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Abstract

Many biological networks are signed molecular networks which consist of positive and negative links. To reveal the distinct
features between links with different signs, we proposed signed link-clustering coefficients that assess the similarity of inter-
action profiles between linked molecules. We found that positive links tended to cluster together, while negative links
usually behaved like bridges between positive clusters. Positive links with higher adhesiveness tended to share protein
domains, be associated with protein-protein interactions and make intra-connections within protein complexes. Negative
links that were more bridge-like tended to make interconnections between protein complexes. Utilizing the proposed
measures to group positive links, we observed hierarchical modules that could be well characterized by functional
annotations or known protein complexes. Our results imply that the proposed sign-specific measures can help reveal the
network structural characteristics and the embedded biological contexts of signed links, as well as the functional
organization of signed molecular networks.
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Introduction

Biological processes in living cells are usually accomplished by

numerous interactions between biological molecules (genes,

proteins and other cell components) at various scales. Therefore,

molecular networks, which are comprised of biological molecules

and interactions between them, can provide a comprehensive

interpretation of complicated biological systems in living cells and

have become a key approach to understanding biological systems

[1–4]. Investigation of the network structure has been used to

reveal biological contexts embedded in molecular and cellular

networks [5–7]. For example, Lin et al. studied the complete

graphs in protein-protein interaction networks, and identified the

essential cores in protein networks of Escherichia coli and

Saccharomyces cerevisiae [5]; Roth et al. used the minimum spanning

trees to extract the most relevant information contained in the

gene network of Bacillus subtilis [6]; Madi et al. also analyzed the

minimum spanning trees in immune networks, and found different

conservative level between mothers’ and newborns’ networks [7].

Link clustering denotes the overlap between neighboring links and

has been used to identify communities in molecular and social

networks [8,9]. Essentiality of a protein in the interaction network

was found to be highly associated with the link clustering level of

the interactions connecting it [10]. Moreover, Solava et al. utilized

link clustering to predict new pathogen-interacting proteins which

possibly play the role of drug target candidates [11].

Many molecular networks, such as the genetic interaction

network (GIN) and the gene coexpression network (CEN), are

signed undirected networks that consist of positive and negative

links (genetic interactions or gene coexpression). Genetic interac-

tions (GIs) describe that double mutants confer a significant

deviation of phenotype from the expected value [12]. This

expected value of phenotype change is referred to as the

combination effect of two single mutations [13]. Positive GIs are

when the phenotypic changes of double mutants are equivalent to

or less severe than expected, such as synthetic suppression or

rescue. In contrast, negative GIs are when double mutants display

a more severe phenotype than expected, such as synthetic lethality

or sickness [14,15]. Genes with positive GIs have been referred to

as alleviating or epistatic interactions, while those with negative

GIs are usually thought to participate in parallel biological

pathways. Thus, single mutants are compatible with continued

viability, while the double mutants damage viability [14]. Previous

studies have reported that genes with similar patterns of GI profiles

tended to participate in the same biological pathways or processes

[16,17]. Gene coexpressions (CEs) are measured by expression

correlations between genes, usually measured by the Pearson

correlation coefficient (PCC) or other metrics. The CEN collates

correlated genes under well-designed experimental states. In

CENs, simultaneously expressed gene-pairs form positive CEs,

while inversely expressed pairs form negative CEs.

Herein, considering the essential differences between positive

and negative links, we proposed four measures of link-clustering

coefficients (LCs), which were used to evaluate the proportions of

common interacting partners, also called neighbors, between

linked molecules. By applying LCs to study the network structure
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of a CEN, we found that positive links were more adhesive and

tended to cluster together, while negative links were more

dispersive and usually behaved like bridges between positive

clusters. Interestingly, a similar network structure was also

observed in the GIN. Additionally, the proposed LC could be

further used to reveal hidden biological contexts of signed links

and to uncover the network modules that are well characterized by

functional annotations or known protein complexes.

Results

Coexpression Network (CEN)
Network structure of the CEN. Coexpression networks

consist of gene pairs with similar or opposite gene expression

profiles. Here, we defined coexpression as a positive link and anti-

coexpression as a negative link, following the sign of the

correlation coefficient between expression profiles. Since correla-

tions had transmission characteristics (Figure S1), two genes with

common coexpressed and/or anti-coexpressed genes in the CEN

are expected to express simultaneously. It could lead CEN to

possess specific network structural properties, such as distribution

of triads – the smallest units of the complete graph. There are four

possible types of triads according to the combinatorial patterns of

the three interconnected signed links, denoted T1–T4 in Figure 1A.

The frequencies of each type of triad were assessed by the ratio of

the observed number for each triad-type to the corresponding

expected value from random shuffling of the signs of links (more

details in Text S1). As expected, we observed that T1 (+++) and T2

(+22) were significantly over-represented, while T3 (2++) and T4

(222) were totally absent (Figure 1A and Table S1). In other

words, positive CEs tend to cluster with co-positive or co-negative

CE neighbors, while negative CEs tend to cluster with hybrid ones.

This observation suggested that positive and negative CEs should

have distinct clustering features. Thus, we applied an LC that

measured the proportion of common neighbors between two

linked nodes to assess the aggregation characteristics of links [9].

We first disregarded the signs of the interconnected links by the

conventional LC definition, and found that the LC distribution of

negative CEs was similar to that of positive CEs (Figure 1B). It

suggested that both types of CEs could cluster with other CEs, but

the difference between the clustering properties of positive and

negative CEs were indistinguishable using unsigned LCs. To

differentiate the clustering characteristics of positive and negative

links, we took the signs of clustering links into consideration,

dividing unsigned LCs into two sign-specific groups: Same (SLC),

which considers only the neighboring links of the same signs and

Hybrid (HLC), which considers neighboring links of opposite

signs. We found that SLC of positive links, SLC(+), remained

similar to unsigned LC(+) while that of negative links, SLC(2),

were all zero (Figure 1C). On the other hand, HLC of negative

links, HLC(2), remained similar to unsigned LC(2) while HLC(+)
were all zero (Figure 1D). Apparently, clustering properties of

positive and negative CEs can be distinguished by our proposed

sign-specific LCs. According to the signs of paired links connecting

to their common neighbors, SLC can be further divided into two

subtypes, PLC (LCs with two positive signs) and NLC (LCs with

two negative signs). Both of their distributions for positive links

were similar to SLC(+) (Figure S2a). These results were consistent
with the expected network structural characteristics of CEN.

Additionally, we found that negative CEs with higher HLC tended

to recruit common neighbors with higher PLC(+) and HLC(2)

(Figure 1E, F). This suggested that positive CEs linking to the

common neighbors that contributed to HLC(2) tended to form

positive clusters and negative ones tended to connect to (other)

positive cluster(s). In other words, we can infer that positive links

are more adhesive and tend to cluster together while negative links

are more dispersive and usually behave like bridges between

positive clusters. Altogether, above results suggested that the

proposed signed LC was capable of reflecting and even

highlighting the structural characteristics of CEN.

Biological contexts in the CEN. The CEN was constructed

by discretizing the correlations between expression profiles of gene

pairs. Each individual link in the CEN preserved only the binary

information of whether the two linked genes were coexpressed (for

those with a significant positive correlation coefficient above a

certain threshold) or anti-coexpressed (with a significant negative

correlation coefficient). Although such a network representation

seemingly diminishes the quantitative information of individual

links, the quantitative correlation information was, in fact,

embedded in the network structure and could be recovered to a

certain extent. A pair of genes with highly correlated expression

profiles was expected to share a larger amount of commonly linked

genes, resulting in a higher SLC, as well as PLC and NLC. On the

other hand, those with highly anti-correlated expression profiles

were expected to share genes with opposite types of links, resulting

in a higher HLC. Indeed, we observed a strong correlation

between SLC and PCC for gene pairs with positive links

(Figure 2A; see also Figure S2b for similar characteristics of PLC

and NLC), and a strong anti-correlation between HLC and PCC

for negative links (Figure 2B). Furthermore, the proportion of

coregulated gene pairs increased along with SLC for positive links,

but not for HLC of negative links (Figure 2C; see also Figure S2c

for similar characteristics of PLC and NLC). In other words, the

coexpressed gene pairs sharing more common coexpressed or anti-

coexpressed partners tended to be regulated by the same

transcription factors. Therefore, it suggested that sign-specific

LCs could reveal the embedded quantitative magnitude of

coexpression, as well as the biological contexts involved in the

CEN.

Next, we applied the predefined similarity measure, which was

derived from the summation of two same-sign LC subtypes, PLC

and NLC, to cluster positive links for identification of potential

functional modules (see Materials and Methods). Among 34

identified modules (size $3), we focused on the two largest

modules, which covered 263 and 245 genes, respectively. Links

inside these two modules are all positive, but those between them

are all negative, which is consistent with the observed structural

characteristics of the CEN. Positive links inside these two modules

tended to have higher PLC and NLC ($0.5, Figure S2d,e), while

negative links between modules tended to have a higher HLC

($0.5, Figure S2f). Again, positive CEs with high PLC or NLC are

modular, while negative CEs with a high HLC are bridge-like.

The gene expression profiles of these two modules displayed

similar patterns inside modules, but were opposite to each other

between modules under different conditions of nutrition sources,

i.e., 1% ethanol and 2% glucose (Figure 2D). Notably, we chose

these two modules only according to the proposed signed LC and

their size. The enriched biological functions of these two modules

were ribosome biogenesis and energy-production-related func-

tions, respectively (Table S2 and S3). We noted that the large and

small subunits of ribosome and 90S preribosome were involved in

the largest module and that ATP synthase, cytochrome c oxidase,

cytochrome c reductase and succinate dehydrogenase were

involved in the second largest module (Figure 2E and Figure

S2g). These well-known protein complexes are directly associated

with ribosome biogenesis or energy production. Additionally, we

observed that the largest module was activated by 2% glucose and

repressed by 1% ethanol, in contrast to the second largest module,

Link Clustering in Signed Molecular Networks
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which behaved in the opposite manner (Figure 2D). It was

reported that glucose can transcriptionally repress TCA cycle

genes, decrease respiratory activity and activate ribosome protein

genes as sufficient amounts of glucose are available to support cell

growth [18]. On the other hand, under ethanol stress, yeast

initially struggles to maintain energy production by increasing

expression of genes associated with energy-generating activities

and decreasing expression-rates of genes associated with energy-

demanding processes, such as growth [19]. In summary, these

results indicate that the proposed LC has potential to reveal the

biological contexts of signed links and the functional modules, such

as protein complexes, in signed molecular networks.

Genetic Interaction Network (GIN)
Network structure of the GIN. Unlike CEs, GIs didn’t

possess transitive property. In the GIN of Saccharomyces cerevisiae, we

observed that four types of triads were present and only T1 (+++)
was significantly over-represented (Figure 3A and Table S1). This

resembles the characteristics of CEN–i.e., that positive links tend

to cluster with positive link neighbors–although the triads

involving negative links behaved differently in the GIN. The

unsigned LC distributions of positive GIs also showed a higher tail

than negative ones (Figure 3B). To resolve what kind of

aggregation forms positive GIs prefer, we analyzed the signed

LC of GIs. SLC(+) distributed toward higher coefficients than the

other three types of signed LC, HLC(+), SLC(2), and HLC(2)

(Figure 3C). Additionally, PLC(+) and NLC(+) also distributed

with higher tails than PLC(2) and NLC(2), respectively

(Figure 3D). These results suggest that the following: (1) positive

GIs tend to form clusters with co-positive or co-negative GI

neighbors rather than with hybrid GI neighbors; (2) compared

with positive GIs, negative GIs disfavor clustering. To clarify the

characteristics of negative links in GIN, we interrogated the

clustering characteristics of the hybrid links contributing to

HLC(2). We found that positive GIs of hybrid links involved in

HLC(2) tended to form positive clusters (Figure 3E). Furthermore,

HLC of negative GIs in HLC(2) hybrid links positively correlated

with the observed HLC(2) (Figure 3F). These findings suggested

that the negative GIs with high HLC tended to act as bridges

between positive clusters. Although the triad and LC distributions

of the GIN differ from the CEN, they share similar features, i.e.,

that positive GIs tend to cluster together and negative GIs usually

behave like bridges between positive clusters.

Biological contexts embedded in genetic interaction

links. Genetic interactions are measured by the phenotypic

change of perturbed living cells, and hence are thought to make

functional connections within and/or between biological processes

[3,17,20–22]. Previous studies have reported that positive GIs tend

to appear between gene pairs with protein-protein interactions

(PPIs) or participate in the same protein complex, while negative

GIs tend to be interconnections between different protein

complexes [23–27]. Herein, we observed that positive GIs with

higher SLCs tended to be PPIs or intra-connections within the

same protein complex (Figure 4A, B), and negative ones with

higher HLCs tended to be interconnections between different

protein complexes (Figure 4C). We also found that proteins

encoded by genes that formed positive GIs with higher SLCs

tended to share the same protein domains (Figure 4D). These

Figure 1. Structural properties of the CEN. (A) Frequency of signed triads in CEN. According to combinatorial patterns of signed links, four types
of triads are listed. Fold is the ratio of observed number of triads to the average number of random triads. (B)–(D) LC, SLC, and HLC distributions of
positive/negative links in the CEN. The values shown on the x-axis are the upper bounds of the corresponding LC intervals. (E) Median of PLC of
positive CEs linking to the common neighbor (CNB) that contributed to the HLC of the observed negative CE with increasing HLC(–). The Pearson’s
correlation between PLC of positive CEs linking to the common neighbor and HLC(–) is 0.52 (P,2.2610216). (F) Median of HLC of negative CEs linking
to the common neighbor (CNB) that contributed to the HLC of the observed negative CE with increasing HLC(–). The Pearson’s correlation between
HLC of negative CEs linking to the common neighbor and HLC(–) is 0.64 (P,2.2610216).
doi:10.1371/journal.pone.0067089.g001
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observations suggest that positive GIs with higher SLCs could

imply a stronger functional relationship or homogeneity between

genetic interacting genes. SLC(+) and HLC(2) not only reflect the

network topological properties–i.e., the intramodularity of positive

GIs and bridgeness of negative GIs–but also help reveal the

biomolecular complex structure and organization involved. For

example, we found that several protein complexes were enriched

by the positive GIs with the top 1% highest SLC (Figure 4F;

p,,0.0001, Fisher’s exact test); 96% of the negative GIs among

these complex subunit genes made interconnections between

different complexes and were enriched in the top 1% highest HLC

(p,,0.0001, Fisher’s exact test). Notably, all the PPIs among

them were from positive GIs with the highest 1% SLC and intra-

connections within the complex. Their shared protein domains

were mostly related to proteasome subunits and prefoldin. On the

other hand, previous studies have reported that negative GIs

possibly reflect the evolutionary relationship between two genetic

interacting genes [28–31]. Interestingly, we found that only gene

pairs of negative GI with higher SLCs tended to be duplicated

genes (Figure 4E). Since higher SLC implies potentially higher

functional homogeneity, this observation might result from the

functional compensatory relationship between negative genetic

interacting genes [31].

Genetic Interaction Modules
After investigating the structure and biological contexts of GIN,

we noticed that positive GIs tended to form functionally

homogeneous modules. To discover these modules inside the

GIN, we applied single-linkage hierarchical clustering with the

LC-based similarity score of positive GIs, ranked in descending

order, and utilized partition density [8] to determine the similarity

score cut-off of the optimal modular structure. As the cut-off of

positive GIs increased, partition density was first elevated to a

maximal value and then decreased (Figure S3a), implying that the

positive GIN did contain a local modular structure. However,

partition density was only decreased when the similarity score cut-

off of negative GIs increased (Figure S3b), which implied that the

negative GIN consisted of no local denser subnetworks. When the

similarity score of positive GI that corresponded to the maximal

partition density was applied, 33 positive modules that consisted of

more than three genes were discovered (Figure 5). Indeed, over

90% of modules possessed highly intraconnected positive GIs

(positive density $0.5) and almost 80% of them contained no

Figure 2. Biological contexts embedded in the CEN. Rank 0% and 100% represent the highest and lowest value of corresponding
measurement, respectively. (A)(B) Two positive (negative) CE genes with higher PLC (HLC) tended to coexpress (anti-coexpress) with each other more.
(C) Two positive CE genes with higher PLC or NLC tended to be regulated by the same transcription factors. (D) Expression profiles of the two largest
functional modules. (E) Well-known protein complex inside selected two largest modules. Node size represents the number of genes covered by the
corresponding sub-module. Node color represents the density of positive CEs involved in the sub-module. Red (green) links indicate that CEs
between two sub-modules are all positive (negative).
doi:10.1371/journal.pone.0067089.g002
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Figure 3. Structural properties of the GIN. (A) Frequency of signed triads in GIN. (B)–(D) LC, SLC, HLC, PLC, and NLC distributions of positive/
negative links in GIN. (E) Pearson’s correlation between PLC of positive GIs linking to the common neighbor (CNB) and HLC(–) is 0.57 (P,2.2610216).
(F) Pearson’s correlation between HLC of negative GIs linking to the common neighbor (CNB) and HLC(–) is 0.88 (P,2.2610216).
doi:10.1371/journal.pone.0067089.g003

Figure 4. Biological contexts embedded in GIs. (A)–(E) The correlations between GI and biological contexts. The x-axis represents the
percentage of ranked LC value, and the value 1 means the top 1% highest LC value. The y-axis represents accumulated proportions of GIs with
corresponding biological contexts. (F) Example complexes formed by positive GIs with the top 1% highest SLC. Positive and negative GIs are
represented by red and green links, respectively. Dashed links are PPIs. Bold links are GIs with the top 1% highest SLC or HLC, and thin ones are the
other GIs.
doi:10.1371/journal.pone.0067089.g004

Link Clustering in Signed Molecular Networks
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negative GI (Figure S3c). 70% of link sets between modules only

contained negative GIs (Figure S3d). Additionally, these modules

could be well characterized by known protein complexes or

biological processes (Figure 5). Some of the modules, such as

‘‘response to DNA damage stimulus’’ and ‘‘double-strand break

repair’’, have been reported to be synthetic lethal with each other

[30]. More importantly, this implies that the gene-based GIN can

be summarized as a module-based network by applying the LC-

based similarity score to cluster positive GIs.

Discussion

In this study, we applied a rigorous threshold to define the

coexpression links in a CEN, |PCC| $0.9. Because of the

transmission property of correlation, only type 1 and type 2 triads

are allowed, while type 3 and type 4 are not.In GIN, all four types

of triads were observed, which might imply that the GIN possessed

a triad-enriched network structure. On the other hand, GIs

measure the phenotypic relevance between genes and the changes

of phenotypes often relate to complicated and numerous biological

processes. Consequently, GIs are usually thought to be subtle and

to underlie diverse biological contexts. Therefore, triple GIs that

formed triads in GIN might easily be derived from different

biological contexts, and thus they might not follow the transitory

information.

According to the structural balance theory – proposed by Heider in

the 1940s [32] and formulated by Cartwright and Harary in graph

theory [33], type 1 and type 2 triads are balanced and type 3 and

type 4 are unbalanced. Therefore, CEN is structurally balanced

and follows the two structure theorems [33,34] summarized by

Hummon and Doreian [35]: A network is balanced if and only if the

network can be divided into two or more subnetworks, wherein links in the same

subnetwork are all positive and between different subnetworks are negative. In

the GIN, four types of triads were present, while only type 1 was

significantly over-represented (Figure 1A and Table S1). This

suggests that the GIN was weakly structurally balanced [34] and,

thus, abates the requirement of T2 over-representation. In

summary, the signed molecular network is (weakly) structurally

balanced and T1 (three mutually positively linked genes) is

significantly over-represented relative to chance.

In the proposed module map, one notable interaction is

between ‘‘double-strand break repair’’ and ‘‘Swr1p complex’’. In

the double-strand break repair module, XRS2 and RAD50 are

parts of the MRE11-RAD50-XRS2 (or MRX) complex, which

plays a vital role in both homologous recombination (HR) repair

and non-homologous end-joining (NHEJ) repair [36]. Addition-

ally, RAD51, RAD52, RAD54, and RAD55 participate in the

primary repair process [37]. The TOP3-RMI1-SGS1 complex is

required to resolve the DNA intermediate structure, which is

produced in the final steps of HR [38]. Genes in the ‘‘Swr1p

Figure 5. Map of genetic interaction modules. Each node represents a module clustered by positive GIs, and each edge represents a bunch of
negative GIs between different modules. Node size indicates the number of genes in each module and node color intensity indicates the density of
positive GI. Edge width indicates the number of GIs between modules and edge color intensity indicates the proportion of negative GI. Color
intensity of node border indicates the density of negative GI in each module.
doi:10.1371/journal.pone.0067089.g005
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complex’’ module are part of the histone post-modification

pathway [39]. In this pathway, H2BK123 is ubiquitinated by

the Rad6-Bre1 complex [40]. The ubiquitination requires the

presence of the Paf1 complex, which contains two subunits, RTF1

and CDC73, in this module [39]. After the ubiquitination of

H2BK123, H3K4 is trimethylated by the Set1 complex, which

contains four subunits, SWD1, SWD3, SDC1 and BRE2, in this

module [41]. The H3K4 trimethylation is related to the NHEJ

repair pathway [40]. In agreement with the balance structure of

the signed molecular network, the density of positive GIs in these

two modules are 0.5 and 0.7, respectively, and links between these

two modules are almost completely negative (96%). As described

above, genes in the double-strand break repair module are part of

the HR repair pathway, and genes in the Swr1p complex module

participate in NHEJ-related histone post-translational modifica-

tions. HR and NHEJ are two major DNA double-strand repair

pathways of the yeast cell [42]. This suggests that these two

modules participate in two different pathways with the same or

similar output and, therefore, they should be able to complement

each other.

In this study, we applied the signed LC to study the network

structure of the signed molecular network and successfully

revealed the differences of clustering characteristics between

positive and negative links. The results showed that positive links

tend to cluster together, while negative links are more dispersive

and usually make interconnections between positive clusters.

Furthermore, the signed LC facilitated the discovery of the diverse

biological contexts covered by signed links and the functional

modules within signed molecular networks.

Materials and Methods

Coexpression and Genetic Interaction Networks
To construct the CEN, we downloaded the expression profiles

of yeast genes from Gene Expression Omnibus (GEO), accession

number GSE9376 [43], containing 6,253 genes and 246 samples

in various nutrition sources. The correlations between genes were

evaluated by the Pearson correlation coefficient (PCC). To stress

the correlations between genes, paired genes with PCC $0.9 were

defined as positive coexpression and those with PCC # 20.9 as

negative. The studied CEN consisted of 1,240 genes and 48,497

coexpression links (28,651 positive and 19,846 negative).

The yeast genetic interactions were downloaded from BioGRID

3.1.72 [44]. We retrieved ‘‘synthetic rescue’’ and ‘‘positive

genetic’’ relationships between genes as positive GIs, and

‘‘synthetic lethality’’ and ‘‘negative genetic’’ ones as negative

GIs. In addition, 448 ambiguous GIs were removed from this

dataset. After this filtration, 5,084 genes and 91,743 GIs (15,821

positive and 75,922 negative) were included in the yeast GIN.

We applied the algorithm proposed by Lin et al. [5] to identify

and count the number of triads in the CEN and GIN.

Link-clustering Coefficient
Given a network composed of nodes and links connecting

paired nodes (edges), the link-clustering coefficient (LC) measures

the proportions of shared neighbors (common linking partners)

between linked molecular pairs, and is defined as:

LCe(i,j)~
Dn(i)\n(j)D
Dn(i)|n(j)D

where LCe(i,j) is the LC of the link e formed by node i and j. Note

that n(i) (n(j)) is the excess neighbors of node i (j) excluding node j

(i). Previous studies have noted that biological molecules would be

likely to share similar functions with their neighbors [45,46]. Thus,

a higher LC means a larger proportion of shared neighbors and

implies higher functional similarity between two interacting

molecules. Herein, LC was calculated for positive and negative

links in signed molecular network separately. LC(+) and LC(2)

denoted the LCs of positive links and the LCs of negative links,

respectively. Further, according to the signs of paired links

connecting to the common neighbors, LC can be classified into

two subtypes, same (SLC, +/+ or2/2) and hybrid (HLC,2/+ or

+/2), which are defined as:

SLCe(i,j)~
D(nz(i)\nz(j))|(n{(i)\n{(j))D

Dn(i)|n(j)D
;

HLCe(i,j)~
D(nz(i)\n{(j))|(n{(i)\nz(j))D

Dn(i)|n(j)D

where nz={(i) (nz={(j)) is the excess positive/negative neighbors

of node i (j) excluding node j (i). Based on its definition, SLC can be

further categorized into two subtypes, positive (PLC) and negative

(NLC), which are defined as:

PLCe(i,j)~
Dnz(i)\nz(j)D
Dnz(i)|nz(j)D

; NLCe(i,j)~
Dn{(i)\n{(j)D
Dn{(i)|n{(j)D

:

Revealing Biological Contexts and Communities in
Signed Networks
Herein, several biological relationships between genes–PPI,

within/between protein complex, shared protein domain and

duplicated genes–were used to discover the embedded biological

contexts of GIs (more details in Text S1) [47–51]. The proportions

of biological contexts covered by positive/negative GIs were

calculated and referred to as the relevance of biological contexts to

GIs.

To discover the biological communities, single-linkage hierar-

chical clustering was applied with the similarity score defined as:

SimLC~

PLC(z), if APLC(z)and:ANLC(z)

NLC(z), if:APLC(z)andANLC(z)
PLC(z)zNLC(z)

2
, if APLC(z)andANLC(z)

NA,if :APLC(z)and:ANLC(z)

8>>><
>>>:

The threshold for cutting this dendrogram to yield communities

was determined by maximum partition density, which was

introduced by Ahn et al. [8]. The potential biological processes

of each community were investigated by functional enrichment

analysis (more details in Text S1).

Supporting Information

Figure S1 Correlation transmission. Correlation transmis-

sion via common (a) co-expressed and/or (b) anti-expressed

neighbors.

(ZIP)

Figure S2 Biological context revealed by LC of CE. (a)

PLC and NLC distributions of positive/negative links in CEN.

The values shown on the x-axis are the upper bounds of the
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corresponding LC intervals. (b) Two positive CE genes with higher

PLC or NLC tended to have higher rates of coexpression with

each other. Red points: PLC(+); Green points: NLC(+). (c) Two
coexpressed genes that shared more common coexpressed (PLC)

or anti-expressed (NLC) partners tended to be regulated by the

same transcription factors. (d) – (f) LC distributions of the two

largest modules. (g) Coexpression subnetworks of seven well-

known protein complexes involved in the two largest modules.

(ZIP)

Figure S3 LC-score vs. partition density of GIN and GI
density of discovered modules. (a) LC-score vs. partition

density of positive GIN. (b) LC-score vs. partition density of

negative GIN. (c) Distributions of positive/negative GI density of

discovered modules. (d) Distributions of negative GI proportion of

meta-links between modules.

(ZIP)

Table S1 Number of triads in CEN and GIN.

(ZIP)

Table S2 The top twenty enriched functions of the
largest module in the CEN.

(ZIP)

Table S3 The top twenty enriched functions of the 2nd

largest module in the CEN.

(ZIP)

Text S1 Supplementary methods.

(ZIP)
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