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Abstract

Background: Protein-protein interactions play a key role in biological processes of proteins within a cell. Recent
high-throughput techniques have generated protein-protein interaction data in a genome-scale. A wide range of
computational approaches have been applied to interactome network analysis for uncovering functional
organizations and pathways. However, they have been challenged because ofcomplex connectivity. It has been
investigated that protein interaction networks are typically characterized by intrinsic topological features: high
modularity and hub-oriented structure. Elucidating the structural roles of modules and hubs is a critical step in
complex interactome network analysis.

Results: We propose a novel approach to convert the complex structure of an interactome network into
hierarchical ordering of proteins. This algorithm measures functional similarity between proteins based on the path
strength model, and reveals a hub-oriented tree structure hidden in the complex network. We score hub
confidence and identify functional modules in the tree structure of proteins, retrieved by our algorithm. Our
experimental results in the yeast protein interactome network demonstrate that the selected hubs are essential
proteins for performing functions. In network topology, they have a role in bridging different functional modules.
Furthermore, our approach has high accuracy in identifying functional modules hierarchically distributed.

Conclusions: Decomposing, converting, and synthesizing complex interaction networks are fundamental tasks for
modeling their structural behaviors. In this study, we systematically analyzed complex interactome network
structures for retrievingfunctional information. Unlike previous hierarchical clustering methods, this approach
dynamically explores the hierarchical structure of proteins in a global view. It is well-applicable to the interactome
networks in high-level organisms because of its efficiency and scalability.

Background
Recent high-throughput experimental techniques, such
as yeast two-hybrid system [1] and mass spectrometry
[2], have made remarkable advances in identifying pro-
tein-protein interactions on a genome-wide scale. Since
the evidence of protein-protein interactions provides
insights into the underlying mechanisms of biological
processes within a cell, the availability of a large amount
interaction data has introduced a new paradigm towards
functional characterization of proteins on a system level.

A protein interactome network is structured by the set
of genome-wide protein-protein interactions determined
in each organism. A wide range of computational
approaches [3-6] have attempted to analyze the interac-
tion networks effectively for the purpose of predicting
protein function or detecting functional modules. How-
ever, unraveling the complex connectivity has been a
critical challenge. The false positive interactions, which
typically appear in high-throughput experimental data,
and functionally inconsistent interacting pairs [7] have
reinforced the complexity. Thus, refining the noisy
data and restructuring the complex network into a* Correspondence: young-rae_cho@baylor.edu
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well-organized data format should be crucial pre-pro-
cesses to enhance the network analysis.
In recent years, it has been investigated that protein

interaction networks are characterized by intrinsic fea-
tures [8], such as high modularity and hub-oriented
structure. A network comprises a collection of func-
tional modules that are interpreted as sets of proteins
participating in the same function [9]. In general, a
module is considered as a sub-graph whose nodes are
densely connected with each other and sparsely con-
nected with the others. Density-based clustering
methods have been proposed to seek densely connected
sub-graphs using various density functions [10-13].
However, they are not able to capture the global pat-
terns of functional organizations from protein interac-
tion networks. Functional modules are typically
organized in a recursive manner such that a module
includes one or more sub-modules having more specific
functions. Hierarchical clustering methods have thus
been applied to the networks for finding functional
organizations[14-17]. The bottom-up approaches itera-
tively merge nodes or sub-networks, whereas the top-
down approaches recursively divide the network into
sub-networks. However, as a critical drawback, they are
typically sensitive to complex connectivity and noisy
data.
Hubs in a scale-free network [8] play a central role in

characterizing its structure. Intramodule hubs (‘party’
hubs) have high connectivity to the members in a module,
and intermodule hubs (‘date’ hubs) bridge different mod-
ules [18]. Previous studies have observed that such hubs in
protein interaction networks are essential in terms of func-
tionality [19-22] and, in particular, intramodule hubs have
low evolutionary rates [23,24]. The concepts of modules
and hubs, extending from specific (local) to general (glo-
bal), suggest the potential structure of a hierarchy that
might be hidden in complex interaction networks. How
can we then effectively extract the hierarchical structure of
proteins from the complex network to reveal the global
picture of functional organizations?
In this study, we present a novel method for restruc-

turing a complex interactome network into a hierarchi-
cal data format in order to reveal functional hubs and
organizations. Our algorithm uses a weighted interaction
network as an input. Because the network includes a
significant number of false positive connections, the
reliability or intensity of interactions should be assessed
and assigned into the edges as weights. For network
restructuring, we design a path strength model which
proposes the quantification of functional similarity
between two proteins. The interactome network having
complex connectivity is then dynamically converted
into a hub-oriented tree structure by the definition of
path-strength-based centrality. From the hierarchical

structure, we score hub confidence for each node, and
generate hierarchically organized clusters of proteins.
Unlike degree as a local significance measure, the hub
confidence estimates the global significance of nodes. It
is thus capable of selecting hubs that are located in criti-
cal positions of the network. The experimental results
demonstrate that the hubs with high confidence are
essential for performing functions. In network topology,
they mostly bridge different functional modules.
Furthermore, our approach has higher accuracy in iden-
tifying functional modules than other hierarchical clus-
tering methods.

Methods
Path strength model
The path strength S of a path p is defined as the pro-
duct of the weighted probabilities that each node on p
chooses its succeeding node. The weighted probability
from a node vi to vj is the ratio of the weight between vi
and vj to the sum of the weights between vi and its
directly connected neighbors.
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where p =〈v0, v1 …, vn〉wi(i+1) denotes the weight of the
edge between vi and v(i+1), which is normalized into the
range between 0 and 1. dwt(vi) represents the shape para-
meter that indicates the weighted degree of the node vi.
The weighted degree of vi is the sum of the edge weights
between vi and its neighbors. l is the scale parameter
which depends on the specific type, structure and proper-
ties of the input network. To make the problem simple,
the scale parameter will be set by 1. Based on the
assumption that the shape parameter does not force the
starting and ending nodes of p, Formula 1 then becomes:
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The path strength of a path p thus has a positive rela-
tionship with the weights of the edges on p, and a nega-
tive relationship with the weighted degrees of the nodes
on p. Formula 2 also implies that the path strength has
an inverse relationship with the length of p because the
weighted probability, wi(i=1)/d

wt(vi), is in the range
between 0 and 1, inclusive. As the length of p increases,
the product of the weighted probability decreases mono-
tonically. In the same manner, as the average degree of
the nodes on p increases, the path strength of p is likely
to decrease.
Next, we formulate the functional similarity measure-

ment between proteins based on the path strength
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model. The functional similarity F between two pro-
teins a and b in an interactome network is described as
the maximum path strength between them.

 a b S v v
v a v b

i j
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Since any node pair selected in a small world network
[25] are directly or indirectly connected with a relatively
small path length, the maximum path length between
them is typically limited. However, Formula 3 still has a
computational problem when it enumerates all possible
paths between a and b. To solve the computational com-
plexity, we restrict the maximal boundary of path length.
We define the k-length path strength Sk as the maxi-

mum strength of all distinct paths with length k
between a and b.
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Using a user-specified threshold θ to set the maximal
boundary of k, the functional similarity F between a
and b is calculated by the maximum k-length path
strength.

 a b S a b
k

k, max , ,     (5)

where l ≤ k ≤ l + θ and l is the shortest path length
between a and b. Based on the assumption that edge
weights represent the likelihood of functional linkage of
interacting protein pairs, Formula 5 measures the potential
of functional association between two proteins, directly or
indirectly connected in a protein interactome network.

Network restructuring
Based on the path strength model and functional simi-
larity measurement, we calculate the centrality for each
node. The centrality C of a node a in a network G(V, E)
is defined as the sum of the functional similarity scores
between a and the other nodes in V.

C a a b
b V

    

 , . (6)

Formula 6 captures not only the nodes centrally
located in the network but also the core proteins that
functionally have a strong influence on the others. Our
strategy for the network restructuring is to place the
nodes with higher centrality on the upper level in a
hierarchical tree structure. We define the set of ancestor
nodes T of a node a as the nodes whose centrality is
greater than the centrality of a.

T a b C b C a        | . (7)

Among the nodes in T(a), the node that are function-
ally the most similar with a becomes the parent node
p(a) of a.
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Selecting a parent node for each node by Formula 8
then efficiently constructs a hierarchical tree structure.
The node having the highest centrality among all the
nodes in the network has no parent and becomes the
root node. This hierarchical structure is dynamically
converted on network growth, depending on the distri-
bution of the path-strength-based centrality of nodes.

Identifying hubs and clustering proteins
We apply the tree structure of a protein interaction net-
work to identify hub proteins. For each node a, we
obtain the set of child nodes D(a) of a.

D a b p b a      | . (9)

We then recursively trace down the tree structure
starting from a and combine every child node set to
produce a set of all descendant nodes La of a
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Using this Formula for all nodes except leaf nodes, we
finally generate the list of descendant sets. According to
connectivity patterns, hubs have been categorized into
intramodule hubs and intermodule hubs, as discussed.
We here provide a new definition of hubs, called struc-
tural hubs. These hubs are the core nodes to support
the hierarchical structure representing a protein interac-
tome network. The structural hubs are selected by esti-
mation of hub confidence. The hub confidence H of a
node a is calculated by the sum of the functional simi-
larity scores between a and the members of La, divided
by the functional similarity score between a and its par-
ent node. If a is the root node, we use the sum of the
functional similarity scores between a and all the other
nodes as its hub confidence.
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The hub confidence in Formula 11 quantifies how
likely the node is to be a structural hub. Since an edge
weight represents the functional consistency between
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two ending nodes, the structural hubs have a significant
role in not only maintaining topology but also
functionality.
We finally generate clusters as functional modules

from the tree structure. We iteratively select a structural
hub a with the highest hub confidence score and output
La as a cluster until the hub confidence of the selected
node a reaches a user-specified threshold. The clusters
are hierarchically arranged based on the positions of
their hubs in the tree structure.
The schematic view of our approach is illustrated in

Figure 1 using a synthetic network with 20 nodes. In the
input network 1 (a), the weight for each edge is
described as its thickness. After the weighted network is
restructured to a hierarchy 1 (b), the structural hubs are
identified by scoring the hub confidence 1 (c), and the
nodes are grouped to reveal hierarchically organized
functional modules 1 (d). In the hierarchical structure,
the depth of a node denotes the maximum path length
from the node to a leaf node. The depth of a cluster is
then defined as the maximum depth of nodes in the
cluster, i.e., the maximum depth of nodes in a depth-k
cluster is k. For example, in Figure 1 (b) and 1 (d),
{D, F} is a depth-1 cluster, and {E, D, F, G, H} is a
depth-2 cluster. In typical, the functional module with a
smaller depth is conceptually more specific and topolo-
gically denser in the network.

Results and discussion
Data sources
Currently, genome-wide protein-protein interaction data
of several model organisms are publicly available in a
number ofopen databases, for example, BioGRID [26],
MIPS [27], DIP [28], MINT [29] and IntAct [30]. They
have been mostly generated by high-throughput meth-
ods. However, because of unreliability of the high-
throughput experimental data, we tested our algorithm
using the core protein-protein interaction data of

Saccharomyces cerevisiae from DIP, which were curated
by other biological information such as protein
sequences and expression profiles. They include total
2526 distinct proteins and 5725 interactions between
them.
Since our approach requires a weighted interaction

network as an input, we pre-computed the edge weight
for each interaction in three different ways. First, we
explored statistical significance of the alternative indir-
ect connections for each pair of interacting proteins.
Suppose N(vi) and N(vj) are the sets of directly con-
nected neighboring nodes of vi and vj. To estimate the
weight wi,j of the interaction between vi and vj, we used
p—value from the hypergeometric distribution.
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Formula 12 indicates the probability that at least
|N(vi) ∩ N(vj)| proteins in |N(vj)| are included in |N
(vi)| by random chance. In other words, it means the
probability that two nodes vi and vj have alternative
indirect paths with length-1. The weight wi,j of the
interaction between vi and vj can be then computed by

w Pv vi j, log .  (13)

Next, we applied gene co-expression profiles for inter-
acting proteins. The gene expression data were obtained
from SMD [31], and the coherence of expressions was
calculated by the Pearson coefficient. Finally, we adopted
annotations in the GO [32] database. The semantic
similarity measure [5] was used to compute the func-
tional similarity of each pair of interacting proteins.

Figure 1 The process of analyzing a protein interaction network by the network-conversion approach. (a) A weighted interaction
network is converted into (b) a hierarchical tree structure of proteins based on the path strength model and the functional similarity
measurement. The edge weight was described as its thickness in (a). From the generated tree structure, (c) hub confidence is estimated for each
node. From the selected structural hubs, (d) clusters as functional modules are identified.

Cho and Zhang BMC Bioinformatics 2010, 11(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/11/S3/S3

Page 4 of 10



We assessed the edge weights in terms of functional
consistency, the ratio of common functions to all dis-
tinct functions that the interacting proteins have. As the
functional information of proteins, the annotation data
on the 2nd-level functional categories from MIPS [27]
were used. After arranging all interactions by their
weights in descending order, we plotted the cumulative
functional consistency with respect to the selected num-
ber of interactions in Figure 2. Comparing to the
semantic similarity-based weighting scheme, the
approach for statistical significance in connectivity did
not select well both of the top 10% of the most func-
tionally consistent interactions and the bottom 20% of
the least consistent interactions. Weighting interactions
by the co-expression-based method was also unsuccess-
ful in the range between top 10% and 30%, and below
70%. However, in general, positive relationships are
shown between functional consistency and the weights
computed by these methods across all the range.

Evaluation of path strength model
We evaluated the effectiveness of our path strength
model and functional similarity measurement in the

weighted interaction network. For the calculation of
functional similarity F (a,b), we have to enumerate all
k-length paths Sk(a, b) between two proteins a and b for
all possible k. However, the impact of Sk(a, b) on S(a, b)
in Formula 5 significantly decreases with the increment
of k. In the experiment with randomly selected 10,000
protein pairs, the functional similarity rapidly decreases
by the increment of path length, and is close to 0 with
the path length of greater than 3, as shown in Figure 3.
For efficient computation of functional similarity
between a and b, we thus selected the maximum path
strength by limiting the maximal k to (l + 2) where l is
the shortest path length between them. In other words,
we considered the paths between two nodes with
length- l, (l + 1) and (l + 2).
We investigated the relationship between path

strength and functional consistency to show whether a
stronger path is still functionally more consistent. We
first measured functional similarity for all possible pairs
of proteins by Formula 5, selected 10,000 pairs ran-
domly, and then computed the cumulative functional
consistency of each selected pair in the same way
described above. At this time, we used the weighted
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Figure 2 Evaluation of interaction weights by functional consistency. We computed edge weights of the yeast protein interaction network
by statistical significance in connectivity, co-expression profiles, and semantic similarity of interacting protein pairs. We also measured functional
consistency of each pair by the ratio of common functions. All weighting schemes have positive relationships between weights and functional
consistency.
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interaction networks produced by the third method
integrated with GO annotations using the semantic
similarity measure. In the arrangement of the selected
protein pairs by their functional similarity in a descend-
ing order, the change of cumulative functional consis-
tency was shown in Figure 3. The average functional
consistency monotonically decreases as more pairs are
included. It indicates that the pair having higher func-
tional similarity on our path strength model are func-
tionally more consistent. The average functional
consistency in Figure 4 is lower than that in Figure 3
because all possible paths regardless of their path length
were considered in Figure 4, whereas only length-1
paths (i.e., interacting proteins) were tested in Figure 3.
However, the average functional consistency in Figure 4
is not very low because any two proteins are connected
with each other in a few steps in a typical interaction
network characterized by the small-world property [25].
The results in Figure 3 and 4 signify that our model is
correctly designed to measure functional similarity
between two proteins through network connectivity.

Topological significance of structural hubs
We implemented the conversion of the weighted inter-
action network to a hierarchical tree structure by For-
mula 8. We then identified the structural hub proteins
based on their hub confidence scores in Formula 11. To
make topological assessment of the structural hubs, we
tested network vulnerability on random and hub attacks.
It has been known that typical scale-free networks are

robust on random attacks, but vulnerable on targeted
attacks to the hubs. For this experiment, we observed
the fractions of the largest component when we repeat-
edly disrupted a randomly selected node, a hub with the
highest degree and a structural hub with the highest
hub confidence score, respectively.
Figure 5 shows the comparative result of network vul-

nerability. Because all nodes in the network are directly
or indirectly connected with each other, the fraction of
the largest component is 1 before the node removal.
Removing hubs decreases the fraction more rapidly than
removing random nodes. In Figure 5, we can observe
the remarkable difference of the deceasing rates between
hub attacks and random attacks. In comparison of
structural hubs and degree-based hubs, the network was
more susceptible to the degree-based hub attacks when
top 10 hubs were removed. However, after removing
120 hubs, the structural hub attacks were more destruc-
tive. In further experiments, we compared the hub con-
fidence measure in Formula 11 with node degree. Since
all degree-1 nodes are the leaf nodes in the tree struc-
ture, their hub confidence is 0. For the nodes whose
degree is greater than 1, the hub confidence has a
monotonic increase by the increment of their degree.
Overall, a protein interaction network is more vulner-

able on structural hub attacks than random attacks. It is
noticeable that the hub confidence measure is effective
at selecting topologically significant hub proteins in
complex networks. In general, hub confidence has a
positive relationship with node degree. However, some
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Figure 3 The relationship between path length and functional
similarity of randomly selected protein pairs. Since the average
functional similarity of the pairs having a path length greater than 3
is nearly 0, we computed path strength for each protein pair by
limiting its length to (l + 2) where l is the shortest path length of
the pair.
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Figure 4 Evaluation of the path strength model by functional
consistency. For the randomly selected 10,000 pairs arranged by
their functional similarity from the highest, the cumulative
functional consistency was calculated by the ratio of common
functions. The average functional consistency between two proteins
monotonically decreases as their functional similarity measured by
our path strength model decreases.
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low-degree structural hubs with high hub confidence
can be detected by our algorithm. Whereas degree is a
factor for local significance of nodes in network topol-
ogy, the hub confidence formula measures the global
significance of nodes to select hubs in the hierarchical
structure.

Biological essentiality of hub proteins
We biologically validated the structural hubs by lethality
which implies the essentiality for performing function.
The lethality has been determined by gene knockout
experiments. We obtained the list of lethal proteins
from MIPS [27]. In the same way, we enumerated the
nodes by degree and hub confidence in a descending
order, and monitored the proportion of lethal proteins
for every 10 nodes. In Figure 6, we plotted the alteration
of cumulative lethality. In contrast to the result of topo-
logical assessment, top 20 structural hubs have higher
lethality than the same number of degree-based hubs. In
particular, the proportion of lethal proteins in top 10
structural hubs is 50% higher than in top 10 degree-
based hubs. However, structural hubs in the rank
between 50 and 70 have lower lethality than degree-
based hubs. It indicates that our structural hub confi-
dence measure ranked highly lethal proteins in top 20,
and moved down high-degree but non-lethal proteins to
the rank between 50 and 70.
Importantly, most structural hub proteins perform

several different functions. We examined functional

overlapping rates of the hubs. Among the functional
categories in a hierarchy from MIPS, we extracted the
ones on the 3rd-level from the top and their annota-
tions. We then inspected how many categories each hub
protein appears in. Figure 7 shows the functional over-
lapping rates of the proteins ordered by hub confidence.
The average overlapping rate of 2,000 proteins is around
3.5. However, the rate increases to 4.5 for top 150 struc-
tural hubs, and becomes even greater than 6.0 for top
10 structural hubs. This result suggests that, in network
topology, structural hubs mostly bridge different func-
tional modules regardless of their degree.

Modularity of clusters
We implemented clustering of proteins using the tree
structure converted from a protein interaction network,
and inspected whether the output clusters are likely to
be functional modules. Modularity of a sub-network has
been commonly estimated by the ratio of the number of
edges within the sub-network to the number of all
edges starting from the nodes in the sub-network. How-
ever, in this estimation, the modularity depends on the
number of nodes in the sub-network. For example, sup-
pose a network G has 500 nodes. Sub-networks G′ and
G″ of G consist of 10 and 100 nodes, respectively.
A node in G″ has a higher probability having links to
the nodes within the same sub-network (intraconnec-
tions) and a lower probability having links to the nodes
outside of the sub-network (interconnections), compar-
ing to a node in G′. We thus normalized the formula
of modularity by the probability of a node in the
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Figure 6 Biological assessment of structural hubs by protein
lethality. From the list of nodes arranged by their degrees and hub
confidence scores in descending order, we observed the proportion
of lethal proteins for every 10 nodes. Top 20 structural hubs include
more lethal proteins than top 20 degree-based hubs.
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Figure 5 Assessment of topological significance of the
structural hubs by network vulnerability. We repeatedly
disrupted a randomly selected node, a hub with the highest degree
and a structural hub with the highest hub confidence score,
respectively, and monitored the fraction of the largest component
connected. The network was more vulnerable on the degree-based
hub attacks and structural hub attacks than the random attacks.
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sub-network being linked to the members in the same
sub-network.
We grouped the output clusters with regard to their

depth, and averaged the normalized modularity for each
group. As already remarked in Methods, the depth of a
cluster has an inverse relationship with its functional
specificity. It is also expected that a more specific func-
tional module in a hierarchy has higher modularity in
network topology, i.e., a sub-module Y in a module X
has denser intraconnections than X. The experimental
result is shown in Figure 8. As the cluster depth
decreases, the modularity has a monotonic increase. In
particular, it rapidly increases when the depth is less
than 6. This result satisfies our expectation of the mod-
ularity pattern in a hierarchy. It strongly implies that the
hierarchy structured by our approach corresponds to the
functional organizations in a protein interaction net-
work. To evaluate clustering accuracy, we used the
f-measure, which is the harmonic mean of precision and
recall. Suppose an output cluster X is mapped to an
actual functional modules Fi. Recall, which is also called
a true positive rate or sensitivity, is the proportion of
common members between X and Fi to the size of Fi.
Precision, which is also called a positive predictive value,
is the proportion of common members between X and
Fi to the size of X

Recall
X Fi

Fi



. (14)

Precision 
X Fi

X


. (15)

For direct comparison of each functional module with
clusters in the same level in a hierarchy, the f-measure is
an appropriate evaluation method since it gives a higher
chance to score high when the functional module has the
similar size with a cluster. As actual functional modules,
we used the annotations on the 2nd-level, 3rd-level and
4th-level functions in a hierarchy from MIPS. Starting
from the most general functions on the 1st-level, func-
tions become more specific as the level increases. Then,
for each function, we selected a cluster with the best
match by f-measure. We finally calculated the average
f-measure across the functions on each level. Table 1
shows the clustering accuracy of our network-conversion
approach. For more specific functions, i.e., higher-level
functions, we achieved higher accuracy. It indicates that
our approach more accurately generated the small-sized
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Figure 7 Average functional overlapping rates of proteins with
respect to their hub confidence scores. We arranged the proteins
in the yeast interaction network by their hub confidence scores in
descending order, and counted the number of functions that each
protein performs. The functional categories on the 3rd level in a
hierarchy from MIPS were used. Top 10 structural hubs have an
overlapping rate approximately 75% higher than the 2000th protein.
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Figure 8 The normalized modularity pattern with respect to
the depth of clusters generated. Modularity of a sub-network G′
was calculated by the ratio of the number of edges within G′ to the
number of edges starting from the nodes in G′, and it was
normalized by the probability of a node in G′ being linked to the
other members in G′. As the cluster depth decreases, its normalized
modularity has a monotonic increase. It indicates that the modules
representing more specific functions have higher modularity.

Table 1 Clustering performance comparison by
f — measure

Network-
conversion

Edge-
betweenness

ProDistIn

2nd-level functions 0.326 0.248 0.211

3rd-level functions 0.383 0.247 0.215

4th-level functions 0.438 0.226 0.235

protein complexes 0.425 0.135 0.184
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clusters for specific functions. Comparing the accuracy of
two competing methods of hierarchical clustering: Edge-
Betweenness algorithm [16] and ProDistIn [15], our net-
work-conversion approach outperforms the other
methods across all levels of functions as shown in Table
1. We additionally evaluated the output clusters compar-
ing to protein complexes from MIPS. The gap of cluster-
ing accuracy between our approach and the competing
methods becomes even larger.

Conclusions
Decomposing, converting and synthesizing complex sys-
tems are fundamental tasks for modeling their structural
behavior. Recently, such approaches in protein interaction
networks has been widely attempted to understand biologi-
cal processes and functional organizations within a cell. We
have studied the methodology for converting a protein
interactome network into an effective structure for the pur-
pose of functional knowledge discovery. For this task, we
designed the path strength model and exploited the novel
concept of centrality. The generated hierarchical tree struc-
ture can be applied to selecting functionally essential hub
proteins and identifying functional modules. Unlike other
hierarchical clustering methods, our approach dynamically
explores the entire hierarchical structure of proteins in a
global view. All the individual parent-child relationships
between proteins in the hierarchy are meaningful and com-
parable. The performance of our approach can be more
improved by developing the advanced methods, which effi-
ciently integrate a massive amount of current heteroge-
neous biological data and accurately analyze the reliability
of functional associations between interacting proteins.
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