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Abstract: Imbalance in the cellular redox system is thought to be associated with the induction and
progression of breast cancers, and heme proteins may regulate the redox balance. Cytochrome b5 (Cyt
b5) is a small mitochondrial heme protein. Its function and regulating mechanism in breast cancer
remain unknown. In this study, we elucidated the level of endogenous oxidative stress in breast
cancer cells, MCF-7 cells (hormone receptor-positive cells) and MDA-MB-231 cells (triple-negative
cells), and investigated the difference in Cyt b5 content. Based on the low content of Cyt b5 in MDA-
MB-231 cells, the overexpression of Cyt b5 was found to regulate the oxidative stress and apoptosis
cascades, including ERK1/2 and Akt signaling pathways. The overexpressed Cyt b5 MDA-MB-231
cells were shown to exhibit decreased oxidative stress, less phosphorylation of ERK1/2 and Akt,
and less cleavage of caspases 3 and 9 upon treatment with H2O2, as compared to those of normal
MDA-MB-231 cells. Moreover, the overexpressed Cyt b5 most likely functioned by interacting with
its protein partner, Cyt c, as suggested by co-immunoprecipitation studies. These results indicated
that Cyt b5 has different effects on breast cancer cells of different phenotypes, which provides useful
information for understanding the multiple roles of Cyt b5 and provides clues for clinical treatment.

Keywords: Cytochrome b5; Cytochrome c; protein-protein interactions; breast cancer cells; co-
immunoprecipitation

1. Introduction

Breast cancer is known to be one of the “hidden killers” of women, which ranks first
among female malignant tumors. According to the latest statistics in 2018, there were
more than 2.08 million new cases all around the world, with 15% of breast cancer deaths in
women [1,2]. Mitochondrial dysfunction and oxidative stress are the key factors inducing
diseases such as aging and cancers [3]. It was estimated that ~90% reactive oxygen species
(ROS) are generated from the mitochondria, including superoxide anions (O2

•−), hydrogen
peroxides (H2O2) and hydroxide radicals (•OH), etc. [4]. The levels of ROS are critical for a
variety of biological processes, including mitochondrial and plasma membrane function,
cell signaling, and immune response [5]. Meanwhile, the imbalance of the redox system
affects the ROS content and leads to changes in cell signaling, oxidative damage, and
cytotoxicity [5–9]. Recent studies also indicate that persistent over-produced ROS may
induce cellular adaptation, which usually occurs in cancers and plays an important role in
the development of cancers. Furthermore, excessive ROS may induce cell deaths because
of DNA damage and lipid peroxidation [6–9].

Imbalance in the redox system is also thought to be associated with the induction and
progression of breast cancers. Cancer cells usually exhibit a higher level of ROS compared
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to normal cells, due to mitochondrial dysfunction, and increased inflammatory activity [10],
while cancer cells may also increase antioxidant defense which will balance oxidative
status [11]. The role of ROS and oxidative stress both in the initiation and development of
breast cancer is supported by much evidence [11]. In addition, H2O2 induces apoptosis by
regulating the mitogen-activated protein kinase (MAPK) signaling [12].

Human cytochrome b5 (Cyt b5) is a small heme protein located at the outer mito-
chondrial membrane [13], which is involved in some oxidative reactions in biological
tissues, as an electron transfer component, and participates in the regulation of cellular
redox balance [14]. Moreover, Cyt b5 may exist as dimers or tetramers in living organ-
isms [15]. Although Cyt b5 itself has no direct enzymatic catalysis, it may interact with
other heme proteins, such as Cyt c, Cyt P450 and myoglobin, playing certain physiological
functions [16,17]. In addition, Cyt b5 is considered to be involved in apoptosis because it
may interact with Cyt c to inhibit apoptosis [14]. Nevertheless, the function of Cyt b5 and
its regulating mechanism in breast cancer remain unknown.

In this study, we aimed to evaluate the regulating effect of Cyt b5 on the oxidative
stress level in human breast cancer cell lines, such as MDA-MB-231 and MCF-7 cells, which
are representative of the triple-negative breast cancer cell and hormone receptor-positive
breast cancer cell, respectively [18]. We also investigated the relationship between oxidative
stress in these two types of cells and the overexpression of Cyt b5, aimed at clarifying
the characteristics of triple-negative breast cancer from the perspective of oxidative stress.
The overexpressed Cyt b5 was shown to regulate oxidative stress and apoptosis cascade,
including ERK1/2 and Akt signaling pathways. This study will provide useful information
for understanding the regulatory role of Cyt b5 in maintaining the balance of the redox
system in cancer cells.

2. Results and Discussion
2.1. Endogenous Oxidative Stress Level and Expression of Cyt b5 in MDA-MB-231 and MCF-7
Cells

To evaluate the endogenous oxidative stress levels of breast cancer cells, we se-
lected MDA-MB-231 and MCF-7 cell lines as the representative models of triple-negative
and estrogen receptor-positive (ER+) breast cancer cells, respectively. First, we ana-
lyzed ROS levels in MDA-MB-231 and MCF-7 cells by using a fluorogenic probe, 2,7-
Dichlorodihydrofluorescein diacetate (DCFH-DA), which is commonly used to detect
total intracellular ROS content. As shown in Figure 1a,b, the fluorescence microscopy
highlighted that the green fluorescence intensity of DCFH-DA was significantly higher in
MDA-MB-231 cells compared to that in MCF-7 cells, which indicated that MDA-MB-231
cells are characterized by higher levels of total ROS content than MCF-7 cells. As fur-
ther shown in Figure 1c, the malondialdehyde content in MDA-MB-231 cells was found
to be higher than that in MCF-7 cells, suggesting a higher degree of lipid oxidation in
the triple-negative MDA-MB-231 cells. These observations agreed with the difference as
reported previously [19]. Triple-negative breast cancer cells depend on a high level of
ROS for survival and, thus, an antioxidant therapy was developed to induce cell death in
triple-negative cells instead of ER+ cell lines [10].
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Figure 1. Analysis of oxidative stress and Cyt b5 content in MDA-MB-231 and MCF-7 cells. (a) 
Analysis of ROS levels in MDA-MB-231 and MCF-7 cells by treating with DCFH-DA reagent. (b) 
ROS detection was quantified by using ImageJ software and the optical densitometry was 
reported. (*) P < 0.05; (**) P < 0.01; (**) P < 0.001. (c) Analysis of MDA levels in MDA-MB-231 and 
MCF-7 cells by using lipid peroxidation MDA assay kit. (*) P < 0.05; (**) P < 0.01; (**) P < 0.001. (d–
f) Representative western blot of Cyt b5 in MDA-MB-231 and MCF-7 cells in the whole cell lysis, 
cytoplasm, and mitochondria. β-Actin was used as an internal control in lysis and cytoplasm and 
VDAC was used as an internal control in mitochondria. 

2.2. Effects of Overexpressed Cyt b5 on the Endogenous Oxidative Stress Levels 
To evaluate whether overexpression of Cyt b5 affects the levels of endogenous 

oxidative stress in MDA-MB-231 and MCF-7 cells, we constructed plasmids containing 
the Cyt b5 gene with a flag-tag (pCMV-Cyt b5) and performed transient transfections of 
the two breast cancer cells to overexpress Cyt b5. As shown in Figure 2a for the western 
blot test, the flag-tag was prominently expressed in both cells, demonstrating the 
successful overexpression of Cyt b5. The flag-tagged Cyt b5 was observed only at around 
20 kDa, which indicated that the overexpressed Cyt b5 exhibited in a monomer form. 
Detection with DCFH-DA reagent further showed that MDA-MB-231 cells with 
overexpressed Cyt b5 had a lower ROS level than the ordinary MDA-MB-231 cells 
(Figure 2b). In studying the extent of lipid oxidation, the marker product of 
malondialdehyde was detected (Figure 2d). The results showed that the amount of 
malondialdehyde in normally cultured MDA-MB-231 cells was higher than that in 
MDA-MB-231 cells with overexpressed Cyt b5, which indicated that the degree of lipid 
peroxidation of MDA-MB-231 cells was decreased after the overexpression of Cyt b5. 
These results further suggested that the overexpression of Cyt b5 reduced the degree of 
oxidative stress in MDA-MB-231 cells. However, different results were observed for 

Figure 1. Analysis of oxidative stress and Cyt b5 content in MDA-MB-231 and MCF-7 cells. (a) Anal-
ysis of ROS levels in MDA-MB-231 and MCF-7 cells by treating with DCFH-DA reagent. (b) ROS
detection was quantified by using ImageJ software and the optical densitometry was reported.
(*) p < 0.05; (***) p < 0.001. (c) Analysis of MDA levels in MDA-MB-231 and MCF-7 cells by using
lipid peroxidation MDA assay kit. (*) p < 0.05; (***) p < 0.001. (d–f) Representative western blot of Cyt
b5 in MDA-MB-231 and MCF-7 cells in the whole cell lysis, cytoplasm, and mitochondria. β-Actin
was used as an internal control in lysis and cytoplasm and VDAC was used as an internal control in
mitochondria.

In principle, different oxidative stress levels may lead to diverse expressions of antiox-
idant proteins. Thus, we analyzed the expression of Cyt b5, belonging to the antioxidant
system, in both MDA-MB-231 and MCF-7 cells. Figure 1d–f presented the representative
western blot results, which showed that the antioxidant protein Cyt b5 was expressed both
in MCF-7 and MDA-MB-231 cells. Most Cyt b5 molecules existed as monomers and dimers
in MCF-7 cells, whereas the tetramer of Cyt b5 in MDA-MB-231 cells was more than that in
MCF-7 cells. Moreover, different multimeric forms of Cyt b5 were found in various species
and tissues and the oligomerization of Cyt b5 in vivo might be influenced by many factors.
For example, the aggregated forms of sheep Cyt b5 were affected by ionic strength and pH
value [20]. It should be noted that Cyt b5 tetramer might not perform normal physiological
functions [20], and the monomeric form of Cyt b5 is believed to be the active form [21–25].
These studies coincided with our experimental results, which suggested that more Cyt
b5 tetramer and less monomer in MDA-MB-231 cells might result in a higher degree of
oxidative stress.

2.2. Effects of Overexpressed Cyt b5 on the Endogenous Oxidative Stress Levels

To evaluate whether overexpression of Cyt b5 affects the levels of endogenous oxidative
stress in MDA-MB-231 and MCF-7 cells, we constructed plasmids containing the Cyt b5
gene with a flag-tag (pCMV-Cyt b5) and performed transient transfections of the two breast
cancer cells to overexpress Cyt b5. As shown in Figure 2a for the western blot test, the flag-
tag was prominently expressed in both cells, demonstrating the successful overexpression
of Cyt b5. The flag-tagged Cyt b5 was observed only at around 20 kDa, which indicated
that the overexpressed Cyt b5 exhibited in a monomer form. Detection with DCFH-DA
reagent further showed that MDA-MB-231 cells with overexpressed Cyt b5 had a lower
ROS level than the ordinary MDA-MB-231 cells (Figure 2b). In studying the extent of lipid
oxidation, the marker product of malondialdehyde was detected (Figure 2d). The results
showed that the amount of malondialdehyde in normally cultured MDA-MB-231 cells was
higher than that in MDA-MB-231 cells with overexpressed Cyt b5, which indicated that the
degree of lipid peroxidation of MDA-MB-231 cells was decreased after the overexpression
of Cyt b5. These results further suggested that the overexpression of Cyt b5 reduced the
degree of oxidative stress in MDA-MB-231 cells. However, different results were observed
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for those of MCF-7 and Cyt b5-overexpressed MCF-7 cells, with a slight increase in the ROS
level (Figure 2c) and lipid oxidation (Figure 2e). Based on the fact that the Cyt b5 content in
MCF-7 cells was relatively high, the overexpression of Cyt b5 might not have much effect
on its oxidative stress, although the mechanism remains unknown. Meanwhile, the Cyt b5
content in MDA-MB-231 cells was relatively low and the overexpression of Cyt b5 might
have some effects on its oxidative stress. Therefore, our subsequent research focused on the
overexpression of Cyt b5 in MDA-MB-231 cells and its effects.
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Figure 2. Overexpression of Cyt b5 and its regulating effect on the oxidative stress in MDA-MB-231
and MCF-7 cells. (a) Validation of the overexpression of Cyt b5 in MDA-MB-231 and MCF-7 cells
by western blot. (b,c) Detected ROS levels of MDA-MB-231 (b) and MCF-7 (c) cells by treatment
with DCFH-DA reagent. (**) p < 0.01; (***) p < 0.001. (d,e) Analysis of MDA levels in MDA-MD-231
(d) and MCF-7 cells by using lipid peroxidation MDA assay kit. (**) p < 0.01; (***) p < 0.001.

It should be noted that although Cyt b5 does not have a direct catalytic function
in cells, it is involved in many redox equilibrium processes as an electron transporter,
such as the interaction with Cyt c and P450, which are needed to maintain metabolic
homeostasis in mammalian cells [26]. It has been proposed that the presence of Cyt b5 can
decrease the release of O2

•− and H2O2 [27]. Chen et al. showed that the overexpression of
Cyt b5 in drosophila retina completely inhibits blue light-induced lipid peroxidation and
retinal degeneration [28], which suggests that Cyt b5 is a neuroprotective factor against
light-induced oxidative damage, particularly lipid peroxidation. Cyt b5 may function by
supporting antioxidant recycling, providing a strategy to prevent oxidative stress in aging
photoreceptors. On the other hand, alteration of the normal function of Cyt b5 may lead
to an increase in ROS. As shown by Kocadal et al. [29], inorganic mercury disrupts the
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oxidative phosphorylation and electron transport pathways at the ubiquinone-Cyt b5 site,
which induces ROS production and accumulation.

2.3. Effects of Overexpressed Cyt b5 on the Redox Balance Ability of MDA-MB-231 Cells

To explore the processing capacity of MDA-MB-231 cells with overexpressed Cyt b5
for exogenous H2O2, we performed four treatments on the cells with or without H2O2.
The ROS content of each group was detected by using the DCFH-DA probe. As shown in
Figure 3a, the fluorescence intensity in the H2O2 group increased significantly compared to
that of the control group, which indicated that H2O2 was indeed able to cause an increase
in ROS content in MDA-MB-231 cells. A slight decrease in fluorescence was observed
for the overexpressed group relative to the control group (Figure 3a), indicating that the
overexpression of Cyt b5 was able to reduce ROS content. After the stimulation of Cyt
b5-overexpressed MDA-MB-231 cells by 1 mM H2O2 for 12 h, the fluorescence intensity
was similar to that of MDA-MB-231 cells with overexpressed Cyt b5 and was much lower
than H2O2 group, which demonstrated that the overexpressed Cyt b5 moderately alleviated
the increased ROS content, as induced by exogenous H2O2.
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Figure 3. Overexpression of Cyt b5 in MDA-MB-231 cells and treatment with H2O2. (a) Detected
ROS levels in MDA-MB-231 cells by treating with DCFH-DA reagent. (b) Analysis of MDA levels
in MDA-MD-231 cells by using lipid peroxidation MDA assay kit. (c) Analysis of MTT assays in
H2O2-treated MDA-MB-231 cells with 0–3.0 mM H2O2. (d) Analysis of MTT assays in H2O2-treated
MDA-MB-231 cells and H2O2 (1.5–5.5 mM)-treated MDA-MB-231 cells with overexpressed Cyt b5.
(*) p < 0.05; (**) p < 0.01; (***) p < 0.001.

As further detected of malondialdehyde levels in each group, it showed a significant
increase in the malondialdehyde content for the H2O2 group relative to the control group
(Figure 3b), which suggested that H2O2 is indeed capable of causing an increase in lipid
oxidation in MDA-MB-231 cells. Moreover, the malonaldehyde content was decreased in
the overexpression group relative to the control group, suggesting that the overexpression
of Cyt b5 could reduce the degree of lipid peroxidation. After the stimulation of Cyt b5-
overexpressed MDA-MB-231 cells by 1 mM H2O2 for 12 h, the malondialdehyde content
was higher than that of the ordinary MDA-MB-231 cells and was lower than that of H2O2-
stimulated cells, respectively, which indicated that the overexpressed Cyt b5 moderately,
although not completely, alleviated the increased degree of lipid oxidation as induced by
exogenous H2O2.

The sensitivity of cells to H2O2 was further determined by treating both cell lines with
increasing concentrations of H2O2 (0.5–3 mM). After the treatment with H2O2 for 12 h, an
MTT assay was performed to monitor cell viability. As shown in Figure 3c, the relative
viability of MDA-MB-231 cells was significantly decreased when treated with 1.5 mM H2O2.
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The sensitivity of MDA-MB-231 and Cyt b5-overexpressed MDA-MB-231 cells was then
determined by treating both cell lines with increasing concentration of H2O2 from 1.5 mM
to 5.5 mM for 12 h. The results showed that the Cyt b5-overexpressed MDA-MB-231 cells
were more resistant to high concentrations of H2O2 than the normal MDA-MB-231 cells
(Figure 3d). In particular, at the concentration of < 4 mM, MDA-MB-231 cell viability was
almost decreased to the minimum whereas the Cyt b5-overexpressed MDA-MB-231 cells
were still at a high cell survival rate. These observations suggested that when MDA-MB-231
cells overexpress Cyt b5, the processing capacity for high concentration H2O2 stimulation
is enhanced.

2.4. Effects of Overexpressed Cyt b5 on Akt/MAPK Signaling Pathway in MDA-MB-231 Cells

Based on the sensitivity of MDA-MB-231 cells to H2O2, we chose 1 mM H2O2 to stim-
ulate the cells to reach a state of oxidative stress without leading to cell death, so that we
could observe the changes in the pre-apoptotic state. The cells were also divided into four
groups and western blot test was conducted to probe the protein content differences. The
results showed that the β-Actin levels were consistent across the four groups (Figure 4a–d),
whereas significant expression of flag-tag was detected in two groups of Cyt b5 overex-
pression (Figure 4a). Testing of apoptosis-related proteins was then performed. It revealed
a clear cleavage of caspase-3 and caspase-9 in H2O2-treated MDA-MB-231 cells, which
was increased by ~20% compared to the untreated groups, instead of in the overexpressed
Cyt b5 cells and H2O2-treated overexpressed Cyt b5 cells (Figure 4b). Moreover, there was
no significant difference in the total ERK1/2 and total Akt content for the four groups,
whereas the p-ERK1/2 and p-Akt levels varied between different groups (Figure 4c). The
p-ERK1/2 content of the H2O2-treated group increased by ~20% compared to the control
group, and the p-ERK1/2 content of the overexpressed Cyt b5 groups (treated/untreated
with H2O2) was lower (~90%) than that of the H2O2-treated group. Similar results were
also presented in the Akt signaling pathway (Figure 4c). These observations were consistent
with reports from the literature. ROS can affect molecular pathways related to apoptosis,
cell proliferation, and invasion.
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Figure 4. Effects of overexpression of Cyt b5 on cell signaling pathways. (a) Significant expression
of Flag-tag in MDA-MB-231 cells, as verified by western blot analysis. (b–d) Changes in apoptosis-
related proteins (b), ERK1/2 and Akt signaling pathways (c), and snail/E-Cadherin signaling path-
way (d), in MDA-MB-231 cells by western blot analysis.
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Subsequently, we detected tumor cell invasion and metastasis-related proteins in these
four groups. As presented in Figure 4d, the stimulation of H2O2 resulted in a reduction by
~60% in E-cadherin compared to that of the control group. The Cyt b5-overexpressed MDA-
MB-231 cells were characterized by ~15% more E-Cadherin and ~50% less snail compared
to the normal MDA-MB-231 cells. The situation in the overexpressed Cyt b5 group was
similar to that of the Cyt b5-overexpressed MDA-MB-231 cells. The loss of E-cadherin
and the epithelial-mesenchymal transition (EMT) are key steps in triple-negative breast
cancer progression [30]. Similar H2O2-induced reduction in expression of E-Cadherin and
increase in the expression of snail in breast cancer cells have been reported [31]. Snail is
a downstream effector of ERK pathway, which inhibits the expression of E-cadherin and,
thus, inhibits cell migration [32]. The present results showed that the overexpression of Cyt
b5 in MDA-MB-231 cells promoted the expression of E-Cadherin through the ERK/Snail/E-
Cadherin signaling pathway, thereby reducing the invasion and metastasizing ability of
breast cancer cells.

2.5. Possible Interactions between Overexpressed Cyt b5 and Cyt c in MDA-MB-231 Cells

It has been suggested that Cyt b5 may interact with its protein partner, cytochrome c
(Cyt c), and play an important role in vivo [14,33], as well as in vitro [34]. There are at least
three binding modes of Cyt b5-Cyt c interactions, including the Salemme model (E44-K27,
E48-K13, D60-K72, and propionate-K79) [35], the Northrup model (E48-K13, E56K-K87, D60-
K86, and propionate-K72) [36], and the Huang model (E37-K86, E38-K72, and propionate-
K13) [37]. As analyzed with western blot (Figure 5), both MCF-7 cells and MDA-MB-231
cells expressed Cyt c, whereas the expression level in MCF-7 cells was higher than that in
MDA-MB-231 cells, as observed for both cytoplasm and mitochondria. The overexpressed
Cyt c may regulate the ROS levels in the breast cancer cells, which may be related to
protein reactivity, such as peroxidase activity and protein-protein interactions [38–41]. The
mechanism still remained elusive.
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MDA-MB-231 cells, respectively, with those of β-Actin and VDAC shown for comparison.

To reveal whether the overexpressed Cyt b5 interacts with Cyt c in MDA-MB-231
cells, we tested the combination of Cyt b5 and Cyt c by co-immunoprecipitation (Co-IP)
studies. As shown in Figure 6, the amount of the Cyt b5-Cyt c complex in the overexpressed
Cyt b5 group was significantly more than that of the control group, which suggested that
the overexpressed Cyt b5 in MDA-MB-231 cells binds Cyt c in large quantities, leading
to relieving of oxidative stress by combination with Cyt c. After incubation with Cyt c
antibody overnight, the Co-IP experiment also showed bands of Cyt b5 tetramer and dimer
in complex with Cyt c (Figure 6b), indicating interactions between the oligomers of Cyt b5
and Cyt c. This observation suggested that the oligomerization of Cyt b5 may not alter the
structure of the heme-binding domain that interacts with Cyt c [42].
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Figure 6. Co-IP verified the interaction of Cyt b5-Cyt c in MDA-MB-231 cells. (a) Cyt b5 and Cyt
c were co-expressed in MDA-MB-231 cells and in MDA-MB-231 cells with overexpressed Cyt b5.
(b,c) Cell extracts were incubated with Cyt c antibody (b) and Cyt b5 antibody (c). The immune
complexes were precipitated by protein A/G beads and Cyt b5/Cyt c was analyzed with western blot.

Moreover, the interaction of Cyt b5 with Cyt c may block the interaction of Cyt c with
Apaf-1. Similar to Cyt b5, the Apaf-1 surface is enriched with negatively charged residues
of Asp and Glu. As predicted by the simulated Apaf-1-Cyt c complex, Cyt c may use similar
positively charged Lys residues to interact with Apaf-1 such as K27, K72, K79, K86 and
K87 [43]. Therefore, we speculated that in MDA-MB-231 cells, when Cyt b5 is overexpressed,
Cyt c will interact with it during the process of release from mitochondria to the cytoplasm,
which prevents the continued binding of Cyt c to APAF-1, thereby preventing the apoptosis
cascade. As shown in Scheme 1, we summarized the oxidative stress in triple-negative
breast cancer and proposed the possible effects of Cyt b5.
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Scheme 1. ROS and cell signaling in cell survival, cell growth and cell proliferation, as well as in cell
death, as referenced to the literature [44].

3. Materials and Methods
3.1. Materials

Malondialdehyde detection by lipid peroxidation MDA assay kit and ROS detection
by reactive oxygen species assay Kit were provided by Beyotime Institute of Biotechnology
(Nantong, Jiangsu, China). Polyvinylidene fluoride (PVDF) was from Millipore (Billerica,
MA, USA). Dulbecco’s modified eagle medium (DMEM), fetal bovine serum (FBS), and
phosphate-buffered saline (PBS) were products from Gibco (Australia). Lipofectamine™
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3000 was from Invitrogen (Thermo Fisher Scientific, Waltham, Massachusetts, USA). The
primary antibodies for cleaved caspase-9, cleaved caspase-3, phospho-p44/42 MAPK (p-
ERK1/2), AKT, Phospho-Akt (Thr308), Phospho-Akt (Ser473), DYKDDDDK Tag, snail
and β-actin were purchased from Cell Signaling Technology (Danvers, MA, America).
The primary antibodies for Cyt c and Cyt b5 were purchased from Abcom (Cambridge
Biomedical Campus, Cambridge, UK). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) was from Aladdin (Shanghai, China). The phosphatase inhibitor cocktail
and protein inhibitor cocktail were from Beijing ComWin Biotech Co., Ltd. (Beijing, China).
Confocal laser imaging was recorded on the Zeiss LSM 880, Western blot analysis was
performed on the Tanon 5200, and OD value measurement was detected using SpectraMax
Absorbance Reader.

3.2. Cell Culture

We selected two human breast cancer lines MCF-7 and MDA-MB-231 as in vitro
experimental models. Human breast cancer cell lines MCF-7 (Michigan Cancer Foundation-
7, SCSP-531) and MDA-MB-231 (SCSP-5043) were obtained from the National Collection
of Authenticated Cell Culture (Shanghai, China). Both cells were cultured in DMEM
containing 4.5 g/L glucose, 10% (v/v) FBS in a humidified atmosphere with 5% CO2 at
37 ◦C. The medium was changed twice weekly and the cultures were split 1:3 each week
for MCF-7 and twice a week for MDA-MB-231 cells, respectively.

3.3. Generation of an MDA-MB-231 Cell Line Overexpressing Cyt b5

Eukaryotic expression vector of pCMV-3Flag-Cyt b5 was constructed by Genscript
Biotech Corporation (Nanjing, Jiangsu, China). The full length of the human Cyt b5 gene
was cloned into the eukaryotic expression vector of pCMV-3Tag-1A and the plasmid
containing Cyt b5 gene was stored routinely in our laboratory. We seeded 1 × 105 cells/well
into a 6-well plate for transfection with pCMV-3Flag-Cyt b5 plasmid using Lipofectamine™
3000. The cells were cultured in DMEM containing 10% FBS and 1000 µg/mL G418
(MACKLIN reagent, Shanghai, China) for selection, and a stable Cyt b5 expression cell line
was obtained after four weeks.

3.4. Cell Viability Assay

Cell viability was measured by the MTT assay. The cultured cells were incubated
with different concentrations (0.5–5.5 mM) H2O2 for 12 h, and then incubated with MTT
reagent at 37 ◦C for 4 h in a humidified, 5% CO2 atmosphere. After the conversion of
the water-soluble yellow dye MTT to an insoluble purple formazan by the action of SDH
(succino-dehydrogenase) in mitochondrial, DMSO (dimethyl sulfoxide, Basel, Switzerland,
Damas-Beta, China) was added to dissolve the formazan, and the amount was quantified
by measuring the absorbance at 490 nm with a SpectraMax absorbance reader (Molecular
Devices, San Jose, CA, USA). A control group was carried out without the addition of Cyt
b5 in the DMEM medium.

3.5. Lipid Peroxidation MDA Assay

Lipid peroxidation levels were measured by malondialdehyde (MDA) assay kit ac-
cording to the technical instruction. According to the instructions, the cell sample and MDA
detection working solution were prepared. The standard curve was produced by taking an
appropriate amount of standard product after dilution. 0.1 mL of RIPA lysis buffer with
0.2 mL of MDA assay working solution was used as a blank control, and 0.1 mL of the
sample with 0.2 mL of MDA assay working solution was used for the assay, by heating
at 100 ◦C for 15 min. The samples were cooled to room temperature and centrifuged at
1000× g for 10 min at room temperature. An amount of 200 µL of the supernatant was
added to the 96-well plate and subsequently determined by the absorbance at 532 nm using
a microplate reader.
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3.6. Intracellular ROS Detection

A ROS Assay kit (Beyotime Institute of Biotechnology, Nantong, Jiangsu, China) was
used to determine the level of intracellular ROS. MDA-MB-231, MCF-7 cells and Cyt b5
expression cell lines were seeded in Confocal Dish (Coverglass Bottom Dish) at a density of
8 × 104 cells per well and treated with 1 mM H2O2 for 12 h at 37 ◦C [45]. The following
steps were performed according to the manufacturer’s protocol. Briefly, adherent cells
were washed with PBS, and each well was incubated with 1 mL 10 mM dichloro-dihydro-
fluorescein diacetate (DCFH-DA) at 37 ◦C for 30 min. The wells were washed three times
with PBS. The ROS in situ was observed using a fluorescence microscope (Zeiss LSM880).
Fluorescence semi-quantitative analysis was performed using ImageJ software.

3.7. Preparation of Mitochondrial and Cytosolic Fractions

Mitochondrial and cytosolic fractions were isolated by using the Cell Mitochondria
Isolation Kit (Beyotime Institute of Biotechnology, Nantong, Jiangsu, China). Briefly, the
cells were washed with cold PBS, harvested by trypsin-EDTA solution, and collected
by centrifuge. 1 mL mitochondrial isolation regent (with 1 mM PMSF) was added to
resuspend the cells. The suspension was incubated on an ice bath for 20 min, which was
then transferred to a proper-size EP tube for ultrasonic disruption of cells. The broken
cells were centrifuged at 600× g, 4 ◦C for 10 min. Then the supernatant was transferred to
another centrifugal tube by centrifuge for 10 min at 11,000× g, 4 ◦C. The precipitation was
the isolated mitochondria and the supernatant was the cytoplasmic protein, respectively.
All the reagents were provided by the cell mitochondria isolation kit.

3.8. Co-immunoprecipitation and Western Blot

Cells were collected and lysed. For immunoprecipitation, equal amounts of cells were
incubated with primary antibodies at 4 ◦C for 12 h on a rotating incubator, and then the
samples were further incubated with the 20 µL Protein A/G agarose (Beyotime Institute of
Biotechnology, Nantong, Jiangsu, China) at 4 ◦C for 2 h rotation. Immunocomplexes were
washed four times with PBST buffer before diluting with SDS-PAGE sample loading buffer.
The proteins were separated by SDS-PAGE and transferred to PVDF membranes. The blots
were incubated with primary antibody at 4 ◦C overnight, including anti-cleaved caspase-9
(CST), anti-cleaved caspase-3 (CST), anti-phospho-p44/42 MAPK (anti-p-ERK1/2) (CST),
anti-AKT (CST), anti-phospho-Akt (Thr308) (CST), anti-phospho-Akt (Ser473) (CST), anti-
DYKDDDDK Tag (CST), anti-snail (CST) and anti-β-Actin (CST), anti-Cyt c (Abcom) and
anti-Cyt b5 (Abcom). Then, the blots were incubated in secondary antibody after proper
washing. The Immunoreactive proteins were developed and detected in Tanon 5200 Series
Fully Automatic Chemiluminescence/Fluorescence Image Analysis System using enhanced
chemiluminescence (ECL). Experiments were replicated at least three times, and repre-
sentative blots were shown. The quantification of proteins was analyzed using ImageJ
software.

3.9. Statistical Analysis

Analysis was performed in triplicate and representative images reported. Western blot
and ROS detection were quantified by using ImageJ software and optical densitometry was
reported. Data are mean ± standard deviation (SD) from three independent experiments,
which were analyzed statistically by one-way analysis of variance (ANOVA) with the SPSS
software. p values less than 0.05 were considered statistically significant.

4. Conclusions

In summary, this study revealed significant differences in the oxidative stress levels in
two different types of breast cancer cells, MCF-7 cells (hormone receptor-positive cells) and
MDA-MB-231 cells (triple-negative cells). The overexpression of Cyt b5 in MDA-MB-231
cells was found to reduce the degree of oxidative stress, alter the apoptosis cascade, most
likely by interacting with Cyt c, and increase the resistance to H2O2 via the ERK1/2 and Akt
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signaling pathways. This study indicates that Cyt b5 plays an important role in maintaining
the balance of the redox system in cancer cells, with different effects on breast cancer cells
of different phenotypes. These observations provide useful information for understanding
the multiple roles of Cyt b5 and provide clues for clinical treatment.
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