequence data for individual cloned molecules. 
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methylation patterns were observed for the five different gene tar-
gets, regardless of whether the cells were UVB-irradiated or not. A 
somewhat lower frequency of methylated CpG sites was observed 
for the IL17C gene in UVB-irradiated cells (18.4% versus 29%). 
However, these results may be biased by the few molecules in the 
population that had almost every CpG methylated. Taken together, 
our results suggest that the rather small number of differential 
peaks observed by bioinformatics analysis were false positives. 
Such small numbers of false positive differences can be expected 
when comparisons are made for over 28,000 CpG islands and about 
20,000 Refseq promoters. 

Bisulfite sequencing data

142 Data Files
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Discussion
The field of environmental epigenetics has recently received much 
attention24. Environmental genotoxic or non-genotoxic carcino-
gens, theoretically at least, could alter the epigenome at the levels 
of DNA methylation or histone posttranslational modifications. 
Such carcinogen-induced epigenetic effects may be heritable and 
may contribute to the etiology of human cancer and other diseases. 
Effects of environmental exposure on the epigenome may be 
direct or indirect. For example, indirect effects could be produced 
by carcinogen-induced gene mutations in a gene target encoding 
an epigenetic modifier protein thus leading to an epigenetic defect. 
Mutation of histone modifying enzymes or DNA modification 
enzymes would fall into this category. Such mutations are indeed 
observed in several types of human cancer30 including melanoma13. 
A more immediately acting but still indirect effect of an environ-
mental exposure on epigenetic marks may occur via signaling cas-
cades, e.g. through a DNA damage response pathway, impinging on 
the expression levels of epigenetic modifiers or on local chromatin 
structure at a susceptible gene locus, thereby modulating DNA 
methylation patterns.

On the other hand, exposure of target cells to an environmental agent 
may produce a more direct effect on the epigenome if the effect 
is mediated by DNA damage. In the case of UV irradiation, an 
interesting photochemical deamination and demethylation path-
way of 5-methylcytosine has been described31 but its biological 
relevance has remained unknown. Furthermore, it has been shown 
several decades ago that UVB irradiation can inhibit DNA meth-
yltransferases in vitro32. UVB-induced pyrimidine dimers may 
also alter nucleosome association with DNA33, thereby potentially 
changing DNA methylation patterns at a susceptible gene locus. 
Repair of the pyrimidine dimer damage may remove methylated  

cytosines during the excision repair step thus contributing poten-
tially to altered DNA methylation. 

However, our data are inconsistent with proposals that UVB can 
change DNA methylation patterns heritably as a direct consequence 
of chronic exposure. Rather, our sensitive and specific genome-scale 
analysis of DNA methylation patterns in UVB-exposed keratino-
cytes has not uncovered any substantial changes in DNA methyla-
tion patterns, either 8 days or 18 days following chronic exposure 
of the cells to UVB. The few differences observed on the micro-
array could not be confirmed by bisulfite-based sequence analysis 
thus suggesting that these differences were false positives. While 
we cannot exclude the possibility that more drastic UV doses or a 
longer waiting time may produce some changes, the data presented 
here make it questionable that the many DNA methylation differ-
ences observed in human skin cancers are a direct consequence of 
exposure of skin cells to UVB radiation from the sun. The numer-
ous skin cancer-associated methylation changes must therefore be 
events occurring later during the cell transformation process. As 
discussed earlier, the vast majority of the methylation differences 
seen in cancer are likely passenger events and do not appear to be 
selected22. These methylation events could be secondary to specific 
genetic events, as discussed above, or they could represent random 
or locus-targeted methylation gains or losses occurring over the 
timeline of enhanced cell proliferation. Alternatively, DNA meth-
ylation differences found in skin tumors could be induced by other 
processes such as inflammation.

Future studies will determine if methylation changes can be 
induced directly by UVA, a longer wavelength component of sunlight 
that also has a strong component of oxidative DNA damage4,34. UVA, 
however, produces less severe overall levels of DNA damage than 
UVB and therefore may be even less likely to induce direct DNA 
damage-dependent changes of methylation patterns. Other skin cell 
types, in particular melanocytes, will also need to be analyzed to bet-
ter understand the role of UV irradiation in melanoma pathogenesis.
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Supplementary Table 2. PCR parameters.

Gene Length in 
base pairs

Annealing 
temperature 
(TA)

Restriction 
enzyme

Formamide 
concentration

CXXC5 286 55°C TaqαI 2%

PPP3CB 377 52°C TaqαI 2%

IL17C 367 52°C TaqαI 2%

CCDC40 358 55°C TaqαI 2%

C21orf29 361 50°C TaqαI 4%
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Supplementary Table 1. Oligonucleotide primers.

Gene
Upper Primer (5’ à 3’) Lower Primer (5’ à 3’)

Oligonucleotides for combined bisulfite restriction-analysis (COBRA)

CXXC5 GTT TTT GTA TGG ATA AAG GGG TTT T CTT CCA AAC CAA AAA AAA CCT AAC

PPP3CB TTT TTT TTA TAG AGG GGT TAA GAT CTC CAT TTT AAA TAA TCC CTT CTC C

IL17C TTA GGA GGA TAG GGT AGG GTT AGA G AAA AAA TAC CCT CTA AAA AAC ACA C

CCDC40 TTT GTA GAT TGA GAT GGA GAA TTT G CCT AAA AAA CAA AAT AAA AAA CAA CC

C21orf29 TTT GTG ATT ATA TGT TTT GGT TTG G AAC ATC CCC CTT CTC ATA ACT AAA T
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