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Abstract: Breast cancer is the most frequently diagnosed cancer in women and the second most
common cancer overall, with nearly 1.7 million new cases worldwide every year. Breast cancer
patients need accurate tools for early diagnosis and to improve treatment. Biomarkers are increasingly
used to describe and evaluate tumours for prognosis, to facilitate and predict response to therapy
and to evaluate residual tumor, post-treatment. Here, we evaluate different methods to separate
Diaminobenzidine (DAB) from Hematoxylin and Eosin (H&E) staining for Wnt-1, a potential
cytoplasmic breast cancer biomarker. A method comprising clustering and Color deconvolution
allowed us to recognize and quantify Wnt-1 levels accurately at pixel levels. Experimental validation
was conducted using a set of 12,288 blocks of m× n pixels without overlap, extracted from a Tissue
Microarray (TMA) composed of 192 tissue cores. Intraclass Correlations (ICC) among evaluators
of the data of 0.634, 0.791, 0.551 and 0.63 for each Allred class and an average ICC of 0.752 among
evaluators and automatic classification were obtained. Furthermore, this method received an average
rating of 4.26 out of 5 in the Wnt-1 segmentation process from the evaluators.

Keywords: breast cancer; Wnt-1; immunohistochemistry (IHC); automatic segmentation; automatic
quantification

1. Introduction

Breast cancer is one of the most common types of cancer in most European and American countries
and the second leading cause of cancer death [1–3]. About 266,120 new cases of invasive breast cancer
are diagnosed in women in Europe every year. Breast cancer represents almost a sixth (16%) of all cases
of cancer in males and females combined. However, mortality rates have decreased as a result of earlier
diagnosis and improved therapies, according to the American Cancer Society and International Agency
of Research Cancer [4]. The WNT genes encode a family of 19 secreted short-range signalling proteins
involved in the regulation of cell fate, proliferation, migration, polarity and death, processes that play
important roles in cancer initiation and/or progression [5]. Increased expression of the Cancer Stem
Cell (CSC) marker SOX2 in human breast cancer activates Wnt-1 signaling to promote resistance to
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tamoxifen, the most common therapy for Estrogen Receptor-positive (ER+) breast cancer [6]. There are
nineteen Wnt-1 family members, several of which may play a role in breast cancer. Among them is
Wnt-1, which was originally named int-1 because integration of the Mouse Mammary Tumor Virus
(MMTV) into its gene locus induces mammary tumors in mice [7]. Consistent with this, Wnt-1 increases
the CSC population [8] and shRNA-mediated Wnt-11 silencing in a metastatic mouse breast cancer cell
line reduces expression of CSC markers and tumor formation [9]. There are fewer studies of Wnt-1 in
human breast cancer. However, Wnt-1 protein has been detected in tumors of Korean patients with
invasive ductal carcinoma [10] and has been reported to be upregulated in human breast tumors,
compared with adjacent normal tissue [11]. Together, these data suggest that Wnt-1 could be a useful
biomarker and therapeutic target in breast cancer. In addition, Wnt-1 expression may be an indicator
of poor prognosis in cutaneous squamous cell carcinoma [12] and in non-small cell lung cancer [13],
and a potential biomarker of recurrence in Hepatitis C-related hepatocellular carcinoma [14]. Although
Wnt-1 is a secreted protein, Wnt-1 in the extracellular space is undetectable by immunohistochemistry,
as is the case for most secreted proteins, which are more readily detected in the cytoplasm, being
enriched in organelles of the secretory pathway. In this study, we therefore used Wnt-1 as an example
of a cytoplasmic marker to test our in silico method.

The classification and quantification of biomarker expression levels is carried out by pathologists,
biologists and related professionals on a limited region of a tumor. Manual scoring is normally carried
out by at least two scientists with experience in scoring the antigen, and at least including one
pathologist. In this study, immunoreactivity for Wnt-1 was scored using a semi-quantitative evaluation
based on the Allred system [15]. An in silico approach may help to improve the reproducibility of
scoring among pathologists, which is common according to the subjectivity of pathological diagnosis.
It may also increase the number of cases that an expert can analyze. Thus, automated scoring will
improve patient quality of life and reduce associated health-care costs. Additionally, this type of
approach may be being helpful for the purpose of medical education [16]. Furthermore, an in silico
approach could provide support to methods for discovering new biomarkers and mitigating issues
related to inter-observer variability (e.g., bias, time, difficulty, costs, and impracticality) [17].

Some in silico approaches can recognize biomarkers—e.g., Estrogen Receptor (ER), Progesterone
Receptor (PR), Phosphatase and Tensin Homolog (PTEN), Human Epidermal Growth Factor Receptor
2 (HER2), and Ki-67—in histopathology images [18–22]. A free ImageJ plugin and Internet-based
web application, called ImmunoRatio, for automatic segmentation and quantification of ER, PR,
and Ki-67 immunohistochemistry (IHC) in breast cancer tissue sections is presented in [18]. Color
deconvolution, adaptive thresholding and median filter are used in ImmunoRatio. This approach
achieved a correlation coefficient of 0.98. An important aspect to take into account to generate in silico
approaches is the difference between visual assessment and automated methods. In [20], a comparison
between visual assessment and Automated Digital Analysis (DIA) of Ki-67 is presented. That method
demonstrates agreement between manual expert assessment—by eye—and DIA of Ki67 in breast
cancer. However, the datasets for these studies are not publicly available, limiting their reproduction
and comparison with similar approaches. A method to segment and characterize cells in carcinoma
images stained with Ki-67 using K-means clustering and the watershed algorithm is proposed in [19].
The method calculates 75.1± 6.7% positive nuclei compared with ImmunoRatio, 77.9± 7.1%, and
manual, 71.4± 5.5%. However, this approach has not been tested on breast cancer images and the
dataset is not publicly available. Furthermore, the aforementioned studies focus on Ki-67, which
is a nuclear biomarker, rather than a cytoplasmic biomarker. In [21], an Automated Quantitative
Analysis (AQUA) of biomarker expression detection with cytoplasmic or nuclear staining is described.
This approach has been validated in tissue microarrays, as well as in whole tissue sections using
images from ovarian and breast cancer [23]. However, AQUA employs multiplexed fluorescent stains
to compartmentalize and measure expression of specific biomarkers and the image data are not publicly
available. Bankhead et al. [22] describe an open-source solution for digital pathology and whole slide
image analysis and employed annotation, segmentation, detection and classification using machine
learning techniques.
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Advances have been made by our group in the classification of healthy tissues and organs using
histological images, for example using Masson’s trichrome and H&E [24]. Image processing techniques,
tissue and organ morphological information, image features—color and texture—clustering,
supervised learning and deep learning to identify fundamental tissues [25–28] and organs [29–31]
have been used in our approach.

In this paper, we present an in silico approach to classify and quantify IHC staining of the
predominantly cytoplasmic marker, Wnt-1, in breast cancer. We used color deconvolution, K-means
algorithm and Allred score [32] to recognize and quantify Wnt-1 levels. We propose that in silico
methods such as this have a unique advantage of being able to reduce subjectivity and optimize visual
scoring in greater detail.

This paper is structured as follows: the problem statement is presented in Section 4.1. The proposed
approach to automatic classification and quantification of Wnt-1 expression is explained in detail in
Section 4. The dataset, the experiments and the results are described in Section 2. In Section 3, the study is
discussed. Finally, the main conclusions of this work are drawn in Section 5.

2. Experiments and Results

In this section, we present the complete process to evaluate the proposed approach. We show
the results obtained in three subsections: (i) block-based Wnt-1 segmentation; (ii) block-based Wnt-1
classification; and (iii) Wnt-1 classification in a TMA tissue core image. Some measurements were
calculated through subjective evaluation of a group by two experts of the research laboratory (R.K. and
E.O.). The human is the best judge to evaluate the output of the segmentation algorithm, owing
to the difficulty of obtaining ground truth for real images [33]. Many segmentation methods are
assessed according to expert criteria [34]. Appealing to human intuition was convenient in our case,
since our goal was to create a large dataset that can later be used to train our automated system.
Taking each TMA tissue core image into account and the criteria defined using the Allred score, Wnt-1
expression was classified as follows: (i) proportion of positive cells based on five levels—1 = (0%, 1%],
2 = (1%, 10%], 3 = (10%, 33%], 4 = (33%, 66%], and 5 = (66%, 100%], where the parentheses indicate
an open interval that does not include its endpoints, and the square brackets indicate a closed interval
that includes its endpoints; (ii) intensity score based on three levels—1 is low, 2 is intermediate and 3 is
strong (see Figure 1); and (iii) Allred score is the sum of the proportion of positive tumor cells and
the intensity of immunostaining in those cells, giving a final score of 0 (negative) or between 2 and
8. On the other hand, F-score and subjective measures were used to assess the response of this work
in the classification and quantification process. The ICC was used to estimate inter-rater reliability
on quantitative data because it is highly flexible [35]. The ICC inter-rater agreement measures were
interpreted following guidelines by Terry [36]: (i) Less than 0.50, poor; (ii) between 0.50 and 0.75,
moderate; (iii) between 0.75 and 0.90, good; and (iv) between 0.90 and 1.00, excellent.

Figure 1. Labels and corresponding description for each one of the classes considered according to
Wnt-1 intensity at pixel levels, four quarterlies are identified.
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2.1. Evaluation of Block-Based Wnt-1 Segmentation

A selected set of image blocks of different TMA tissue core images, Wnt-1 segmentation results
and Wnt-1 classification according to Allred score is shown in Figure 2. Classification results are
represented using watermark with distinctive colors as follows: (i) white represents [0–1] Allred
score; (ii) yellow represents [2–3] Allred score; (iii) orange represents [4–6] Allred score; and (iv) red
represents [7–8] Allred score.

Results of the automated Wnt-1 segmentation were evaluated by two experts and using a scale
from 1 to 5 to represent poor, average, good, very good, and excellent. The Wnt-1 TMA staining
was further reviewed by two pathologists (I.Z. and M.V.), whose analysis was compared to the final
automated staining data. Figure 2 shows that Wnt-1 staining is absent from cell nuclei, consistent
with Wnt-1 being a cytoplasmic biomarker. Figure 3 contains a graphical representation of the mean
of the evaluations of the ability of the approach to recognize Wnt-1 positive cells in the set of test
block images.

a)

b)

c)

d)

e)

f )

g)

h)

i)

Figure 2. Selected Wnt-1 segmentation and classification results: (a,d,g) original image blocks are
presented; (b,e,h) automatic segmentation using color convolution; and (c,f,i) automatic Allred score
classification, scale bar = 20 µm.
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Figure 3. Results obtained from Wnt-1 positive segmentation. The y-axis is not displayed from the
origin to improve visualization.

The ability of the proposed approach to recognize Wnt-1 was given an average score of 4.26 by
the experts. The highest average was obtained for the [7–8] class and the lowest average was obtained
for the [0–1] class. This lower score is due to the potential confusion between Wnt-1 and artifactual
staining and/or debris and signal in the stroma that had not been removed. An advantage of the
approach used is the segmentation of small Wnt-1 positive areas—sometimes imperceptible to the
eye—and the possibility to evaluate the complete sample with pixel precision.

2.2. Evaluation of Block-Based Wnt-1 Classification

The classification results are shown in Figure 2. The confusion matrices [37] of automatic Wnt-1
classification, with each expert’s evaluation, for four classes using Allred classification—[0–1], [2–3],
[4–6] and [7–8]—are presented in Tables 1 and 2, respectively. Additionally, a graphical representation
of F-score measures is illustrated in Figure 4. The results obtained were calculated using the set of
block test images. The results obtained yield between 0.338 and 0.804 F-score using our approach.
The highest F-score was obtained for the [7–8] class in both cases. The lowest F-scores were achieved
for the [2–3] class in both cases, owing to its high similarity with the [4–6] class, taking into account the
presence of non-tumor cells, apoptotic nuclei and debris. ICCs of 0.634, 0.791, 0.551 and 0.630 were
obtained for the classes [0–1], [2–3], [4–6] and [7–8], respectively.

Table 1. Confusion Matrix of Automatic Classification Based on Allred Score with Expert-1. The best
F-score value is presented in bold.

[0–1] [2–3] [4–6] [7–8] F-Score

[0–1] 38 5 0 0 0.531
[2–3] 62 34 5 0 0.338
[4–6] 0 54 88 23 0.664
[7–8] 0 7 7 76 0.804

Table 2. Confusion Matrix of Automatic Classification Based on Allred Score with Expert-2. The best
F-score value is presented in bold.

[0–1] [2–3] [4–6] [7–8] F-Score

[0–1] 47 7 1 0 0.606
[2–3] 47 37 3 0 0.396
[4–6] 6 53 86 37 0.610
[7–8] 0 3 10 63 0.716
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Figure 4. F-Score obtained with Wnt-1 automatic classification using Expert-1 and Expert-2’s Allred
score. [0–1] represents no affect, [2–3] represents small, [4–6] represents moderate, and [7–8] represents
good. The y-axis is not displayed from the origin to improve visualization.

Analysis of the confusion matrices shows that high risk classes were correctly classified, while
low risk classes presented some confusion with adjacent classes. This is due to the similarity between
adjacent classes. Nevertheless, the results illustrate the extent to which the block-based automatic
classification matches manual scoring.

2.3. Evaluation of Wnt-1 Classification in a TMA Tissue Core Image

Complete TMA results were obtained considering the TMA information, the result obtained
(see Figure 5) and expert evaluation. We calculated the average ICC obtained as 0.752, showing a
moderate degree of agreement between the evaluators and the automated classification.

Figure 5. Results obtained for Wnt-1 positive classification in complete TMA tissue core images, scale
bar = 20 µm.

3. Discussion

Color deconvolution is a robust and flexible method to identify and separate the DAB signal of the
stain used. Color deconvolution and its variants have been used successfully in different histological
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and histopathological applications [38], showing advantages in determining staining densities, ratios
and even for recognizing different structures.

The results obtained cannot be compared directly to other approaches in the literature because,
although there are other solutions for automated biomarker identification, these use proprietary
software [21] or are based on nuclear biomarkers [18,20]. Nonetheless, AQUA uses immunofluorescence
intensity data to measure expression and, in some cases, is supported by additional information such as
sub-cellular localization. AQUA has been used to measure several markers, including EGFR, ER, mTOR
and PTEN. We compared the algorithm proposed in [18], called ImmunoRatio, with our method. Figure 6
illustrates the contrast among methods and shows that ImmunoRatio: (i) includes cell nuclei in biomarker
identification; and (ii) separates particles trying to simulate cell nuclei in DAB areas.

Figure 6. Comparison between immunoRatio and NUBIAWnt-11Ratio: (A) original TMA tissue core
image; (B) ImmunoRatio results; and (C) NUBIAWnt-11Ratio results.

Our proposed method is based on dividing the image into image blocks, using color deconvolution
and a K-means algorithm. Experimental evaluation has shown that our approach identified and
quantified Wnt-1 levels in a similar way as an approach that would be used in the clinic.

4. Materials and Method

4.1. Problem Statement

The level of expression of Wnt-1 may be a biomarker for some breast cancers. However, Wnt-1
expression may vary in the same sample, according to the selected region of interest in the image
(see Figure 7) or the level of Wnt-1 expression in the patient sample (see Figure 8). Color is the most
important feature to analyze IHC in histopathology images [39]. One of the most relevant problems
is that environmental factors and image acquisition devices can affect image quality and automated
results. We used a TMA that was captured using an Aperio Digital Pathology Slide Scanner to achieve
high quality images and reduce thermal drift and colour balance. There are also other types of variation
in sectioning and staining processes and our approach increases robustness using color deconvolution
and a clustering algorithm. Clinical researchers often use the Allred score to score samples manually.
Allred score considers two aspects: (i) the proportion of cells that are positive over the evaluated
area; and (ii) the intensity level of the positive staining. Pathologists normally examine larger areas or
multiples sections to confirm their observations. The details of the complete process are presented in
the following section.
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(a) (b)

Figure 7. Illustration of stained cases of Wnt-1: (a) heterogeneously; and (b) homogeneously, scale
bar = 20 µm.

Figure 8. Illustration of Wnt-1 intensity level variation. The red circles correspond to high intensity level
examples, the yellow circles correspond to medium level examples and the green circles correspond to
low intensity level examples, scale bar = 20 µm.

Using Wnt-1 as an example, we propose a method for in silico classification and quantification of
a cytoplasmic biomarker in breast cancer. A brief summary of the proposed process is given below
and a detailed explanation is presented in the following subsections. Our method is composed of
four steps: (i) a TMA tissue core image is divided into blocks; (ii) DAB areas are identified for each
block using color deconvolution; (iii) DAB areas are classified using K-means algorithm by blocks;
and (iv) each core image is classified using block-based classification. Figure 9 shows a general outline
of our approach. (1) A set of TMA tissue core images are obtained from one or many TMAs. (2) Each
TMA tissue core image is processed. (3) Blocks of m× n pixels are obtained from the input image.
In this study, 64 blocks by image were obtained. (4) After evaluating different methods to identify DAB,
color deconvolution is used to separate: (4.1) Hematoxylin; (4.2) Eosin; and (4.3) DAB. (5) Pixels that
represent tissues are identified using (4.1) and (4.2). A pixel position is represented by a three-element
feature vector Red, Gree and Blue (RGB) representing the amount of each colour in that position
contains. (6) The input for the K-means algorithm is composed by the set of RGB vectors for the
DAB image and the K parameter, representing the number of clusters to obtain, which has been set to
four groups: (6.1) high Wnt-1 positive intensity levels; (6.2) medium Wnt-1 positive intensity levels;
(6.3) low Wnt-1 positive intensity levels; and (6.4) light regions (background and spaces between
tissues). The black regions correspond to segmented areas. (7) Tissues and DAB proportion measures
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are calculated. (8) Blocks are classified by Allred score and then segmentation of the entire image is
formed by stitching classified blocks. (9) A classified TMA tissue core image is obtained. The details of
the complete process are presented in this section.

Figure 9. Proposed approach for automated segmentation and quantification of Wnt-1: (1) TMA tissue
core images with DAB (brown), hematoxylin (blue) and eosin (magenta). (2) TMA tissue core image.
(3) 64 image blocks. (4) Color Deconvolution process. Color Deconvolution results: (4.1) hematoxylin,
(4.2) eosin and (4.3) DAB of the original image. (5) Tissues without DAB. (6) Clustering process with
K-means algorithm using initial labels k = 4. (6.1) Wnt-1 high intensities. (6.2) Wnt-1 medium intensities.
(6.3) Wnt-1 low intensities. (6.4) Light regions. (7) Quantification results at pixel level. (8) Classification
and reconstruction using Allred score. (9) Image result. In the resulting images, the black or color regions
correspond to segmented areas.

4.2. Experimental Setup

Tissue specimen sample cores in the breast TMA were immunostained for the Wnt-1 protein.
The TMA was composed of 192 tissue cores, we used one image per tissue core, and 12, 288 image
blocks were used for validation (70%) and testing (30%). The images were acquired with variable pixels
of resolution according to each tissue core, between 3968× 4970 and 5400× 5500, and the images were
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stored in JPG format. To avoid introducing additional margins of error, the images were not modified
further. Block sizes varied according to the pixel resolution of each TMA core image, minimizing
differences between blocks. The datasets belonging to image blocks obtained from different samples
and patients were acquired using a 20× objective. Two scientists familiar with immunohistochemical
analysis of TMAs reviewed the TMA tissue core images blindly and graded the cytoplasmic staining
for Wnt-1 intensity and percentage of positive cells, according to the Allred scoring method. An Aperio
Digital Pathology Slide Scanner with eyepieces with a magnification factor of 10× and a field of view of
20 obtaining 200 end magnification for a 20× objective was used. We have made the datasets publicly
available at: https://vicomtech.box.com/v/Wnt1Dataset. Algorithms were implemented in Python,
using the OpenCV library for computer vision [40], on a computer with 4 cores, 8 GB memory and a
NVIDIA Titan X Pascal GPU.

4.3. Partitioning TMA Tissue Cores into Blocks

Our approach is to identify Wnt-1-positive areas using a block-based strategy. A block is the
analysis unit to identify, classify and quantify Wnt-1-positive areas in an image. A block is a fixed
non-overlapping m× n partition of a TMA tissue core image. The block size depends on the original
image size; 64 blocks are obtained per image. The number of blocks was decided heuristically taking
into account that, if the block size is too small or too large, high variations may hinder its analysis.

4.4. Block-Based Wnt-1 Segmentation

Color information is a discriminant feature for IHC staining analysis. We use the color
deconvolution strategy proposed in [41]. This method is based on orthonormal transformation of the
original RGB image of samples stained with H&E and DAB at different staining levels. This method is
composed of two steps: (i) color representation; and (ii) color deconvolution. The method proposed
in [41] provides a robust and flexible method for objective IHC analysis of samples; it provides the
possibility to determine staining densities even in areas where multiple stains are co-localized, making
it possible not only to determine surface area and overall absorption in areas with a specific colour, but
also to determine densities and ratios of densities of stains in each area (see Figure 10).

Figure 10. Colour deconvolution in histopathological images: (A) original TMA tissue core image;
and (B–D) color deconvolution results separating the contribution of hematoxylin (B), eosin (C) and
DAB (D) to the original image. Magnification 20×.

4.5. Block-Based Wnt-1 Classification

In this proposal, we classify blocks into four classes at pixel level—high intensity, medium
intensity, low intensity and light regions—using the K-means algorithm with k = 4. The K-mean’s
inputs are the initial centers—during the first attempt, we used the user-supplied labels instead
of computing them from the initial centers—and the RGB values. Initial centers were established
heuristically taking into account the expert’s evaluation for intensity level of Wnt-1 positive.

A laboratory protocol and an image capture protocol were defined to have an image dataset with
similar characteristics and to reduce errors in the automatic evaluation. However, thermal drift and
color balance affect the analysis introducing small variations in the intensities of the colors and lighting

https://vicomtech.box.com/v/Wnt1Dataset
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and other variations may be introduced during the tissue staining process. This situation implies that
the proposed method has to be robust to small variations in color balance and thermal drift that may
occur. Invariance is granted by the K-means algorithm and the protocols.

Let I : I× I→ R3 be a block of size m× n pixels in RGB color space; Hk(t) is a cluster represented
by a set of vectors in R3 in the tth iteration; and Ck(t) ∈ R3 be a centroid K of the cluster Hk(t). We use
RGB values since they contain relevant information about IHC and H&E. The initial parameters of the
K-means algorithm are set: t = 0, C1(0) = {64, 32, 21}, C2(0) = {105, 51, 27}, C3(0) = {124, 87, 45},
C4(0) = {255, 255, 255}. We write K-means in two steps: (1) assignment step where each pixel Iij is
assigned to the cluster Hk which centroid Ck is the closest in the Euclidean way:

Iij ∈ Hk(t) if k = arg min
k∈{1,2,3,4}

||Iij − Ck(t)||; (1)

and (2) an update step where each centroid Ck is updated based on the observations that belong to its
cluster Hk:

Ck(t + 1) =
1

|Hk(t)|
M

∑
i=1

N

∑
j=1

aij.Iij, (2)

where aij is Iij if Iij ∈ Hk(t) and 255 in other case. These two steps are carried out iteratively until
convergence. Let O = {O1, O2, O3, O4} be a image in RGB such that:

(Ok)ij =

{
Iij Iij ∈ Hk(t)
{255, 255, 255} else,

(3)

where a value of k represents a different class in I, such that k = 1 corresponds to high DAB intensities
pixel positions (associated with cytoplasm), k = 2 corresponds to medium DAB intensities, k = 3
corresponds to low DAB intensities, and k = 4 corresponds to light regions. Thus, we obtain DAB
levels in an image block with the RGB values of I.

4.6. Wnt-1 Classification in a TMA Tissue Core Image

Wnt-1 classification in a TMA tissue core image using the block-based Wnt-1 classification
(see Figure 9, Steps (8) and (9)) is defined as:

Let I : I× I→ R3 be a TMA tissue core image in RGB colour space; Is = {I0, I1, ..., IK} be a TMA
or a set of TMAs; B be a matrix of blocks in which each Bij represents the jth block of the image i;
M(Bij) be the block-based Wnt-1 classification method; WcI be a m×m matrix of labels where m = 8.
Then, Wnt-1 classification of a TMA tissue core image using block-based recognition is:

WcI =


M(B11) M(B12) · · · M(B1m)

M(B21) M(B22) · · · M(B2m)
...

... · · ·
...

M(Bm1) M(Bm2) · · · M(Bmm)

 . (4)

5. Conclusions

In this paper, we present an in silico approach that allows the classification and quantification of a
cytoplasmic protein in breast cancer histopathological images with an average F-score and accuracy
greater than 0.58% and 97% according to the class of risk to identified, being more precise for the high
risk classes ([7–8] Allred Score).

High variability between expert’s evaluations are due to the subjective criteria used—proportion
and intensity. The misclassified classes resulted from additional features, including the proportion of
tumor cell cells and signal from stromal cells and apoptotic cells. However, average ICC was improved
with the proposed approach.
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Using the recognized Wnt-1 positivity from a block of size m × n, we were able to classify it
according to Allred score. Taking into account these results, it is possible to classify TMA tissue core
images by extracting the appropriate segmentation with the selection of the proper classifier. Color
deconvolution is a robust and flexible method that determines density and ratios of densities of stains
in each area. In addition, the proposed in silico approach is faster than the traditional manual approach.

Using markers such as Wnt-1 may in future identify breast cancer patients with a high risk of
tumor recurrence and/or progression to metastasis, who may then benefit from further intensive
therapy after a surgery [6].

We have created and made publicly available a dataset consisting of 12, 288 image blocks—192
TMA tissue cores images—that can be used to validate the results obtained in our work or to improve
upon the proposed method.

In the future, we will extend this proposal through the following five lines of investigation:
(i) develop an approach that excludes stromal cells and return a classification by tissue core; (ii) integrate
our approach with other cytoplasmic and nuclear biomarkers (e.g., Ki-67, ER, PR, and Sox2);
(iii) evaluate ROIs with different shapes; (iv) explore new classification techniques, such as deep
learning algorithms; and (v) compare our proposal with other approaches in the literature.
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