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Abstract

Plasmacytoid dendritic cells (pDCs) were initially identified as the prominent natural type I

interferon-producing cells during viral infection. Over the past decade, the aberrant production of

interferon α/β by pDCs in response to self-derived molecular entities has been critically implicated

in the pathogenesis of systemic lupus erythematosus and recognized as a general feature

underlying other autoimmune diseases. On top of imperative studies on human pDCs, the

functional involvement and mechanism by which the pDC-interferon α/β pathway facilitates the

progression of autoimmunity have been unraveled recently from investigations with several

experimental lupus models. This article reviews correlating information obtained from human in

vitro characterization and murine in vivo studies and highlights the fundamental and multifaceted

contribution of pDCs to the pathogenesis of systemic autoimmune manifestation.
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Introduction

Since the discovery of the first mammalian toll-like receptor (TLR) nearly 20 years ago

[1,2], the importance of the innate immune response in shaping the outcome of adaptive

immune reactions has become better appreciated. The well-orchestrated functions of

sensing, activation, and feedback from the innate immune system are crucial to the

elicitation of a proper adaptive immune response to protect the host against invasion by

microbial agents or expansion of neoplasm and to maintain an immunological balance to

avoid unnecessary self-damage. The pathogenesis of autoimmune diseases has long been

studied primarily from the perspective of abnormalities in the adaptive immune system,

which are important effectors of disease manifestation. It is now understood that aberrant
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innate immune responses critically shape self-destructive adaptive immune reactions. The

complex interplay between the innate and adaptive immune systems represents a central

mechanism underlying autoimmune pathologies, which cause tremendous suffering for

millions of people, and has shed light on new therapeutic strategies.

The innate immune system involves many types of immune cells and uses an array of cell

surface and intracellular germline-encoded innate sensors to respond rapidly to pathogen-or

damage-associated molecular patterns (DAMP or PAMP). Upon activation, innate immune

cells secret a multitude of cytokines, chemokines, and effector molecules to directly control

infection, attract other leukocytes, and activate effector cells locally or systemically.

Meanwhile, dendritic cells (DCs) take up, process, and present antigens to engage with

cognate adaptive immune cells and direct effective adaptive immune responses.

Systemic lupus erythematosus (SLE) presents a prototypical systemic autoimmune disease

with broad-spectrum autoantibodies and complicated multiorgan involvement but no defined

etiology [3–6]. It is clear that numerous protein mediators, cells, and pathways participate in

SLE pathogenesis. Hyperactivated or abnormally differentiated, T cells and B cells can

synergistically enhance the development of a plenitude of autoantibodies to sustain systemic

autoimmune responses [7,8]. In the past decade, plasmacytoid DCs (pDCs), a type of innate

immune cells, have been linked intimately to SLE and other autoimmune diseases through

their exclusive production of type I interferon (IFN), a cytokine that drives the development

of systemic autoimmunity.

pDCs Specialize in Innate Type I IFN Production

First observed by pathologists in the 1950s, human pDCs were named plasmacytoid T cells

or plasmacytoid monocytes due to their plasma cell morphology and their expression of T

cell and myeloid cell markers [9]. In the 1980s, a mysterious human blood cell type was

demonstrated to be responsible for producing large amounts of type I IFN following culture

with viruses, and these cells were called “natural type I IFN-producing cells.” In the late

1990s, human pDCs and mouse pDCs were positively identified [10], and since then

research on these fascinating cells has taken off.

pDCs constitute only 0.2%–0.8% of human peripheral blood mononuclear cells but are

responsible for producing more than 95% of type I IFN when cells are exposed to viral

particles [11]. The human genome contains multiple genes that belong to the type I IFN

family: 13 IFN-α subtypes, IFN-β, IFN-ω, IFN-τ, and IFN-κ. Activated pDCs broadly

transcribe almost all type I IFNs (except IFN-κ) and type III IFNs (i.e. IFN-λ1–3), but not

type II IFN (i.e. IFN-γ) [12,13]. Besides their ability to robustly and rapidly produce IFN,

human pDCs produce proinflammatory cytokines, such as tumor necrosis factor α (TNF α)

and interleukin 6 (IL-6), and secrete a list of chemokines to coordinate the attraction of

various immune effectors in response to viral infection [12–15]. IFN secretion by pDCs is

transient and non-repetitive [12], which reflects the general nature of innate immune

responses and is consistent with the physiological role of pDCs during the early antiviral

immune surveillance but contrasts with aberrant pDC activation under autoimmune

conditions.
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The mechanism by which pDCs induce the extraordinarily rigorous IFN response has been

intensely investigated and several intriguing features have been revealed. First, human pDCs

selectively and abundantly express TLR7 and TLR9, two innate endosomal sensors that

specifically detect single-stranded RNA and unmethylated CpG DNA, respectively [16–18].

This property makes pDCs superbly sensitive to internalized nucleic acid agonists. Second,

pDCs constitutively express high levels of interferon regulatory factor 7 (IRF7), the master

mediator of IFN production, as well as the related IRF4 and IRF8 [12]. Pre-formed IRF7

protein allows a rapid IFN response that by passes IFNα/β receptor–mediated feedback

signaling [19]. Third, pDCs are equipped with a prominent rough endoplasmic reticulum

network and a unique membrane trafficking pathway, which enable effective intracellular

TLR7 and TLR9 translocation, processing, and compartmentalized signaling [20–29]. As a

result of these intrinsic cellular properties, pDCs readily and rigorously respond to TLR7

and TLR9 ligands.

In addition to TLR7 and TLR9, many other nucleic acid sensors have been identified in

recent years, which are reviewed elsewhere [30–32]. Nucleic acids constitute a class of

DAMP that is particularly important in inducing IFN. It is also worthwhile to emphasize that

pDCs do not innately respond to natural DNA, RNA, or materials released from dead cells.

Spontaneous IFN production by pDCs is prevented by strategic intracellular location of

TLR7/9 and the ubiquitous presence of nucleases in the extracellular environment. However,

this protective mechanism against innate immune response to self-nucleic acids is frequently

breached in SLE patients.

pDCs and IFN are Critically Implicated in SLE

Since the first reported detection of IFN in SLE patients [33], evidence of the association

between IFN and systemic autoimmune disease has been overwhelming. Lupus patients

express an “IFN signature” (i.e. a transcript of a panel of type I IFN–responsive genes) in

peripheral blood that is generally associated with the severity of the disease [34–38]. Serum

levels of IFNα are positively correlated with circulating anti-dsDNA autoantibodies and

SLE disease activity index scores in childhood-onset SLE [39]. Interestingly, nearly 90% of

pediatric SLE patients and more than 50% of adult patients displayed a peripheral IFN

signature [35,39]. Moreover, half of biopsied glomeruli from SLE kidneys contain

detectable IFN-inducible gene transcripts, which implies an IFN-mediated response in

diseased organs [40]. Separately, researchers observed that patients with malignant or viral

disease occasionally developed a lupus-like syndrome after IFNα administration, which

suggests a causative relationship between IFN and lupus pathogenesis [35]. Many attempts

have been made to identify the connection between IFN and pDCs. Studies focused on

peripheral blood have found reduced numbers of circulating pDCs with certain phenotypic

changes in SLE patients [35]. By contrast, abundant infiltrating pDCs have been observed in

the skin lesions of cutaneous lupus patients, and activated pDCs are correlated with positive

IFNα transcripts in both dermal lesions and non-inflamed skin [25]. Taken together, these

findings suggest a dynamic participation of pDCs during disease manifestation and call for

more detailed mechanistic characterization of pDC activities.
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Autoantibody production is a hallmark of various autoimmune diseases, whereas anti-

dsDNA antibody is exclusively associated with SLE. Many SLE patients exhibit defects in

the clearance of apoptotic cells, the debris of which can subsequently complex with

autoantibodies to form circulating immune complexes (ICs) [41]. Leadbetter et al. first

demonstrated that ICs containing nucleic acids can stimulate autoreactive B cells by dual

engagement of B cell receptors and intracellular TLRs, thus promoting and sustaining lupus

pathogenesis [42]. Although pDCs usually do not respond to dead cells, lupus ICs can be

endocytosed into pDCs via binding to the Fc receptor FcγRIIα (i.e. CD32) and subsequently

activate TLRs to induce IFN production (Figure 1). Specifically, internalized ICs containing

nucleosomes engage with TLR9, whereas TLR7 in pDCs is stimulated by RNA-containing

ICs made of autoantibody bound to U1 small nuclear RNA [25,35]. Deficiency of the

complement component C1q represents the strongest known susceptibility factor for SLE

and directly contributes to the clearance defect displayed by patients [43]. C1q-bound ICs

are normally removed by myeloid cells in healthy individuals, which prevents ICs from

activating pDCs [44,45]. This mechanism is therefore compromised in lupus patients with

low C1q levels (Figure 1).

Autophagy is a degradation pathway that involves the engulfment of cytoplasmic contents

and their delivery for lysosomal degradation. A recent study suggested that, in murine pDCs,

DNA-containing ICs are transported by a process called microtubule-associated protein

1A/1 B-LC3–associated phagocytosis primarily via the convergence of phagocytic and

autophagic pathways to induce IFN production [46]. This pathway unexpectedly diverges

from the membrane trafficking pathway involving AP-3, which is critical for TLR9

signaling induced by viruses and synthetic nucleic acid agonists [24,26] (Figure 1). Whether

a comparable signaling compartment is preserved in human pDCs and thus can be

specifically targeted remains to be seen. On the other hand, the activation of pDCs through

TLR7/9 by ICs stimulates the nuclear factor κB (NF-κB) pathway essential for pDC

survival, which undermines the effectiveness of high-dose steroid treatment owning to the

resistance by lupus pDCs [47]. By contrast, direct blockade of TLR signaling with specific

TLR7/9 inhibitors provides an alternative and effective therapeutic option [47,48].

In parallel with the IFN signature, SLE blood selectively expresses a panel of genes

involved in granulopoiesis that correlates with the abnormal presence of a large number of

immature neutrophils [34,49]. Neutrophils are granulocytes that participate in the immediate

early inflammatory response to infection or injury. Activated neutrophils can undergo a

peculiar form of cell death involving neutrophil extracellular traps (NET), called NETosis,

in which decondensed chromatin containing cytoplasmic proteins is expelled from the cells

to form NET [50]. Intriguingly, lupus autoantibodies against ribonucleoprotein complex or

antimicrobial peptide LL-37 can strongly stimulate IFN-primed neutrophils to induce

NETosis [51,52]. In conjunction with anti-nuclear autoantibodies, nucleic acid–rich NET

subsequently activates pDCs to trigger the production of type I IFN (Figure 1). This pDC-

IFN-autoantibody-neutrophil-NET loop is self-perpetuating and likely has a critical function

in sustaining aberrant IFN production and pathogenic development in SLE [53,54].

IFN is a pluripotent cytokine that has a broad effect on all nucleated cells for antiviral

protection and beyond [55,56]. Blanco et al. first discovered that SLE serum can potently

Cao Page 4

J Clin Cell Immunol. Author manuscript; available in PMC 2014 July 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



differentiate human monocytes into DCs that function as antigen-presenting cells to activate

CD4 T cells in a type I IFN-dependent manner [57]. IFN secreted by pDCs can directly

sensitize naïve B cells by upregulating TLR7 expression [58]. Activated pDCs also express

CD70, which engages with its receptor CD27 on native and memory B cells to promote B

cell proliferation and differentiation [59]. Furthermore, IFN and IL-6 produced by TLR-

activated pDCs cooperatively induce human plasma cell differentiation [60]. Given its

profound effects on T cells, DCs, neutrophils, and many other cell types, type I IFN is a

central molecular mediator that propels the pathogenesis of SLE. This notion is further

supported by observations that genes encoding products directly involved in TLR and IFN

signaling pathways constitute a majority of genetic risk factors for SLE and that increased

gene dosage of TLR7 directly results in lupus manifestation in vivo [3,5,61–63].

pDCs and IFN are Involved in Other Autoimmune Pathologies

A group of diverse inheritable diseases were recently linked by their upregulated type I IFN

expression and shared autoimmune features [64]. Aicardi-Goutieres syndrome is a severe

inflammatory disorder that affects the brain and skin and has marked IFN production and

occasionally overlapping features with SLE. Mutations in the protein three prime repair

exonuclease 1 (TREX1), a major DNA exonuclease important in clearing endogenous DNA

and antiretroviral infection, are responsible for Aicardi-Goutieres syndrome and familial

chilblain lupus [65]. Remarkably, heterozygous mutations in TREX1 represent the single

most common cause of monogenic lupus and mice lacking Trex1 develop a severe

multiorgan autoimmune disease that is driven by IFN from non-hematopoietic cells [66,67].

Spondyloenchondrodysplasia manifests with an autoimmune spectrum overlapping with

SLE. Interestingly, tartrate-resistant acid phosphatase mutation associated with

spondyloenchondrodysplasia increases the amount of phospholatedosteopontin, which likely

augments IFN production by pDCs and leads to the development of SLE and lupus-related

autoimmunity [68,69].

A comprehensive survey has identified a gene set of 36 IFN-inducible transcripts that are

commonly upregulated in patients with SLE, rheumatoid arthritis, myositis, and systemic

sclerosis (SSc), which suggests the involvement of IFN in a wide range of autoimmune

conditions [70]. In primary Sjögren syndrome, the salivary and lacrimal glands are the

targets of destructive autoimmune reactions. The increased expression of IFN-inducible

genes in salivary glands correlates with the presence of infiltrating pDCs [71]. Immune

thrombocytopenia is an autoimmune disorder of childhood characterized by immune-

mediated destruction of platelets. A higher number of circulating pDCs is associated with

the upregulated expression of IFN-inducible genes by the monocytes of patients with

immune thrombocytopenia [72]. SSc is a complex disease with features of extensive fibrosis

and circulating autoantibodies against various cellular antigens. SSc patients display a

detectable IFN signature and serum IFNα, which are associated with the vascular pathology

and fibrotic process [73]. Transgenic mice expressing a mutant FBN1 gene, which encodes a

mutated form of fibrillin-1 responsible for stiff skin syndrome, exhibit features of SSc with

aggressive skin fibrosis [74]. In these animals, IFN-producing pDCs have been found to

infiltrate the affected skin together with CD4 T cells and plasma cells, which presumably

promote autoantibody production [74].
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pDCs acutely infiltrate in response to skin injury and assist the wound-healing process under

normal conditions [75]. In addition to the diseases described above, IFN-producing pDCs

are common also in other cutaneous autoimmune diseases, in which cytotoxic attack leads to

degeneration of the basal epidermal layer [76]. For psoriasis, a cutaneous autoimmune

inflammatory condition, an IFN signature was detected in the psoriatic plaques and IFN

could facilitate the spread of the lesions [25]. The group lead by M. Gilliet demonstrated that

pDC-derived IFN is essential for the development of psoriasis [77]; moreover, antimicrobial

peptide LL-37 within the psoriatic skin can complex with self-nucleic acids and deliver them

to pDCs to engage TLR7/9 and induce IFN production [78] (Figure 1). Separately,

significant upregulation of the type I IFN pathway in blood cells is associated with

dermatomyositis, a severe autoimmune disease involving muscle, skin and vasculature [79].

Increased number of pDCs and amounts MxA protein are present in both skin and muscle

from patients with juvenile dermatomyositis [80]. Collectively, these studies highlight the

prominent involvement of IFN-secreting pDCs in a variety of autoimmune diseases.

Physiological Functions of pDCs – In vivo Studies

In vivo functional studies of pDCs have been hindered by technical limitations. pDCs are

rare bone marrow–derived leukocytes (<1% in any tissue or organ) that express markers that

overlap with cells of other lineages (e.g. B220, CD11c, Gr-1). Early attempts to deplete

pDCs with anti-Gr-1 antibody resulted in nonspecific ablation of many cells, including

granulocytes. Mouse pDCs abundantly express BST-2 and Siglec-H, two markers useful for

positive detection of pDCs in a naïve host. However, BST-2 can be induced in most cell

types following stimulation with IFNα/β or IFN-γ [81]. As a result, anti-BST-2 antibodies

(including 120G8 and mouse plasmacytoid dendritic cell antigen-1 (mPDCA-1)), may also

deplete additional cell types when injected during an infection or inflammatory response.

Recently, several mouse lines were developed to facilitate specific genetic ablation of pDCs

in vivo, including BDCA2/CLEC4C-DTR mice [82], conditional knockout mice carrying

LoxP-flanked E2-2 allele (Itgax-Cre+Tcf4flox/−) [83,84], and Siglec-H-DTR mice [85].

Unfortunately, diphtheria toxin treatment of Siglec-H-DTR mice also ablates marginal zone

macrophages and DC precursors, underlining yet again the necessity to use precaution when

interpreting in vivo experiments [86]. Another mouse strain, feeble, carries a point mutation

in peptide/histidine transporter solute carrier family 15, member 4 (SLC15A4) [24]. Feeble

mice display selective deficiency in IFN production by pDCs and thus are valuable in

examining the function of the pDC-IFN pathway under different conditions in vivo.

Consistent with initial findings from human studies, murine pDCs are involved in protecting

against infection from an array of viruses in vivo; this protection is associated with the cells’

IFN production in local tissues or systemically [87]. A detailed characterization of BDCA2/

CLEC4C-DTR mice indicated that pDCs are especially important in eliciting early IFN

production in response to murine cytomegalovirus, vesicular stomatitis virus and herpes

simplex virus, which restrict viral replication and enhance the function of natural killer cells

and virus-specific cytotoxic T lymphocytes [82,88]. In addition, conditional knockout mice

constitutively depleted of pDCs in peripheral lymphoid organs and tissues exhibited a

severely defective ability to control acute infection with the cytopathic mouse hepatitis virus

[84]. Persistent viral infection poses a continuous challenge to human health. Two studies
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illustrated that pDCs, likely via their secreted type I IFN, are crucial to mediate the effective

T cell responses to resolve persistent lymphocytic choriomeningitis virus (LCMV) infection

[84,89].

A number of studies have revealed a tolerogenic function of pDCs in vivo. pDCs in liver

tissue and mesenteric lymph nodes play a non-redundant role in initiating oral tolerance to

proteins or molecules absorbed by the gut [90]. Depletion of lung pDCs leads to the

development of asthmatic reactions to inhaled inert antigens [91]. Moreover, pDCs

effectively present alloantigens associated with vascularized grafts to mediate tolerance to

transplantation [92]. One mechanism responsible for tolerance induction is the promotion by

pDCs of regulatory T cell generation after presentation MHC-II restricted antigens [93–95].

In addition, a population of pDC-like CD11c+B220+CD19+cells in tumor-draining lymph

nodes were found to secrete indoleamine 2,3-dioxygenase, a tryptophan metabolic

byproduct with potent immune suppressive ability [96].

In spite of the regulatory function, pDCs have been shown to directly participate in organ-

specific autoimmune responses. In draining pancreatic lymph nodes of young non-obese

diabetic (NOD) mice, a prominent IFN signature is correlated with the presence of IFNα-

secreting pDCs [97]. Blockade of IFNα/β receptor significantly delays the onset and

incidence of autoimmune type I diabetes (T1D), suggesting an essential role of the pDC-IFN

pathway in initiating T1D in the NOD model. Moreover, IFN-α-producing pDCs co-

infiltrate and directly interact with B-1a cells and neutrophils in the pancreas of young NOD

mice; this cross-talk is essential to the initiation of the diabetogenic T cell response and T1D

development [98]. Interestingly, an integrated genome-wide analysis of human T1D

revealed an IRF7-driven inflammatory network mimicking an antiviral response that may

contribute to the risk of T1D [99]. Whether human pDCs are involved in such inflammation

remains to be shown. However, in the T cell–dependent experimental encephalomyelitis

autoimmune mouse model, conflicting observations have been reported regarding the

functional involvement of pDCs [93,100–102].

Role of pDCs in Mediating Pathogenesis of Experimental Lupus

Spontaneous lupus models

Animal models are valuable tools for dissecting the dynamic and kinetic interactions

between immune cells at different stages of disease progression and for characterizing the

spatial and functional involvement of cells or molecules in unique tissue and organ

environments. The most commonly studied experimental lupus models are inbred mouse

strains that spontaneously develop a disease that shares characteristics with human SLE

[103–107]. Numerous studies have demonstrated clearly the defects in B cell and T cell

compartments that sustain autoreactivity and disease manifestation. The roles played by IFN

and pDCs have been scrutinized intensely in the past decade and intriguing insights have

been obtained.

NZB/W F1 mice, a well studied lupus-prone strain, harbor multigenic mutations that

predispose them to autoimmune development. Systemically induced IFNα/β production in

young NZB/W F1 mice as well as B6.Sle123 mice significantly accelerates lupus nephritis
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[108–110]. Although NZB/W F1 mice lack the prominent IFN signature associated with

clinical lupus, IFNα/β receptor deficiency or TLR7/9 inhibition greatly ameliorate lupus,

suggesting the importance of nucleic acid sensing in promoting pathogenic development

[48,111]. A recent unexpected finding was that IFNβ is dispensable for autoantibody

production and disease progression in NZB/W F1 mice [112], implying a functional

redundancy within type I IFN family and the importance of IFNα subtypes in this model.

More recently, Baccala et al. reported that IRF8-deficient NZB mice lacking pDCs failed to

develop anti-nuclear, anti-chromatin, and anti-erythrocyte autoantibodies and had limited

kidney disease [113] (Figure 2). pDC deficiency not only reduces the number of T cells but

also selectively diminishes the accumulation of CD21−CD23− extrafollicular B cells in the

spleen. Age-associated B cells, which lack CD21 and CD23 but express additional myeloid

cell-specific markers, have been detected in many lupus-prone mouse strains and

presumably develop in response to TLR7 activation [114–116]. These results highlight a

pivotal role of the pDC-IFN pathway in the development of systemic autoimmunity in vivo

and suggest a significant effect of pDCs on the humoral autoimmune response. In addition to

systemic immune reactions, pDCs and their secreted type I IFN after TLR7/9 activation play

a key role in mediating the prolonged inflammation and chronic lesions on tape-stripped

skin of NZB/W F1 mice, a condition that mimics cutaneous lupus [117] (Figure 2). The

involvement of pDCs in this pathological process is distinct from their transient IFN

response during wound healing in normal mice [75,117]. Therefore, pDCs apparently

participate in different aspects of autoimmune development in the NZB/W F1 model.

Mice homozygous for the lymphoproliferation mutation (Faslpr) spontaneously develop

systemic autoimmunity, lymphadenopathy associated with proliferation of aberrant T cells,

and IC glomerulonephrosis. Unlike its attenuating effect on NZB/W F1 mice, IFNα/β

receptor–deficiency endorses MRL-Faslpr mice to develop exacerbated lymphoproliferation,

autoantibody production, and end organ disease [118]. Instead, IFNγ has a predominant role

in autoimmune-associated disease development in these animals [118–121]. To understand

the overt contribution by DCs, Teichmann et al. analyzed DC-deficient MRL-Faslpr mice

(controlled by CD11c:DTA), in which >90% of classical DCs and >80% of pDCs in spleen

were ablated, and reported that, while required for T cell expansion and differentiation, DCs

are critical to maintain the high levels of autoantibodies and number of short-lived antibody-

secreting plasmablasts [122]. The same research group reported an additional function for

MyD88-stimulated DCs in promoting dermatitis and renal inflammation [123]. Interestingly,

pDCs in the bone marrow of adult MRL-Faslpr mice express high levels of IFNα mRNA in

a MyD88-dependent manner, which possibly contributes to the inhibition of B cell

progenitor cells [123] (Figure 2). Despite the reported phenotype of IFNAR−/− MRL-Faslpr

mice, prophylactic administration of anti-IFNα/β receptor blocking antibody in young MRL-

Faslpr mice provides transient protection against the escalation of anti-RNP autoantibody

titers and proteinuria, suggesting a possible role of type I IFN in promoting lupus

development at the initiation phase [112]. More recently, Baccala et al. obtained pDC-

defective C57BL/6-Faslpr mice, in which feeble/Slc15a4 mutation selectively disrupts pDC-

mediated IFN response, and observed the disappearance of autoantibodies, reduced

lymphadenopathy and splenomegaly, decreased numbers of T cells and age-associated B

cells, and prolonged survival when comparing with C57BL/6-Faslpr mice [113] (Figure 2).
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Altogether, the pDC-IFN pathway plays important and complex roles in the Faslpr-mediated

lupus model. Further characterization is necessary to fully reveal the functional involvement

of this pathway at specific stages of disease development.

BXSB inbred male mice harbor the Y-linked autoimmune accelerator locus (Yaa) with

duplicated chromosome segment containing TLR7, which is primarily responsible for the

autoimmune phenotype [124–126]. Analysis of mice overexpressing TLR7 revealed

constitutive expression of type I IFN mRNA by pDCs in bone marrow, which presumably

drives the proliferation of Sca-1+ granulocyte/macrophage progenitors and subsequent

expansion of peripheral myeloid cells [127] (Figure 2). However, it is unclear if pDCs in the

peripheral tissues also intrinsically produce IFNα/β in these mice thus contribute to lupus

manifestation. Nevertheless, therapeutic treatment of BXSB mice with an anti-type I

interferon receptor antibody diminished their autoimmune disease, suggesting a functional

involvement of IFN signaling in autoimmune pathogenesis of this model [112].

Inducible lupus models

SLE is rarely a single-gene disorder. Although genetic risk factors clearly contribute to

lupus, a significant portion of patients do not display any known mutations in their genomes

[128]. On the other hand, stochastic stimuli and environmental factors (e.g. infections,

chemical compounds, somatic mutations, drugs, and aging [129–133]) play roles that

exacerbate autoimmune susceptibility and, at times, stimulate immune responses that lead to

systemic autoimmunity. An immunocompetent host employs a multitude of regulatory

mechanisms (e.g. negative selection, anergy, receptor editing, and suppressor cells) to

minimize autoreactivity that would cause damage and harm to itself. Understanding the

mechanism by which immune tolerance is breached by an exogenous trigger is crucial for

identifying the essential pathways responsible for the establishment of autoimmunity.

It is well known that significant fraction of newly generated and mature B cells shows some

degree of autoreactivity [134,135]. Even so, humoral immune tolerance is largely

maintained even after challenges with autoantigens. In one study, immunization of bacterial

DNA in the presence of a carrier protein in non-autoimmune mice induced the production of

anti-bacterial DNA antibody lacking reactivity to mammalian DNA [136]. In another study,

wild-type mice that received an injection of a large number of apoptotic human cells

developed modest and transient autoantibody production without exhibiting clinical changes

[137]. HMGB1-nucleosome complexes constitute the major nuclear component recognized

by SLE autoantibodies. However, after inoculation into non-autoimmune mice, these

complexes induced a limited antibody response against the immunized components without

overt lupus-like disease [138].

The innate immune response instructs the corresponding adaptive immune response. For

effective antibody induction, various adjuvants with strong innate stimulatory activities have

been used to boost the B cell response and generate high titers of immunogen-specific

antibodies in experimental settings and effective vaccines. The role played by innate

immune activation in initiating the autoreactive humoral response has not been extensively

studied. Hydrocarbon oil pristine triggers profound inflammation and IFN production; the

latter is essential to the development of autoantibodies and glomerulonephritis in non-
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autoimmune mice [139,140]. This finding thus highlights an equally critical role of type I

IFN in the induced and spontaneous systemic autoimmunity.

Amyloid is formed from a native protein after a process of aberrant aggregation and

misfolding [141,142]. Amyloid fibrils contain extensive β sheet structures and can be found

extracellularly or intracellularly. Amyloid depositions in vivo are often heterogeneous and

contain non-proteinaceous cofactors [141,143], which may be explained by the fact that

amyloid precursor proteins display an intrinsic affinity towards nucleic acids and

glycosaminoglycans, an interaction that promotes the rapid formation of amyloid [144]. We

examined the innate immune properties of amyloid fibrils containing nucleic acids and

found that these complexes are potent inducers of type I IFN from human pDCs [145]

(Figure 1). Regardless of their source or type, nucleic acids incorporated into amyloid fibrils

could be efficiently internalized by human pDCs into an endosomal compartment to trigger

TLR activation and strongly induce IFN production. Because amyloid proteins use a variety

of mechanisms to penetrate cells, amyloid fibrils containing nucleic acids trigger IFN

production independently of FcγRIIα [145].

When inoculated into the peritoneal cavity, DNA-containing amyloid fibrils induced

selective pDC infiltration, which was associated with a predominant type I IFN response.

After immunization with DNA-containing amyloid fibrils, non-autoimmune mice developed

stable anti-nuclear autoantibodies and abroad autoreactive humoral response against DNA,

RNA, Sm/RNP, and histone [145]. Proteinuria and antibody depositions in the glomeruli of

the kidneys were also detected, suggesting the development of a lupus-like syndrome. In

amyloid-immunized mice, the establishment of anti-nuclear serology requires the signaling

of IFNα/β receptors. We found that pDCs were indispensable for not only the acute IFN

response but also the subsequent autoantibody development [145]. By contrast, pDCs were

not involved in the induction of antibodies against the amyloid protein per se, and pDC

depletion did not affect the development of proteinuria. Therefore, IFN-producing pDCs

play an essential and selective role in instigating the humoral autoimmune response

following a strong innate immune activation (Figure 2).

Whereas pDCs and IFN appears to influence B cell differentiation in vitro (see earlier

section), our data suggests that pDCs are largely dispensable for the immunogen-specific

IgG response in vivo. Consistent with this observation, Baccala et al. reported that feeble

mice elicited normal T cell–dependent and –independent IgG responses that were

indistinguishable from those of wild-type mice [113]. In addition, it has been shown that

neither pDCs or IFN was required to elicit a protective antibody response after inoculation

with live attenuated flu vaccine [146]. By contrast, pDCs and IFN were critical for the

generation of primary IgG and IgA response after immunization of inactivated whole virus

flu vaccine [146]. On the other hand, pDCs are suggested to have a role in IgA production

under steady-state conditions, based on the observation that, when co-cultured with mucosal

B cells, pDCs from mesenteric lymph nodes and Peyer’s patches can facilitate T cell–

independent IgA secretion via production of APRIL and BAFF [147]. Remarkably, during

intestinal rotavirus infection, pDC-derived type I IFN was required for optimal B cell

activation and virus-specific IgA antibody secretion for effective protection [148].

Therefore, pDCs seem to have multifarious effects on humoral responses. Further
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investigation on how pDC-IFN pathway selectively instructs autoreactive B cell selection

and expansion would shed light on the key processes involved in the breakdown of immune

tolerance.

The fact that nucleic acid-containing ICs and autoantibody-induced NET potently trigger

IFN production from pDCs implies a role of type I IFN at late stage of lupus pathogenesis

after the establishment of humoral autoimmunity. However, our results demonstrate that IFN

also function as a critical mediator in the early stage of autoimmune development, a

conclusion further supported by the finding that IFNα/β receptor blockade was effective in

BXSB mice only when administrated to young mice at a preclinical phase [112]. These

studies indeed suggest a therapeutic window of IFN blockade, which may be more effective

at the onset of autoimmune response.

For a long time, the presence of amyloid was exclusively associated with about two dozen

human pathologies with Alzheimer’s disease as the best known example [149,150].

However, an increasing number of so-called functional amyloids have been shown to

participate in diverse normal cellular functions, suggesting a prevalence of this peculiar form

of protein post-translational modification [151–158]. Amyloid fibrils also represent a type of

DAMP that is capable of activating inflammasome thus contributes to autoinflammatory

responses [159]. Therefore, it would be important to examine the direct involvement of

amyloid in disease pathogenesis among SLE patients.

Conclusion

As exemplified by SLE, systemic autoimmune diseases present a supreme challenge for

immunologists because the pathogenic processes involve not only different cell types,

numerous molecular mediators, and multiple organs but also are controlled by discrete

mechanisms at various stages of development. The discoveries of predominant involvement

of type I IFN and nucleic acid sensing mechanisms have driven the development of

therapies targeting IFNα/β or TLRs, many of which are currently under clinical evaluation

[160,161]. Needless to say, the success of new therapies relies on a deep understanding of

the participation of specific cellular and molecular pathways in the disease progression.

From earlier human studies, pDCs were regarded as the principal IFN producer in SLE and

only recently were revealed as an essential component in promoting lupus development at

multiple stages and in different tissues. In the upcoming years, we anticipate to see further

elucidation of the functions of pDCs in stimulating autoreactive B cell development,

mediating tissue-specific inflammation or damage, and sustaining ongoing autoimmunity.

Because pDCs readily interact with many types of cells, functional cross-talk between pDCs

and neutrophils, B cells, or T cells during lupus pathogenesis in vivo should be investigated

in details. The effort may reveal novel molecular and therapeutic targets useful for blocking

the development of autoimmune diseases.

Besides LL-37 and amyloid precursor proteins, we do not know whether there exist other

endogenous carriers that are capable of enabling nucleic acid internalization and abnormal

innate activation of pDCs. Searching for these molecules by in vitro screening and
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identifying them directly from patients would significantly expand our understanding of the

factors that drive the initiation and progression of the autoimmune response. Being a

complex disease, SLE likely represents a convergence of autoimmune disorders with diverse

etiological causes. Understanding the nature of initial triggers that provoke aberrant innate

immune responses will help eventually in developing effective personalized therapeutic

strategies in the future.
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Figure 1.
Human pDCs produce IFN in response to diverse biological stimuli.
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Figure 2.
pDCs critically promote the pathogenesis of murine lupus.
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