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DNA N4-methylcytosine (4mC) is a pivotal epigenetic modification that plays an essential
role in DNA replication, repair, expression and differentiation. To gain insight into the
biological functions of 4mC, it is critical to identify their modification sites in the
genomics. Recently, deep learning has become increasingly popular in recent years
and frequently employed for the 4mC site identification. However, a systematic analysis
of how to build predictive models using deep learning techniques is still lacking. In this
work, we first summarized all existing deep learning-based predictors and systematically
analyzed their models, features and datasets, etc. Then, using a typical standard
dataset with three species (A. thaliana, C. elegans, and D. melanogaster), we assessed
the contribution of different model architectures, encoding methods and the attention
mechanism in establishing a deep learning-based model for the 4mC site prediction.
After a series of optimizations, convolutional-recurrent neural network architecture using
the one-hot encoding and attention mechanism achieved the best overall prediction
performance. Extensive comparison experiments were conducted based on the same
dataset. This work will be helpful for researchers who would like to build the 4mC
prediction models using deep learning in the future.

Keywords: deep learning, convolutional neural network, recurrent neural networks, one-hot encoding, attention
mechanism, DNA N4-methylcytosine

INTRODUCTION

DNA methylation, one of the most important epigenetic modifications in many organisms, plays
an important role in a vast number of cellular processes (Rathi et al., 2018, p. 4). According
to the location where a methylated group occurs in the DNA sequence, there are many types
of DNA methylation. For example, the most common types are N6-methyladenine (6mA), C5-
Methylcytosine (5mC), and N4-methylcytosine (4mC), which are found in both eukaryotic and
prokaryotic genomes (Davis et al., 2013; Jeltsch and Jurkowska, 2014; Blow et al., 2016). The first
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discovered 5mC is the most studied type of methylation in
eukaryotes, and it plays crucial roles in a broad range of biological
processes, including gene expression, imprinting, regulation and
transposon suppression (Suzuki and Bird, 2008), and is even
involved in various diseases, such as neurological disorders,
cancers and diabetes (Jones, 2012; Yao and Jin, 2014). In
prokaryotes, 6mA and 4mC constitute the majority of DNA base
methylations, and they are frequently used to distinguish between
benign host DNA and potentially exogenous pathogenic DNA
(Heyn and Esteller, 2015). The former is essential for regulating
gene expression, genomic imprinting, DNA mismatch repair and
cell developments (Xiao et al., 2018; Hasan et al., 2021), while
the latter is critical for the regulation of DNA replication, repair,
expression, and differentiation (Cheng, 1995; Chen et al., 2016),
and can even prevent the enzymatic degradation of host DNA
(Schweizer, 2008).

Compared to the studies on 5mC and 6mA, progress on 4mC
has been relatively slow due to the lack of effective detection
methods. There are several experimental methodologies, such
as mass spectrometry, methylation-precise PCR, single-molecule
real-time sequencing (SMRT), and 4mC-Tet-assisted bisulfite-
sequencing (4mCTABseq), have been efficiently used to detect
the epigenetic sites (Buryanov and Shevchuk, 2005; Flusberg
et al., 2010; Doherty and Couldrey, 2014; Yu et al., 2015).
However, these approaches are commonly regarded as expensive,
time-consuming and complex, and not suitable for high
throughput assays at the whole genome level. Therefore,
there is a strong incentive to develop alternative approaches
to support experimental efforts properly. The computational
approaches could be used to effectively and accurately identify
4mC sites based on machine learning (ML) algorithms and
genomic sequences.

Since iDNA4mC was established as the first 4mC predictor
in 2017, at least 33 predictors have been developed to date,
of which 24 predictors have been built in the last 2 years
(Supplementary Table 1). These predictors typically make use
of machine learning algorithms to learn from available data to
perform novel predictions and gain new insights. Recently, a
variety of machine learning algorithms are useful for this goal,
such as support vector machine (SVM) (Chen et al., 2017; He
et al., 2019; Wei et al., 2019a,b; Lv et al., 2020b; Zhao et al.,
2020), random forest (RF) (Hasan et al., 2020a,b; Lv et al., 2020a;
Alghamdi et al., 2021; Zulfiqar et al., 2021a), Markov model
(MM) (Yang et al., 2020), and the combined or ensemble methods
(Gong and Fan, 2019; Manavalan et al., 2019a,b; Tang et al., 2020;
Li et al., 2021), extreme gradient boosting (XGBoost) (Wang
et al., 2021) and Laplacian Regularized Sparse Representation
(Ding et al., 2021). As shown in Supplementary Table 1,
SVM is the most widely used traditional machine learning
algorithms in the model development and method comparison
for 4mC prediction, followed by RF. Moreover, two excellent
overviews of computational predictions and applications for
DNA 4mC are available from Manavalan et al. (2020) and Xu
et al. (2021), and some predictors that can identify multiple
epigenetic modifications have been developed, such as iDNA-
MT (Yang et al., 2021) and ZayyuNet (Abbas et al., 2021a).
Although some methods based on traditional machine learning

algorithms have achieved very good performance in predicting
4mC sites, they still depend heavily on manually crafted features
and fail to automatically learn intrinsic features from raw
DNA sequences. In addition, all these traditional methods may
require complicated pretreatments or consume too much time,
especially when dealing with large data sets or a large number
of features. Thus, there is still room for improvement in the
ML-based prediction of DNA 4mC, chiefly in the areas of the
speed and accuracy.

Deep learning algorithms avoid the need to manually craft
informative features and instead automatically learn features of
DNA sequences through the iterative aggregation of features in
each layer of the network (Jing et al., 2020; Yu et al., 2020, 2021).
So far, at least 14 predictors have been reported to be developed
by the deep learning algorithms (Table 1). Among the various
types of deep networks that have been proposed, convolutional
and convolutional-based neural networks (CNNs and CNN-) are
the most frequently applied types of neural network for modeling
the DNA 4mC sites. The strength of CNN is that its initial
convolution layer corresponds to motif detectors, where position
weight matrices (PWMs) are not hard-coded, but solely learned
from data. Despite CNNs are showing great promise for DNA
4mC site analysis, there are many challenges that remain to be
addressed. For example, why is it better to use CNNs and their
variants to develop the predictive models instead of other types
of neural networks? Current applications in identifying the 4mC
sites have been limited to a specific deep learning type, such as
the CNNs, however, few comprehensive comparison studies have
been performed to evaluate the relative performance of different
deep learning methods regarding available DNA sequencing
datasets of different sizes, technologies, species, and complexity.
In addition, the deep neural networks continue to be treated
mostly as black-box function approximators, as it is unclear
from the model itself why a given classification is made. More
specifically, currently available deep learning tools offer little to
explanation or visibility for why specific features are selected over
others during training, or which nucleotides in both upstream
and downstream the 4mC sites have the greatest effect on the
predictive performance, or why a specific motif in the input
sequence is selected over others. Therefore, it is essential and
urgent to make a comprehensive, integrated and visual analysis
of deep learning algorithms on the prediction of DNA 4mC sites.

In this article, based on a comprehensive overview of existing
deep learning-based 4mC prediction methods (Table 1 and
Supplementary Table 1), we provide a valuable reference for
many issues to consider when designing, implementing, and
analyzing the deep learning models for DNA 4mC sites. This
work provides three key contributions. First, we evaluate different
types of deep learning models and sequence encoding methods
for DNA 4mC sites and present results on A. thaliana, C. elegans,
and D. melanogaster datasets using standard performance
metrics. To our knowledge, this is the first comprehensive
benchmarking of deep learning algorithms and implementations
with large-scale 4mC datasets. Second, we provide original
implementations of deep learning models and utility functions
for training, evaluation, interpretation and visualization. Finally,
we offer practical guidance for selecting the combination of
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TABLE 1 | Summary of 14 existing deep learning-based prediction tools.

Year Tools Architectures Evaluation strategy References

2019 4mCCNN CNN 10-fold CV Khanal et al., 2019

2020 4mcDeep-CBI CNN-BiLSTM Threefold CV Zeng et al., 2020

Deep4mcPred ResNet, RNN, attention mechanism 10-fold CV Zeng and Liao, 2020

Deep4mC CNN, attention mechanism n-fold CV (n = 4, 6, 8, 10) Xu et al., 2021

DeepTorrent CNN-RNN, attention mechanism 10-fold CV Liu et al., 2021

DNC4mC-Deep CNN 10-fold CV Wahab et al., 2020

2021 4mCNLP-Deep CNN k-fold CV (k = 3, 5, 10) Wahab et al., 2021

4mCPred-CNN CNN 10-fold CV Abbas et al., 2021b

4mC-w2vec CNN Fivefold CV Khanal et al., 2021

iRG-4mC CNN 10-fold CV Lim et al., 2021

4mCPred-MTL Multi-task learning coupled with transformer, attention mechanism 10-fold CV Zeng et al., 2021

i4mC-Deep CNN 10-fold CV Alam et al., 2021

Deep-4mCW2V CNN 10-fold CV Zulfiqar et al., 2021b

DCNN-4mC CNN 10-fold CV Rehman et al., 2021

CNN, convolutional neural network; BiLSTM, bidirectional long short-term memory; ResNet, Residual Network; RNN, recurrent neural network; CNN-RNN, convolutional
neural network and recurrent neural network.

model architecture and encoding methods best suited to the
scientific question addressed for end-users and tool developers.

MATERIALS AND METHODS

As mentioned above, many software tools have recently been
developed to classify 4mC data and identify genomic loci using
the deep learning techniques. This diversity of the methods
and tools presents its own challenge. Alternative views on a
problem can produce multiple distinct tools to achieve the
same general purpose. However, small differences in method
selection or model design in these tools can impact the
classification accuracy, and even produce inconsistent results.
The fast pace of biotechnology and computer science makes it
increasingly difficult to choose a right deep learning method
or tool for accurate analysis and interpretation of the data
at hand. Moreover, it is important to understand how these
different tools, referred to as deep learning classifiers, work and
how to determine the best method for a given sample type,
model organism, or application. Here, we introduced the core
principles of 4mC sequence classification methods, described
how to design, train, implement and evaluate the classifiers,
and used these approaches to benchmark several commonly
used deep learning algorithms. To combine the strengths of
these approaches, we designed a series of experiments using
a standard dataset of DNA 4mC loci from three different
species, as well as different deep learning architectures and
feature encoding methods where possible. To account for
dataset and algorithms differences, we further compared the
performance of these algorithms on a uniform dataset. Based
on benchmarking results, we devised the DeepDNA4mC, which
leverages the hybrid CNN-RNN architecture and self-attention
mechanism to learn precise motif representations of significant
information about diverse biological sequences. Finally, we
provided recommendations for their use and described future
directions for the expansion of this field. An overview of the

experimental design and data analysis is presented in Figure 1
and following sections.

Benchmark Datasets
Some well-known databases of DNA 4mC loci have been
established, such as MethSMRT (Ye et al., 2016), DNAmod
(Sood et al., 2019), and MDR (Liu et al., 2019). Several standard
datasets were generated from sequences mined from the above-
mentioned databases, which have been used to develop more than
20 prediction tools so far (as shown in Supplementary Table 1).
An increasing number of species are involved in this process,
including Arabidopsis thaliana (A. thaliana), Caenorhabditis
elegans (C. elegans), Casuarina equisetifolia (C. equisetifolia),
Drosophila melanogaster (D. melanogaster), Escherichia coli
(E. coli), Fragaria vesca (F. vesca), Geoalkalibacter subterraneus
(G. subterraneus), Geobacter pickeringii (G. pickeringii),
Mus musculus (M. musculus), Rosa chinensis (R. chinensis),
Saccharomyces cerevisiae (S. cerevisiae), Tolypocladium sp.
SUP5-1 (Ts. SUP5-1), and even their cross-species (Wahab et al.,
2020). Recently, Manavalan et al. (2020) reviewed the 4mC site
prediction methods for eight species and further evaluated their
predictive performance using their self-constructed datasets.

Chen et al. (2017) provided a golden standard dataset,
which consists of DNA sequences from six species. This
dataset was adopted in 12 subsequent studies for model
performance assessment and comparison. Unfortunately, with
the rapid growth of 4mC data, the relatively small sample
size of Chen’s dataset is a clear drawback to developing
effective predictors, especially for the deep learning methods.
Hence, a larger dataset established by Zeng and Liao (2020)
was selected as our first benchmark dataset, which is called
the Zeng_2020_1. This dataset was generated by merging
three different subsets of species: A. thaliana, C. elegans, and
D. melanogaster. All positive samples in this dataset were
extracted from the MethSMRT database (Ye et al., 2016) and
all sequences were all 41 base pairs in length with methylated
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FIGURE 1 | Schematic overview of the study design (see detailed descriptions and notations in section “Materials and Methods”). Three model organism
(A. thaliana, C. elegans, and D. melanogaster) are used to generate the benchmark datasets. Each dataset is balanced between the positive and negative samples
and randomly split into training, validation and test sets. For input sequence, the channel axis encodes different colors (such as green, blue, orange and red), for
one-hot and dictionary encoded sequences (A: [1, 0, 0, 0] for one-hot; A: 1 for dictionary, and so on). The appropriate deep learning architecture is designed and
trained on the basis of benchmarking studies. Further evaluation and interpretation of the proposed model via a variety of visual analysis methods.

cytosine centrally located. To avoid redundancy and homology
bias, all DNA sequences were aligned by CD-HIT with an
80% identity threshold (Fu et al., 2012). For each species,
20,000 positive samples and 20,000 negative samples were
randomly selected to balance the potential confounding factors
(Supplementary Table 2). The negative samples were not
identified by the SMRT sequencing technology, but they were
also 41 bp in length and the center of the sequence was a
non-methylated cytosine.

To further evaluate our model performance across data
sets, another benchmark dataset established by Zeng et al.
(2020) (named Zeng_2020_2) was also employed in this work.
This dataset consists of two parts, one of which is the
existing data of C. elegans provided by Ye et al. (2016),
and the other part is composed of many new data extracted
from the updated MethSMRT database. All samples in this
dataset have a sequence length of 41 bp, and they were
also processed by CD-HIT to remove the redundant DNA
sequences. In particular, the samples with the Modification
QV (modQV) score higher than 30 have been removed
during data processing. Ultimately, 11,173 positive samples and
6,635 negative samples from C. elegans formed the second
benchmark dataset. The reason for choosing above benchmark
data is that two exiting deep learning predictors, 4mcDeep-
CBI (Zeng et al., 2020) and 4mCNLP-Deep (Wahab et al.,

2021), were developed based on this dataset, in addition
to the golden standard dataset obtained from the study of
Chen et al. (2017) All datasets described herein can be freely
downloaded from https://github.com/jingry/autoBioSeqpy/tree/
2.0/examples/DeepDNA4mC/data.

Feature Encoding Methods
In contrast to traditional machine learning methods, the deep
learning algorithms can automatically extract valuable features
from data, which does not require feature engineering. Even
so, the string of nucleotide characters (A, C, G, T) have to be
transformed into a matrix format before being input into the
neural network layer. We considered two commonly proposed
methods for representing DNA sequences based on deep learning
techniques: one-hot and dictionary encoding methods (Zhou
and Troyanskaya, 2015; Veltri et al., 2018). For the one-hot
encoded nucleotides, A, C, G, and T are encoded as [1, 0,
0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1], respectively.
Therefore, each sequence is represented as a N × 4 matrix,
where N is the length of the input DNA sequence. While for
the latter encoding method, the sequence is transformed as an
N-dimensional vector, i.e., where A is encoded as the number 1,
C is encoded as the number 2, G is encoded as the number 3, and
T is encoded as the number 4. In addition, we applied the k-mer
mechanism (k = 2, 3) for both encoding methods to represent
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the input sequences. For instance, a trinucleotide is a k-mer for
which k = 3.

Deep Learning Architectures
Here, we selected three representative deep learning algorithms
constructed with different network architectures, including
a convolutional neural network (CNN); a recurrent neural
network (RNN) with bidirectional long short-term memory
cells (BiLSTM); and a hybrid convolutional-recurrent
neural network (CNN-RNN) (LeCun et al., 2015; Yu et al.,
2020). More details of these network architectures are
described below.

Generally, the ordinary CNN constructure is composed of few
convolutional layers, pooling layers adjected by the convolutional
layer and fully connected layers before final activate layer. In the
convolutional layer, various filters are applied to scan through
input sequences, so that the network can capture short range
correlations from local regions rather than the whole. Several
operations (e.g., max, average, and sum) are used in the pooling
layer to effectively reduce variance and increase translational
invariance from local features extracted from the previous
convolutional layer. The ReLU function and dropout method
are usually adopted to prevent the vanishing gradient problem
and overfitting. For the CNN, the principal network architecture
included convolution with 150 filters of size 5 to transform the
one-hot encoded DNA sequence followed by ReLU and width two
maximum pooling. The flattened pooling output was then passed
to a fully connected layer of 256 hidden nodes with 0.5× dropout,
which finally connected to a sigmoid activation node that outputs
a probability of the input sequence as a 4mC site.

The architecture for RNN mainly consisted of stacked
bidirectional LSTM cells (Bi-LSTM), which can capture long
range sequence dependencies. Bi-LSTM can process sequences
in both directions, forward and backward directions, and thus
often captures the context better. The Bi-LSTM layer with 128
hidden neurons and one layer of depth gave the best performance.
A dropout rate of 0.2 was applied to the Bi-LSTM layer to
prevent overfitting by avoiding co-adaptation between the hidden
neurons. The output layer also contained sigmoid activation
and one neuron representing the probability of the sequence of
interest being a 4mC site.

The CNN-RNN architecture were made up of four types of
layers: a convolutional layer, a pooling layer, a recurrent layer
and a self-attention layer. The sequentially convolutional and
pooling layers were usually constructed at the first step, and
the recurrent and self-attention layers were used in the latter
phase. Using convolution layers before the recurrent layer is a
way for absorbing more information from the neighbor of the
base in the sequence and thus enhance learning ability of the
recurrent layers. In other words, the CNN-RNN architecture
can take the local environment of the base into RNN layers for
learning. More precisely, the architecture first incorporated one
1D convolutional layer with 150 filters of width three along with
a 1D max-pooling layer with size = 2. The output from these
layers was then inputted into a Bi-LSTM layer with 128 neurons.
To help the recurrent layer more attention to specific sequence
patterns, a self-attention layer was adopted in the latter phase,

following the Bi-LSTM layer. Using self-attention layer allows the
model learns more information not limited by the sequential of
the residues, and thus can increase stability of the model. The
dropout rate was 0.2 for different layers. The activation of the
output layer was also a sigmoid function.

Binary cross-entropy loss between the target and predicted
outputs was minimized using Adam optimizer during training.
While training, 10% of the training samples were used as a
validation set for monitoring validation loss. We stopped training
when validation loss had not improved for 20 epochs, and we
took the model parameters that had achieved that minimum
validation loss forward as the final model. We performed a
grid search to exhaustively test hyperparameter combinations
of number of convolution filters (50, 150, 250), convolution
filter lengths (3, 5, 7, 9, 11), pooling sizes (2, 4, 6, 8, 10),
number of neurons in the Bi-LSTM layer (16, 32, 64, 128,
256), dropout probability between all layers (0.2, 0.3, 0.4, 0.5),
mini batches of size (16, 32, 64, 128), and learning rate (0.001,
0.005, 0.01, 0.05, 0.1). Best performance was achieved with a
learning rate of 0.01; batch size of 64, and other hyperparameter
combinations were shown in the following section. The numbers
of the parameters in the models depends on the used structures
and the number of channels. For example, the convolution
layer with 128 channels and 9 kernel length contains about
300,000 trainable parameters, and a Bi-LSTM layer with 128 input
size and 256 hidden size contains about 240,000 parameters.
Therefore, the final model which contains both CNN and Bi-
LSTM layers contains more than 540,000 parameters in this
work. We randomly divided the sequences contained in each
class of our dataset into a training set and a test set, with
the training set containing about 80% of the samples and the
test set 20%. For each architecture, we repeated the dataset
division and the training procedure 10 times and obtained
10 trained models. The average of their outputs was used
as the predicted output. In addition, 10-fold nested cross-
validation was employed to train the all models using onefold
for testing, and the nine remaining folds for training. All code
was written in Python 3.7 and all neural network development
was done using the autoBioSeqpy software (Jing et al., 2020)
with the Tensorflow GPU backend to enable parallel calculation
of gradient. For general user applications, the CPU backend
is also sufficient. The computing environment for this work
is a CentOS workstation with a Xeon E5-2620 CPU and
an RTX 2080Ti GPU.

Evaluation, Interpretation, and
Visualization
To quantitatively evaluate the class-wise prediction quality,
we calculate the recall (Sensitivity), precision (PRE), accuracy
(ACC), F-value, and Matthew’s correlation coefficient (MCC)
as comparison metrics, which are defined in Supplementary
Table 3. Several of these metrics can also be compared
visually to capture the tradeoff between true-positive rate
(sensitivity) and false-positive rate (1—specificity) using the
receiver operating characteristic (ROC) curves or precision-
recall (PR) curves (Rifaioglu et al., 2019). These visual metrics

Frontiers in Microbiology | www.frontiersin.org 5 March 2022 | Volume 13 | Article 843425

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-843425 March 24, 2022 Time: 9:51 # 6

Yu et al. DNA 4mC Identification by DL

can also be used to measure classification and prediction
performance using a single value, such as the area under the
ROC or PR curve.

To help understand what sequence features were learned and
make the “black box” deep learning model more transparent, we
generated attention weights heat maps to highlight the hidden
neurons that most contribute to the predicted classes from the
output for the recurrent layers. For each hidden neuron, the self-
attention layer is calculated to compare with other vectors in the
sequence and obtain the attention weights of the neuron to adjust
the values. The following equation shows the additive attention
mechanism:

v = softmax
(
tanh

(
X ·Wq + X ·Wk + εbh

)
·Wa + εab

)
· X (1)

Where the ‘Wq,’ ‘Wk,’ and ‘Wa’ are weights which could be
updated during the epochs, ‘εbh’ and ‘εab’ are two bias vectors.
As a brief description, the attention layer can calculate the
similarity between vectors and modify the weights according
to the similarity.

To understand the evolution of the data in each hidden
layer of the model, we visualized the sample representations of
network architecture in two dimensions. We used the output of
a certain hidden layer as the extracted output features, which
were then projected into a 2D manifold via uniform manifold
approximation and projection (UMAP) (McInnes et al., 2020)
with parameter values: n_neighbors:15, min-dist: 0.1. Next, we
used a two-color scheme to refer to 4mC loci/locus (red) and
non-4mC loci/locus (purple).

To measure input feature importance for predicting 4mC
sites, the Deep SHAP method was used. We extracted one-hot
encoding features and trained the deep learning models with
their best hyperparameter configurations determined from the
optimization strategy as described above. In the Deep SHAP
method, a per-sample importance score (SHAP value) is assigned
to each feature value in the one-hot matrix from the trained deep
learning models. The SHAP value is computed based on the game
theory:

φi
(
f , x

)
=

∑
S⊆Sall/{i}

|S| ! (M− |S| −1) !
M!

[
fx (S ∪ {i})−fx (S)

]

=

∑
S⊆Sall/{i}

1

C|S|M (M− |S|)

[
fx (S ∪ {i})−fx (S)

]
(2)

WhereM is the number of features, S is a subset of the features,
f is the model, Sall/ {i} is all the possible subset exclude feature i,
and fx is the conditional expectation function. With the SHAP
values, a model can be represented as a linear combination of the
SHAP values:

f (x) = φ0
(
f
)
+

M∑
i = 1

φi
(
f , x

)
(3)

Where φ0
(
f
)
= fx (∅). We finally show SHAP value

distributions for the entire dataset using the average absolute
value to give an overview of feature importance in the deep
learning models. The SHAP values consists an importance matrix
whose shape is similar with the position frequency matrix, but
SHAP values scoring the contribution of the inputs instead of
recording the frequency. If the predicting performance of the
built model is satisfactory, the observed patterns from SHAP
values will contain potential value for further exploring.

RESULTS AND DISCUSSION

We evaluated the performance of different deep learning methods
on two standard datasets (Zeng_2020_1 and Zeng_2020_2).
Details of datasets are provided in section “Materials and
Methods.” Briefly, these datasets cover three representative
model organisms that include A. thaliana, C. elegans, and
D. melanogaster. In addition, both datasets considered balance
and unbalanced sample designs. In each dataset, we investigated
the effect of two different feature encoding methods (one-hot
and dictionary encodings) and three different deep learning
architectures (CNN, RNN, and CNN-RNN), as well as a variety
of hyperparameters (filter numbers, kernel and pooling sizes, and
so on) on the prediction of 4mC sites. In particular, we presented
several innovative approaches to visualize and understand the
deep learning models. We seek to characterize the model’s
black box behavior, with trying to elucidate its inner working
mechanism and shed light on its internal representations. We
focus on interpreting the inputs and outputs of the model and
explaining its predictions.

Performance Assessment on the
Zeng_2020_1 Dataset
Choosing the Number of Filters, Kernel and Pool
Sizes in Convolutional Neural Networks and
Convolutional-Recurrent Neural Networks for
Caenorhabditis elegans
We proposed the first benchmark to assess the performance
of two deep learning architectures, systematically varying their
tunable hyperparameters on a grid of values, on the C. elegans
dataset with known C4-methylcytosine (4mC) identity. We ran
a total of 260 experiments to assess the influence of parameter
changes on the performance of each architecture. Specifically,
for each convolutional layer, we varied the number of filters to
be either 50, 150, or 250, and we varied the widths of filters
to be either 3, 5, 7, 9, or 11. The benchmark results based on
the five comparison metrics were summarized in Table 2. It
is clear that the best prediction results were obtained for both
architectures when the number of filters was set to 150. Here,
the CNN obtained the highest scores of ACC (88.5%), F-value
(88.6%), PRE (87.7%), and MCC (0.770) using 150 filters, and
the CNN-RNN also obtained the best values for the four metrics
(88.7, 88.9, 87.8, and 0.775) using the same filters. For the kernel
size, the CNN obtained the best results when the kernel size was
set to 7. As the kernel size increased, theMCC value first increased
and then decreased, reaching a peak at width 7. While the best
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TABLE 2 | Hyperparameter optimization of CNN and CNN-RNN architectures on the C. elegans dataset.

#Dim Architecture ACC (%) F-value (%) Recall (%) PRE (%) MCC

Filter number

50 88.4 88.6 90.3 87.4 0.770

150 CNN 88.5 88.6 89.6 87.7 0.770

250 87.9 88.1 89.3 86.9 0.759

50 88.3 88.5 90.5 86.6 0.766

150 CNN-RNN 88.7 88.9 90.0 87.8 0.775

250 88.4 88.5 89.4 87.6 0.767

Kernel size

3 87.9 88.1 89.2 87.0 0.759

5 88.5 88.6 89.6 87.7 0.770

7 CNN 88.5 88.5 89.2 87.9 0.771

9 88.1 88.3 89.2 87.4 0.763

11 87.8 88.1 89.7 86.5 0.757

3 89.0 89.4 92.6 86.5 0.783

5 88.7 88.9 90.0 87.8 0.775

7 CNN-RNN 88.2 88.5 90.9 86.2 0.765

9 88.1 88.3 89.6 87.1 0.764

11 87.7 87.9 89.6 86.3 0.754

Pooling size

2 88.5 88.6 89.6 87.7 0.770

4 87.6 87.7 88.5 86.9 0.752

6 CNN 86.6 86.6 86.7 87.0 0.732

8 84.8 85.0 85.9 84.0 0.696

10 81.5 81.7 82.5 81.1 0.631

2 88.7 88.9 90.0 87.8 0.775

4 88.7 87.5 87.6 87.5 0.751

6 CNN-RNN 86.6 86.8 88.0 85.7 0.733

8 78.0 78.0 77.0 79.1 0.560

10 76.7 76.5 76.3 76.9 0.534

The bold values highlight the best parameters of the deep learning methods such as CNN and RNN.

performance of CNN-RNN was achieved when the kernel size
was 3, its ACC and MCC values decreased as the kernel size
increased. After the best performing filter number and kernel
size were determined, we found that both architectures achieved
their best performance with width two maximum pooling. For
example, with pooling size of 2, the MCC of CNN and CNN-
RNN were 0.770 and 0.775, respectively. It is worth noting that
the overall prediction performance of CNN-RNN architecture
outperforms that of the CNN for all three hyperparameters.

Choosing the Long Short-Term Memory Cells Size in
Recurrent Neural Networks and
Convolutional-Recurrent Neural Networks for
Caenorhabditis elegans
As one of the most important parameters of the recurrent neural
network (Zhang et al., 2020), the performance of LSTM size
(also known as the number of hidden cells) in RNN and CNN-
RNN architectures was also assessed by the same C. elegans
dataset. In this process, we varied the number of hidden cells
from 16, 32, 64, 128, to 256 to examine their influence on the
prediction performance (Table 3). Clearly, the best performance
of the RNN and CNN-RNN architectures was obtained using

128 hidden cells. The RNN achieved an average ACC, F-value,
Recall, and MCC of 89.3, 89.7, 93.1, and 0.788%, respectively,
which were slightly higher than those of CNN-RNN (89.0, 89.4,
92.6, and 0.783%). Furthermore, the ACC and MCC values of
RNN were found to increase with the increasing LSTM size,
with the highest values being recorded at 128 hidden cells,
however, the performance of the CNN-RNN did not show
significant change.

Performance Comparison of Different
Deep Learning Architectures
We benchmarked the performance of three different deep
learning models (CNN, RNN, and CNN-RNN) across three
representative model organisms: A. thaliana, C. elegans, and
D. melanogaster for intra-dataset evaluation. As a benchmark,
we optimized hyperparameters for each model, then the top-
performing tuned models were evaluated for a fair comparison.
A summary of the experimental results is provided in Table 4.
CNN, the most commonly used deep learning architecture
for the 4mC prediction, performed worse performance for
all three species, achieving an overall MCC of 0.673, 0.782,
and 0.720 for A. thaliana, C. elegans, and D. melanogaster,
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TABLE 3 | LSTM sizes optimization of RNN and CNN-RNN architectures on the C. elegans dataset.

#Dim Architecture ACC (%) F-value (%) Recall (%) PRE (%) MCC

16 80.1 80.1 80.1 80.3 0.604

32 85.1 84.8 83.9 86.2 0.705

64 RNN 88.1 87.9 87.0 89.0 0.762

128 89.3 89.7 93.1 86.5 0.788

256 88.9 88.9 88.8 89.0 0.778

16 87.8 88.3 91.8 85.1 0.760

32 88.9 88.8 88.5 89.3 0.778

64 CNN-RNN 88.8 88.9 89.5 88.3 0.777

128 89.0 89.4 92.6 86.5 0.783

256 88.9 88.9 89.5 88.4 0.778

The bold values highlight the best parameters of the deep learning methods such as CNN and RNN.

TABLE 4 | Performance comparison of different deep learning models on the A. thaliana, C. elegans, and D. melanogaster datasets.

Model ACC (%) F-value (%) Recall (%) PRE (%) MCC

A. thaliana

CNN 83.6 83.7 84.2 83.3 0.673

RNN 85.0 85.1 86.6 83.7 0.701

CNN-RNN 83.9 84.3 86.1 83.9 0.678

C. elegans

CNN 89.1 89.3 90.8 87.8 0.782

RNN 89.3 89.7 93.1 86.5 0.788

CNN-RNN 89.0 89.4 92.3 86.5 0.783

D. melanogaster

CNN 86.0 86.1 87.2 85.1 0.720

RNN 85.9 85.8 87.1 84.8 0.720

CNN-RNN 86.8 87.0 88.7 85.3 0.736

The bold values highlight the best methods of the species (i.e., A. thaliana, C. elegans, and D. melanogaster).

respectively. The CNN-RNN provided the highest MCC score
for D. melanogaster (0.736) and the second highest MCC
scores (0.678 and 0.783) for A. thaliana and C. elegans,
respectively. The RNN achieved the best performance for
A. thaliana and C. elegans, with MCC scores of 0.701 and
0.788, respectively.

Incorporating the Self-Attention
Mechanism Improves Model
Performance
In the RNN or CNN-RNN models, relatively important features
can be effectively captured by introducing a self-attention
mechanism. This remarkably complex mechanism has been
widely used for classification tasks in various fields (Hu et al.,
2019; Liang et al., 2021; Tian et al., 2021), including the
prediction of 4mC sites (Zeng and Liao, 2020; Liu et al.,
2021; Xu et al., 2021; Zeng et al., 2021). To test whether
the attention mechanism improves the predictive performance,
we implemented the self-attention layer in different network
architectures of RNN and CNN-RNN. We found that the
CNN-RNN architecture with the attention mechanism (CNN-
RNN_attention) achieved the best prediction performance
for C. elegans and D. melanogaster, showing ACC scores

of 89.4 and 87.4%, PRE scores of 88.6 and 86.0%, and
MCC scores of 0.789 and 0.749, respectively (Table 5). The
classification performance increased from CNN-RNN to CNN-
RNN_attention from 89.0% accuracy to 89.4% accuracy for
C. elegans, and from 86.8% accuracy to 87.4% accuracy for
D. melanogaster. The accuracy remained almost unchanged
for A. thaliana. These results suggest that incorporating
self-attention mechanism into these models may improve
performance of 4mC site prediction. In summary, we chose
the CNN-RNN architecture with the attention mechanism
as the final model to develop a new deep learning method
called DeepDNA4mC, and further compared it with other
exiting methods.

Performance Comparison of Different
Encoding Methods for
Convolutional-Recurrent Neural
Network_Attention Model
To investigate the effect of different encoding methods on
model performance, we trained CNN-RNN_attention model
on the three representative model organisms. The five metrics
representing performance are summarized in Table 6. As
expected, the 1-mer_onehot outperformed other encoding
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TABLE 5 | Performance comparison of RNN and CNN-RNN architectures with or without the attention mechanism.

Species Models ACC (%) F-value (%) Recall (%) PRE (%) MCC

A. thaliana RNN 85.0 85.1 86.6 83.7 0.701

RNN_Attention 84.6 85.1 87.1 93.2 0.692

CNN-RNN 83.9 84.3 86.1 83.9 0.678

CNN-RNN_Attention 83.9 83.8 84.0 83.7 0.678

C. elegans RNN 89.3 89.7 93.1 86.5 0.788

RNN_Attention 89.3 89.5 91.4 87.6 0.788

CNN-RNN 89.0 89.4 92.3 86.5 0.783

CNN-RNN_Attention 89.4 89.4 90.3 88.6 0.789

D. melanogaster RNN 85.9 85.8 87.1 84.8 0.720

RNN_Attention 87.0 87.4 89.6 85.3 0.742

CNN-RNN 86.8 87.0 88.7 85.3 0.736

CNN-RNN_Attention 87.4 87.7 89.6 86.0 0.749

The bold values highlight the best methods of the species (i.e., A. thaliana, C. elegans, and D. melanogaster).

TABLE 6 | Performance comparison of the CNN-RNN_attention model with different encoding methods.

Species coding ACC (%) F-value (%) Recall (%) PRE (%) MCC

A. thaliana 1-mer_onehot 83.9 83.8 84.0 83.7 0.678

2-mer_onehot 83.3 83.5 84.8 82.5 0.668

3-mer_onehot 81.9 82.0 82.9 81.3 0.639

1-mer_dict 83.8 84.1 85.5 82.8 0.678

2-mer_dict 83.4 83.7 85.3 82.3 0.670

3-mer_dict 82.9 83.0 82.5 83.5 0.660

C. elegans 1-mer_onehot 89.4 89.4 90.3 88.6 0.789

2-mer_onehot 88.8 89.0 90.5 87.6 0.777

3-mer_onehot 87.9 87.9 88.3 87.5 0.757

1-mer_dict 88.5 88.7 90.6 87 0.772

2-mer_dict 88.3 88.4 89.7 87.2 0.766

3-mer_dict 88.0 88.1 88.6 87.8 0.761

D. melanogaster 1-mer_onehot 87.4 87.7 89.6 86.0 0.749

2-mer_onehot 86.3 86.3 86.8 85.9 0.727

3-mer_onehot 84.6 84.7 85.0 84.5 0.694

1-mer_dict 86.6 86.8 87.6 86.2 0.734

2-mer_dict 86.7 86.8 87.2 86.4 0.734

3-mer_dict 86.1 86.3 87.7 85.1 0.722

The bold values highlight the best methods of the species (i.e., A. thaliana, C. elegans, and D. melanogaster).

methods in terms of accuracy and MCC. That is, the average
accuracy and MCC values obtained from applying this method
were (83.9%, 0.678) for A. thaliana, (89.4%, 0.789) for C. elegans,
and (87.4% and 0.749) for D. melanogaster, respectively. In
addition, we found that the performance of the model gradually
decreased as the K-value increased, regardless of the encoding
method used. The downward trend was more obvious for one-
hot encoding, with AAC and MCC values decreasing from
1 to 3-mer by 2.0% and 0.039 for A. thaliana, 1.5% and
0.032 for C. elegans, and 2.8% and 0.055 for D. melanogaster,
respectively. A more moderate downward trend was observed for
the dictionary encoding, with just decreasing by 0.9% and 0.018
for A. thaliana, 0.5% and 0.011 for C. elegans, and 0.5% and 0.012
for D. melanogaster.

Comparison of DeepDNA4mC With Other
State-of-the-Art Methods
To further evaluate the performance of our developed CNN-
RNN_attention model with one-hot encoding (DeepDNA4mC),
we compared it with other five state-of-the-art methods,
including iDNA4mc (Chen et al., 2017), 4mcPred (He et al.,
2019), 4mcPred_SVM (Wei et al., 2019a), 4mcPred_IFL (Wei
et al., 2019b), and Deep4mcPred (Zeng and Liao, 2020). The
five methods used the same standard dataset (Zeng_2020_1
dataset) and 10-fold cross-validation for evaluation, which makes
the comparison possible. We evaluated ACC, Recall (also called
Sensitivity), and MCC for each method, and their results are
shown in Table 7. It is noteworthy that all results of the
five state-of-the-art methods come directly from the study
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TABLE 7 | Performance comparison of DeepDNA4mC and other five
exiting predictors.

Species Predictors ACC (%) Recall (%) MCC

A. thaliana iDNA4mc 76.1 76.6 0.520

4mcPred 76.8 75.5 0.536

4mcPred_SVM 78.7 77.8 0.573

4mcPred_IFL 82.2 80.3 0.644

Deep4mcPred 84.4 86.0 0.689

DeepDNA4mC 83.9 84.0 0.678

C. elegans iDNA4mc 78.0 79.0 0.560

4mcPred 82.6 82.5 0.652

4mcPred_SVM 81.5 82.4 0.631

4mcPred_IFL 88.0 89.0 0.761

Deep4mcPred 89.3 91.5 0.787

DeepDNA4mC 89.4 90.3 0.789

D. melanogaster iDNA4mc 81.2 83.3 0.620

4mcPred 82.2 82.4 0.646

4mcPred_SVM 83.0 83.8 0.661

4mcPred_IFL 87.3 86.5 0.745

Deep4mcPred 87.1 87.6 0.742

DeepDNA4mC 87.4 89.6 0.749

The bold values highlight the best methods of the species (i.e., A. thaliana, C.
elegans, and D. melanogaster).

of Zeng and Liao (2020). Clearly, DeepDNA4mC had the best
overall performance for C. elegans and D. melanogaster, and the
second-best overall performance for A. thaliana. DeepDNA4mC
was capable of accurately predicting 4mC sites with average MCC
of 0.678, 0.789, and 0.749, respectively. We found that deep
learning-based predictors, DeepDNA4mC and Deep4mcPred,
both obtained satisfactory results, indicating the great potential
of deep learning in DNA 4mC site prediction.

Evaluation, Interpretation and
Visualization of the DeepDNA4mC
We finally evaluate the global performance of DeepDNA4mC
with receiver operating characteristic (ROC) and precision-
recall (PR) curves. These curves are typical of an accurate
classifier, and we calculated the area under these curves
(AUC) based on the trapezoidal rule. When employing the
DeepDNA4mC on the Zeng_2020_1 dataset, the performance
of our method showed promising results for the three
species (Figure 2). The average AUC values of the ROC
curves ranged from 0.920 to 0.953, and the PR curves
from 0.916 to 0.946.

To investigate the ability of DeepDNA4mC to distinguish
methylated and non-methylated sites, we analyzed features
extracted from different network layers of the classification
model and further compressed the extracted features to
a 2D space using a uniform manifold approximation and
projection (UMAP). UMAP is a non-linear dimensionality
reduction method that maps similar input vector to close
points in the reduced space and keeps the distance between
clusters from the original, higher-dimensional space. First, the
internal representation learned in the last fully connected layer

clearly separated the positive and negative samples into two
distinct clusters (Figure 3). The positive samples were mainly
clustered on the left, in contrast to the negative samples,
which were clustered on the right. Second, the inter-layer
evolution can reflect the changes in internal representation
as the observations “flow through” the layers of the network.
For example, the representations of sample become more
and more discriminative along the layer hierarchy, with
them mixed in the input layer, culminating with a clear
separation in the last fully connected layer. The deeper the
layer level, the better the separation, as observed in Figure 3.
Third, we could employ the same idea to visualize inter-
filter evolution in the convolutional and pooling layers. In
this case, we can observe which filter can extract the most
effective features from the input sequences, e.g., the filter
150 separated all samples into distinct clusters more clearly
than the other three filters. Using UMAP can make the
visualization possible since the features have been projected
into 2D space by the manifold learning methods. However,
the exact learned features from these filters have multiple-
dimension, which cannot be plotted in to a 2D-plot. Thus,
in this work, the UMAP visualization was only used for
demonstrating the separation of samples from the hidden layers.
The UMAP visualization of the last hidden layer representations
of other deep learning models (CNN and RNN) is shown in
Supplementary Figure 1.

As shown in Table 5, adding the self-attention layer after
the BiLSTM layer of the CNN-RNN architecture can further
improve the performance of the model. Furthermore, the heat
map of attention values and sample classes can visualize the
importance of each hidden neurons in the BiLSTM layer of
different deep learning architectures for classification (Figure 4
and Supplementary Figure 2).

To evaluate each of the four nucleotides at every position of
input sequence associated with 4mC site identification in a more
systematic manner, we performed Deep SHAP (SHapley Additive
exPlanations merged into deep learning algorithms) using 32,000
training sequences with the one-hot encoding. When high
SHAP values were linked with 4mC and non-4mC sites, then
the corresponding nucleotides were classified as favored and
disfavored features, respectively. The most important feature
(the highest SHAP value) at each position of input sequence
was displayed in a sequence logo representation (Figure 5).
We observed that the central and downstream regions [(−2
bp, +6 bp)] played the most important role in predicting 4mC
across different species; however, three different patterns of DNA
motifs were revealed within these regions, indicating a diversity
of 4mC cis-regulatory patterns. The most important features of
DeepDNA4mC (CNN-RNN_attention) for each specie were as
follows: for A. thaliana, CGAAC, [position: (−2 bp, +3 bp, +4 bp,
+5 bp, +6 bp), SHAP values: (0.275, 0.139, 0.105, 0.042, 0.062)];
for C. elegans, ATTAT, [position: (+1 bp, +2 bp, +3 bp, +4 bp,
+5 bp), SHAP values: (0.034, 0.084, 0.085, 0.137, 0.085)]; for
D. melanogaster, GGGT, [position: (−1 bp, +1 bp, +2 bp, + 3bp),
SHAP values: (0.113, 0.172, 0.177, 0.036)].

We also noticed that even though different deep learning
models exhibited different SHAP distributions, the same
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FIGURE 2 | ROC and PR curves of the DeepDNA4mC method for A. thaliana, C. elegans, and D. melanogaster, respectively.

important features were identified by all models, for example, the
CGAAC of A. thaliana, as shown in Figure 5.

Performance Assessment on the
Zeng_2020_2 Dataset
Like the previous benchmark, for each deep learning architecture,
the hyperparameters were tuned on the validation data
and reported performance was evaluated on the held-
out test set. As shown in Supplementary Table 4, unlike
the benchmark results for the Zeng_2020_1 dataset, we
found that the CNN achieved the best performance for
C. elegans in the Zeng_2020_2 dataset. With the optimal
hyperparameters, the CNN achieved an average ACC of
91.6% and an average MCC of 0.821. Its performance
was followed by the CNN-RNN (90.5% and 0.796) and
RNN (88.1% and 0.746). We also employed the attention
mechanism in the CNN-RNN and RNN architectures to further
improve their prediction performance. Our experimental
results showed that applying attention mechanism via
adding self-attention layer led to an improvement for
predicting 4mC sites over the results without applying
attention mechanism (Supplementary Table 5). The test
MCC increased from 0.746 to 0.783 and 0.796 to 0.808 for
RNN and CNN-RNN models, respectively. However, the

improved performance was still slightly weaker than that
of the CNN model. In addition to one-hot encoding, we
finally assessed whether other encoding methods improved
the performance the CNN model in the 4mC prediction
task. Consistent with previous results, 1-mer_onehot again
achieved the best performance and other methods did not
improve the performance of CNN on the Zeng_2020_2 dataset
(Supplementary Table 6).

CONCLUSION

DNA chemical modifications can influence biological function.
In prokaryotic and eukaryotic genomes, methylation of DNA
base yields several modification types: C5-methylcytosine (5mC),
N6-methyladenine (6mA), and N4-methylcytosine (4mC). These
marks play a role in gene regulation, imprinting, aging and
disease. Compared to the studies on 5mC and 6mA, the
4mC has received more attention for its many important
and unknown biological functions. Inferring the methylation
status of individual N4-cytosine in a genome is the first
task to elucidate the regulatory mechanisms of 4mC and
benefit the in-depth exploration of its functional effects.
Several methods can detect N4-methylcytosine, and among
these methods, deep learning has been at the forefront
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FIGURE 3 | UMAP visualization of inter-layer evolution in the DeepDNA4mC for the D. melanogaster. Here we show the model’s internal representation of 4mC and
non-4mC classes by applying layerUMAP [38], a tool for visualizing and analyzing deep learning models, to five layer representations in the DeepDNA4mC. Colored
point clouds represent the different sample categories, showing how the inter-layer clusters the samples.

of 4mC identification in recent years, thus becoming the
focus of this study. So far, at least 11 deep learning-
based methods have been developed to predict potential
DNA 4mC sites from sequence at single-nucleotide resolution
(Table 1). We hope the summary of these state-of-the-
art methods, the detailed strategy descriptions, and the
recommendations and guidelines for choosing training datasets,
deep learning architectures, encoding and validation methods,

and web servers can assist researchers in the development of
their own models.

We have proposed a set of methodologies based on deep
learning techniques to develop better predictors. In two
benchmark studies, we have primarily focused on three types
of deep learning architectures: convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and convolutional-
recurrent neural networks (CNN-RNNs). We have systematically
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FIGURE 4 | The heat maps show the importance of hidden neurons in the BiLSTM layer of DeepDNA4mC on the classification of 4mC and non-4mC sites.

FIGURE 5 | The most important features at each position of input sequence associated with N4-methylcytosine (4mC) determined by Deep SHAP (deep learning
models). On the summary sequence logo plot, the position of the nucleotide on the x-axis shows its SHAP value. Positive and negative SHAP values are linked with
methylation and non-methylation, respectively. The height of the logo indicates the SHAP value of the relevant nucleotide for that particular input sequence.
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analyzed several important factors, such as model architecture
and its hyperparameters (the number of filters, kernel, pooling,
and BiLSTM sizes, etc.), encoding methods and attention
mechanisms, in order to assess their contribution to 4mC
prediction. In our analysis, we observed large differences in the
performance among the methods in response to changing above
factors. In addition, incorporating the attention mechanisms
in the RNN and CNN-RNN architectures improved the
performance. Based the first benchmark result, we recommend
the use of the hybrid CNN-RNN_attention model (with one-
hot encoding) since it had a better performance compared to
the other models or methods tested across three representative
model organisms. The proposed CNN-RNN_attention model
(DeepDNA4mC) can identify 4mC sites at single-nucleotide
resolution with high accuracy and reliability. For the second
benchmark dataset, the CNN stood out among the three
deep learning architectures and performed best in terms of
the standard metrics of accuracy and MCC score. The CNN-
RNN_attention performed slightly worse than CNN, which
suggests that there is no single winner among the three
algorithms. Taken together, researchers should design suitable
models or methods for specific 4mC data, and choose the right
deep learning architecture with the right encoding method to
develop better predictors.

We have also introduced several novel visualization
techniques in an attempt to better analyze and understand
deep learning models. First, we have shown that the UMAP
can be used to visualize the relationships between learned
representations of 4mC and non-4mC samples. Through
experiments conducted in the D. melanogaster dataset, we have
shown how to visually track inter-layer and inter-filter evolution
of learned representations. The UMAP can give insight into the
function of intermediate feature layers and provide valuable
visual feed-back for network designers. We next attempted
to identify sequence features associated with 4mC sites using
the Deep SHAP method. The most important features of each
position of input sequence were visualized by a sequence logo

plot. Deep SHAP can uncover a few interesting regulatory
patterns that cannot be detected by conventional motif analysis.
These new motif patterns based on SHAP values are worthy of
further investigation in epigenetics.
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