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A B S T R A C T   

To fully mine information regarding differences among various tree species from remote sensing 
data and improve the accuracy of tree species recognition, this study utilized the spectral 
reflection value, wavelength, and time as parameters and employed three algorithms to create an 
expression for the spectral volume index (SVI). Then, data were obtained by applying RedEdge- 
MX to four phases, SVI features were extracted, and a mixed feature set of spectral band + texture 
+ digital surface model + SVI was constructed. A random forest algorithm was employed to 
determine the importance of the SVI features and derive the optimal feature set for tree species 
classification. The additional objectives were to determine if the SVI features have an active role 
in tree species classification and which algorithm is more conducive for extracting useful SVI 
features. The SVI features extracted with volume constraints exhibit better performance in tree 
species recognition than those extracted without volume constraints. Moreover, the SVI features 
extracted using a variable-constrained volume were better than those extracted using a constant- 
constrained volume. The combination of SVI features could improve the accuracy of tree species 
recognition (the highest overall accuracy was 92.76%), but the improvement effect was limited 
(the value was 92.16% when SVI features were not combined). These findings show that the SVI 
obtained using this method could be used to mine the difference information of tree species in 
images to a certain extent and hence, could be used in tree species identification.   

1. Introduction 

An important mode of forest resource investigation is to conduct a tree species survey. With the development of science and 
technology, researchers have attempted to use remote sensing (RS) technology to classify tree species and improve the technical level 
of forest resource investigation. This is because using RS technology to identify tree species can timely and accurately provide in-
formation regarding their growth status, composition structure, and spatial distribution at a large spatial scale. The acquisition of this 
information is crucial for practical applications, such as searching invasive tree species and ancient and famous trees, verifying 
afforestation, and monitoring tree species changes [1,2]. However, the problem of identifying tree species using RS technology still 
remains unsolved internationally [1]. At present, many scholars focus on in-depth explorations and research regarding this problem 
and strive to achieve a breakthrough. Solving this problem will have great practical significance for forest resource investigation, 
monitoring, and protection. First, it will change the traditional work mode of tree species surveys, which involves field sampling 
surveys, statistics, and reporting in grassroots units. Second, it will overcome the shortcomings of the traditional work mode, such as 
the requirement of considerable manpower as well as material and financial resources. Furthermore, it can quickly and accurately 
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extract the target forest tree species information, and spatial statistical analysis and visual analysis can be performed, which can 
improve the convenience and flexibility of forest resource investigation, monitoring, and protection. With the development of RS 
technology, aerospace and aerial sensors are constantly being upgraded and multiband, high-spatial-resolution RS data are emerging 
in large quantities [1]. With the advancement associated with computer-based classification methods and the progress of machine 
learning technology, more and more tree species are expected to be identified using RS technology; however, considerable difficulties 
are still present in accurately distinguishing tree species [3]. For example, the lack of spectral information with respect to RS data is a 
crucial factor contributing to this problem [1,4]. By creating new spectral features, deeply mining the difference information of tree 
species, and effectively compensating for the lack of spectral information with respect to RS data in tree species identification, an 
improvement in the accuracy of tree species recognition will play a positive role in promoting the application of RS technology in tree 
species recognition. 

The research on tree species identification using RS technology has been ongoing for a long time. Gong et al. (1998) used the 
measured hyperspectral spectral data to identify tree species for the first time [5]. Later, with the development of aerospace and 
aviation RS technology, the research on tree species classification using image data gradually emerged. Notably, scholars have 
gradually transitioned from the identification of one tree species to the identification of multiple tree species [6,7]. For identifying 
multiple tree species, scholars have mainly conducted in-depth explorations on the selection of data sources and RS bands, considered 
temporal and multitype characteristic factors, and adopted and improved classification techniques. Furthermore, many valuable re-
sults have been obtained through such studies. 

Scholars have used various types of data, such as IKONOS, QuickBird, LiDAR, WorldView-2/3, CASI, GeoEye, and unmanned aerial 
vehicle (UAV) aerial photography data, to select RS data sources and spectral bands (SBs). Some scholars have discussed the 
importance of IKONOS, WorldView-2, and WorldView-3 bands in tree species classification and selected some important bands 
conducive to tree species identification [8–12]. Furthermore, some scholars have discussed if combining data from multiple sources 
can effectively improve the accuracy of tree species recognition. For example, Cho et al. (2012) combined airborne spectral and LiDAR 
data [13]; Naidoo et al. (2012) integrated hyperspectral and LiDAR data [14]; Liu et al. (2013) combined hyperspectral CASI and 
airborne LiDAR data [15]; and Torabzadeh et al. (2019) combined imaging spectral and airborne laser scanning data to classify mixed 
forest tree species [16]. Thus, the effective combination of multisource data and the selection of key bands play a crucial role in tree 
species classification. In addition, hyperspectral imagery exhibits a better recognition ability in tree species identification than mul-
tispectral imagery [17–19]. 

With regard to time phase and feature type selection, many scholars confirmed that the use of one-period RS imagery fails to fully 
consider image changes caused by phenological changes in vegetation [20,21]. After noting this problem, some scholars introduced 
multitemporal RS data to focus on the reflection of phenological phenomena in RS data [22–26]. These scholars fully combined the 
features of different tree species in multitemporal images for classification. Their results show that seasonal effects have a strong 
influence on tree species discrimination and that using multiperiod RS images combinedly can improve the accuracy of tree species 
classification [27,28]. Some scholars combined SBs, spectral indices, texture features, color space features, height features, 
time-sequence features, and other multitype features of aerial photos and WorldView-3, airborne laser, and other multisource data to 
analyze the effect of tree species recognition [29–35]. Their studies reveal that an effective combination of multiple types and many 
features has a better classification effect than the use of one feature. 

With regard to the use of classifiers, some scholars conducted research on the features of a support vector machine (SVM), object- 
oriented classification (OOC), a random forest (RF) algorithm, classified regression trees, and maximum-likelihood classification for 
tree species discrimination [36–40]. Their results show that SVMs, OOC, and RF algorithms have better performance than others, and 
an object-oriented SVM can achieve high recognition accuracy. With the introduction of machine learning in image classification 
[41–43] and in the feature selection and classification of high-dimensional data, XGBoost [44], LightGBM [45], and Softmax classi-
fication [42,46] methods are actively adopted owing to their superior performance compared to traditional methods. Tree species 
identification requires combining many features from multiple sources and multiphase RS data. Machine learning is actively used in 
research, and the accuracy of tree species identification has been effectively improved. 

As evident from the literature review, in the research on the RS identification of tree species, scholars have considerably explored 
the selection of data sources, bands, imaging time phases, feature types, and classifiers; however, the mining of new features related to 
spectral indices is relatively lacking. Most existing studies have classified tree species by combining common spectral indices, such as 
NDVI, SAVI, EVI, ARVI, VARI, and CARI, with SBs, textures, and other features [2,9,47,48]. Additionally, some scholars have created a 
spectral area index and applied it to tree species classification [49,50]. Some studies have excluded the possibility of mistakenly 
extracting blue ground objects as vegetation in tree species classification by creating spectral indices that can extract them [41,51,52]. 
These studies show that the common vegetation index and new spectral area index are helpful for vegetation extraction and can 
improve the accuracy of tree species recognition. The spectral indices used previously in tree species classification were created 
through single or mixed operations, such as addition, subtraction, multiplication, and division between different bands. New spectral 
indices were later developed based on the slope and area differences formed by the spectral curves of different tree species in specific 
bands. Using the volume differences of cylinders formed by the spectral curves of different tree species in multitemporal RS images to 
obtain the latest spectral indices is now possible. 

The reflectance spectrum curves of different tree species in multitemporal images should have certain differences in the volume of 
cylinders formed in a three-dimensional space [53]. Based on this, the author of the present study attempted to create spectral volume 
indices (SVIs) and test if their combination in a certain image feature set can improve the accuracy of tree species recognition. Herein, 
the spectral reflectance value, wavelength, and imaging time were used as parameters to create a spectral index that can express the 
volume of a columnar body formed by tree species in the spectral feature space. Additionally, RedEdge-MX images for four seasons 
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(spring, summer, autumn, and winter) were used as experimental data. Three algorithms were employed to calculate the volume of a 
cylinder under different constraints. The features extracted based on the SVI with SBs, textures, and digital surface models (DSMs) were 
combined. Then, an RF algorithm was employed to determine the importance ranking of all features and observe the ranking of SVIs in 
mixed feature sets (MFSs) and the number of selected features in optimal feature sets (OFSs) to comprehensively evaluate the per-
formance of SVIs in tree species recognition. The research results will provide theoretical and methodological support for mining 
valuable image features of tree species identified using RS technology. 

2. Materials and methods 

2.1. Data acquisition and preprocessing 

2.1.1. RedEdge-MX imagery 
The study area is located on the new campus of Luoyang Normal University in Luoyang, Henan Province, China (Fig. 1(a)). The RS 

data used in this study were acquired using a UAV (RedEdge-MX sensor was mounted on a UAV JOUAV CW-15; the flight route and 
photo points of the UAV were designed using the ground station software JOUAV CWCommander, which was produced by China 
Chengdu Zongheng Automation Technology Co., Ltd.; the UAV flight height was ~370 m), and collected each season RS data have five 
SBs and one DSM [54]. Table 1 shows the detailed parameters of this sensor band setting, wavelength range, and spatial resolution (at 
the time of imaging). The RS data (Fig. 1) used in this study were imaged on March 15, 2021 (leafing and flowering periods) (Fig. 1(b)), 
September 29, 2020 (leafing period) (Fig. 1(c)), November 9, 2020 (leaf discoloration period) (Fig. 1(d)), and January 3, 2020 (late 
defoliation period) (Fig. 1(e)). Detailed data acquisition and preprocessing procedures can be found in a previous study [53]. 

Fig. 1. Location map of the test area (~2.2 ha) and its four-seasonal imagery. (a) Location map of the test area; (b)–(e) spring, summer, autumn, and 
winter images, respectively, of the study area. 
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2.1.2. Tree species sample data 
Between April and June 2021, tree species in the study area were surveyed in detail. During that time, the patches of the tree species 

were directly delineated, and their names were marked on RedEdge-MX printed images (standard false color). The outdoor tree species 
data collected were used to train and test tree species discrimination. In a laboratory, the tree species sample data were recorded in 
spreadsheets (Table 2) and converted into region of interest (ROI) files, which could be loaded on RedEdge-MX imagery for classi-
fication and verification. Detailed tree species survey and sample-collection procedures can also be found in a previous study [53]. All 
ROIs (right of Fig. 1(a)) and patches (Fig. 7(a)) of each tree species sample (for training and validation) were delineated on the 
corresponding images. The number of pixels for tree species classification and accuracy verification is shown in Table 2. 

2.2. Methods 

2.2.1. Creation of SVIs 
In three-dimensional space, the spectral reflectance curves of the same tree species derived from spring, summer, autumn, winter, 

or additional time-series images will generally form a special prism with a fixed shape and volume. However, different types of tree 
species should have differences in the shape and volume of the prism obtained from the spectral curves of multiple time-series images. 
The creation and introduction of features that can express the prism volume difference of different tree species into tree species 
classification should improve the classification accuracy. Therefore, taking time (t), band (b), and reflectivity (r) as the three coor-
dinate axes of a three-dimensional coordinate system, the prism formed by the spectral reflectance curve of the tree species could be 
constructed. As shown in Fig. 2(a), if the spectral reflectance curves of tree species 1 are T1C1 and T2C1 in T1 and T2 periods, 
respectively, the quadrangular prism formed by the two curves between bands B1 and B2 is A 
(T1B1–T1B2–T2B2–T2B1–R21–R11–R12–R22). Moreover, the quadrangular prism of tree species 2 formed by curves T1C2 and T2C2 be-
tween bands B1 and B2 is T1B1–T1B2–T2B2–T2B1–r21–r11–r12–r22. The volume of the quadrangular prism formed by the spectral 
reflectance curves between the two bands of the two tree species is different. From this perspective, we can construct an SVI that can 
mine the difference information of various tree species in images. 

In Fig. 2(a), taking tree species 1 as an example, quadrangular prism A can be disassembled into triangular prisms B 

Table 1 
Band, wavelength range, and spatial resolution information of the RedEdge-MX sensor.  

Band number Band name Spatial resolution (cm) Wavelength range (μm) Central wavelength (μm) 

1 Blue 15.00 0.465–0.485 0.475 
2 Green 0.550–0.570 0.560 
3 Red 0.663–0.673 0.668 
4 Red edge 0.712–0.722 0.717 
5 Near infrared 0.820–0.860 0.840  

Table 2 
Scientific names of each tree species and numbers of pixels for tree species classification and accuracy verification.  

Tree species 
number 

Scientific names Training 
samples 

Validation 
samples 

Tree species 
number 

Scientific names Training 
samples 

Validation 
samples 

T1 Photinia × fraseri 238 32,400 T17 Paeonia suffruticosa 237 23,733 
T2 Loropetalum chinense var. 

Rubrum 
257 11,437 T18 Acer serrulatum 202 8560 

T3 Platanus orientalis 238 33,840 T19 Armeniaca mume f. 
Rubriflora 

226 34,120 

T4 Armeniaca vulgaris 230 14,538 T20 Acer negundo 
“Aurea” 

231 17,933 

T5 Punica granatum 
“Flavescens” 

274 14,476 T21 Cerasus avium 207 28,549 

T6 Cedrus deodara 235 20,098 T22 Nandina domestica 353 17,129 
T7 Cinnamomum camphora 262 24,080 T23 Prunus × blireana 

“Meiren” 
230 25,496 

T8 Magnolia grandiflora 206 16,593 T24 Viburnum 
odoratissimum 

220 3967 

T9 Malus micromalus 242 33,414 T25 Ligustrum quihoui 232 7168 
T10 Chaenomeles cathayensis 263 20,711 T26 Crataegus pinnatifida 218 7946 
T11 Osmanthus fragrans var. 

Semperflorens 
148 13,288 T27 Bischofia polycarpa 311 27,136 

T12 Rosa chinensis 223 32,708 T28 Koelreuteria 
paniculata 

255 13,973 

T13 Acer palmatum 
“Atropurpureum” 

231 13,283 T29 Paeonia lactiflora 132 5691 

T14 Aesculus chinensis 238 13,582 T30 Populus tomentosa 243 14,752 
T15 Malus halliana 247 16,280 T31 Wisteria sinensis 213 3772 
T16 Michelia champaca 279 47,974 T32 Climbing Roses 229 11,859  
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Fig. 2. Schematic of spectral volume index (SVI) construction and illustration of SVI extraction. (a) Schematic of the volume difference of prisms 
formed by the spectral reflectance curves of different tree species. (b) Schematic of connecting the projection points of spectral reflectance values in 
the form of main (sub) diagonal lines. (c) SVI explanatory diagram extracted in this study. 

Fig. 3. Cumulative distribution of SVIs extracted using the three algorithms in the total feature set under different texture extraction windows. (a) 
Under a 3 × 3 window; (b) under a 9 × 9 window; and (c) under a 43 × 43 window. 
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Fig. 4. Number of features involved and overall accuracy change of tree species identification when ten features were eliminated each time. (a) 
Under a 3 × 3 window; (b) under a 9 × 9 window; and (c) under a 43 × 43 window. 

Fig. 5. Number of features involved and the overall accuracy change of tree species discrimination when one feature was eliminated each time. (a) 
Under a 3 × 3 window; (b) under a 9 × 9 window; and (c) under a 43 × 43 window. 

Fig. 6. Producer and user accuracy histograms of the best discrimination results.  
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(T1B1–T1B2–T2B1–R21–R11–R12) and C (T1B2–T2B2–T2B1–R21–R12–R22). We determine the volumes of the two triangular prisms 
separately and then add them together to obtain the volume of quadrangular prism A (Eq. (3)). The volumes of triangular prisms B and 
C can be obtained using Eqs. (1) and (2), respectively. 

VB =
1
3
×

(
1
2
×Δt12 ×Δλ12

)

×(R11 +R12 +R21)=
1
6
×Δt12 ×Δλ12 × (R11 +R12 +R21) (1)  

VC =
1
3
×

(
1
2
×Δt12 ×Δλ12

)

×(R12 +R22 +R21)=
1
6
×Δt12 ×Δλ12 × (R12 +R22 +R21) (2)  

VA =VB +VC =
1
6
×Δt12 ×Δλ12 × (R11 + 2×(R12 +R21)+R22) (3)  

where Δt12 represents the time difference between T2 and T1, Δλ12 represents the center wavelength difference between bands B2 and 
B1, R11 and R12 are the reflectances of tree species 1 on bands B1 and B2, respectively, at T1 phase, and R21 and R22 are the reflectances 
of tree species 1 on bands B1 and B2, respectively, at T2 phase. 

When viewed vertically downward from the top surface of Fig. 2(a), the projection of the spectral reflectance value points of the 
tree species is shown in Fig. 2(b). The corresponding projection points are successively connected in the form of subdiagonal lines 
(lower left to upper right; black dotted lines in the figure). The volume of each quadrangular prism is first calculated separately, and 
then, all such volumes are added to obtain a unified model of the SVI formed by the spectral reflectance curve of multitemporal tree 
species in the three-dimensional space, as shown in Eq. (4). The corresponding projection value points are successively connected in 
the form of a main diagonal line (upper left to lower right; red dotted lines in the figure). The unified model of the SVI created in this 
form is shown in Eq. (5). Although formulas (4) and (5) are similar, they are fully equivalent only when Rmj + Rni = Rmi + Rnj. 

SVI1 =
1
6
×

∑K− 1

m=1
Δtmn ×

∑N− 1

i=1
Δλij ×

(
Rmi + 2×

(
Rmj +Rni

)
+Rnj

)
(4)  

SVI2 =
1
6
×

∑K− 1

m=1
Δtmn ×

∑N− 1

i=1
Δλij ×

(
Rmj + 2×

(
Rmi +Rnj

)
+Rni

)
(5)  

where SVI is the spectral volume index; K is the total number of RS data used; m = 1, 2, 3, …, K − 1; N is the band number of RS data; 
and i = 1, 2, 3, …, N − 1 with j = i + 1. Rmi is the spectral reflectance value of the ith band in the m-phase, Rmj is the spectral reflectance 
value of the (i + 1)th band in the m-phase, Rni is the spectral reflectance value of the ith band in the m + 1 phase, Rnj is the spectral 
reflectance value of the (i + 1)th band in the m + 1 phase, Δλij is the difference in the center wavelengths of the j- and i-band, and Δtmn is 
the time difference between the n- and m-phase. 

Furthermore, to increase the volume difference of the prism formed by the spectral reflectance curves of different tree species, the 
volume of the regular triangular prism, whose height is the smallest spectral reflectance value among all the tree species, was sub-

Fig. 7. Spider-web graphs of the OFS 1, OFS 2, OFS 3, and MFS classification results. (a) Graph of producer accuracies and (b) graph of 
user accuracies. 
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tracted from the prism to enhance the contrast. When the volume of the regular triangular prism is calculated by multiplying the height 
C (a constant) with the base area, the unified model of the SVI is obtained as per Eq. (6). When the volume of the regular triangular 
prism is calculated by multiplying the height Bm (a variable) with the base area, the unified model of the SVI is obtained as per Eq. (7). 

SVI3 =
1
6
×

∑K− 1

m=1
Δtmn ×

∑N− 1

i=1
Δλij ×

(
Rmj + 2×

(
Rmi +Rnj

)
+Rni − 3×C

)
(6)  

SVI4 =
1
6
×

∑K− 1

m=1
Δtmn ×

∑N− 1

i=1
Δλij ×

(
Rmj + 2×

(
Rmi +Rnj

)
+Rni − 3×Bm

)
(7)  

2.2.2. Extraction of SVI features 
Following the abovementioned construction strategy, the projection points of tree species spectral reflectance value points in the 5- 

band RedEdge-MX data in four time periods can be obtained, as shown in Fig. 2(c). Connecting nonadjacent projection points in a 
subdiagonal form (this form is discussed in this study) can divide Fig. 2(c) into 24 triangular regions. Using Eq. (4) to extract SVI 
features (the time interval between adjacent time phase data is calculated in units of 1), 24 triangular prisms (V1–V24) can be first 
extracted. Second, the quadrangular prism V1 + V2 formed between bands 1 and 2 of the spring and summer data (summer and 
autumn; autumn and winter) is named Vsp-su 1–2. In this manner, bands 1 to 3, 4, and 5 (bands 2 to 3, 4, and 5; bands 3 to 4 and 5; bands 
4 and 5) are obtained in turn to form the quadrangular prism volume, and 30 SVI features can be obtained. Third, the quadrangular 
prisms Vsp-su 1–5, Vsu-au 1–5, and Vau-wi 1–5 are added to obtain three SVI features (i.e., Vsp-su-au 1–5, Vsp-su-au-wi 1–5, and Vsu-au-wi 1–5). Based 
on the abovementioned three SVI feature extraction forms, 57 SVIs can be obtained. According to Eqs. (6) and (7), each algorithm can 
extract 57 SVI features. This study mainly compares the performance of SVIs extracted using the three algorithms in tree species 
classification. During the calculation of the volume of a single triangular prism, the constant C and variable Bm were used according to 
the statistical results shown in Table 3. 

2.2.3. Mask construction and auxiliary feature extraction 
To verify the performance of the newly created SVI in tree species classification, a mask was first constructed to cover the nontree 

part of the image during tree species discrimination, and only the tree part of the image was retained for participation in the calcu-
lation. Then, an MFS (20 SBs + 160 textures (TEXs) + 4 DSMs) was constructed. The SB comprised 5-band images in four seasons, 
including 20 bands, while the DSM comprised one DSM in each season, including four DSM features. Texture features comprised mean, 
variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation extracted from 20 bands, including 160 
features. After constructing the MFS, the extracted SVI features were combined with the feature set, the importance of all features was 
sorted using the RF algorithm, and the performance of SVI features in tree species discrimination was analyzed. The mask construction 
and TEX extraction were the same as those in a previous study [53]. As the window size used for texture extraction affects the clas-
sification accuracy of the image, the texture extraction windows with the minimum (3 × 3), middle (9 × 9), and highest (43 × 43) tree 
species classification accuracies were selected for analysis [53]. Moreover, changes in the importance of SVI features were compared 
and analyzed as the texture performance was enhanced in tree species classification. 

2.2.4. Image classification and OFS determination 
The feature sets of MFSs combined with SVI features (MFSs + 57 SVIs) and the SVI feature set (57 SVIs) were used as image feature 

sets for tree species recognition. Considering that these two types of feature sets are high-dimensional datasets, they will affect the 
classification performance of classifiers. Thus, a strong correlation was observed between SVI and 20 S B features, which would affect 
the evaluation of the importance of SVI features in the classification results. Therefore, classifiers that are insensitive to feature 

Table 3 
Values of the constant C and variable Bm of a single triangular prism SVI extracted by different band combinations.  

SVIs of the triangular prism Constant C Variable Bm SVIs of the triangular prism Constant C Variable Bm 

V1 0.09283 Summer b1 V13 0.08652 Summer b3 

V2 0.09283 Summer b1 V14 0.09762 Autumn b3 

V3 0.10796 Summer b2 V15 0.18564 Summer b4 

V4 0.08652 Summer b3 V16 0.20664 Autumn b4 

V5 0.08652 Summer b3 V17 0.09745 Autumn b1 

V6 0.08652 Summer b3 V18 0.09988 Autumn b2 

V7 0.18564 Summer b4 V19 0.09762 Autumn b3 

V8 0.18564 Summer b4 V20 0.09762 Autumn b3 

V9 0.09283 Summer b1 V21 0.09762 Autumn b3 

V10 0.09745 Autumn b1 V22 0.13953 Winter b3 

V11 0.08652 Summer b3 V23 0.20664 Autumn b4 

V12 0.08652 Summer b3 V24 0.24432 Autumn b5 

Notes: Summer b1, Autumn b1, and Winter b3 represent RedEdge-MX band 1 of summer data, band 1 of autumn data, and band 3 of winter data, 
respectively. For other such terms, one can refer to the above three explanations for understanding. In addition, the constant C and its corresponding 
variable Bm were determined from the statistics of the training samples of 32 tree species. 
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dimensionality and correlation must be selected. An RF algorithm was selected for all experiments involved in the SVI evaluation 
because of its excellent performance in high-dimensional data classification and feature importance ranking. The classification and 
feature ranking tool was EnMAP-Box [55]. 

When the tree species classification using the abovementioned feature sets was completed, the importance of features in the MFSs 
+ SVIs was measured, and the OFSs for each MFS + SVI were obtained. First, the importance of features according to the normalized 
importance value was ranked from 1 to 241. Then, starting from MFSs + SVIs containing 240 features, the tree species were classified 
in a decreasing form for every ten participating features, and the overall accuracy was recorded to obtain the feature set with the 
highest accuracy (the number of participating features was recorded as N). Next, the features were sorted according to their impor-
tance and were eliminated one by one within the range of feature participation numbers from N − 10 to N + 10. The overall accuracy 
was recorded, and the corresponding classification feature set was determined when the overall accuracy was the highest; it was 
determined as the best feature set for tree species identification. 

2.2.5. SVI performance evaluation 
The importance of SVI features in tree classification and appropriate calculation methods was evaluated from three aspects: the 

cumulative distribution of SVI features in new MFSs, the number of selected SVI features in the OFSs, and the difference in the 
classification accuracy of SVI feature sets for tree species obtained using the three algorithms. The classification results of the MFSs, 
whose textures were extracted from 3 × 3, 9 × 9, and 43 × 43 window sizes, were used as a reference to compare and analyze the 
experimental results of this study. 

Table 4 
Status of SVIs extracted using the three algorithms (Algs.) in the optimal feature set under three types of texture extraction windows.  

Window size for texture extraction 3 × 3 9 × 9 43 × 43 

Alg. 1 Alg. 2 Alg. 3 Alg. 
1 

Alg. 
2 

Alg. 3 Alg. 1 Alg. 2 Alg. 3 

Total number of features contained in the OFS 37 63 23 32 40 33 158 187 174 
Number of SVI features in the OFS 4 7 8 0 0 7 9 21 21 
Selected SVI features (sorted by a decreasing 

importance value) 
V16 V24 V11   Vsu-au 

1–2 

V18 V07 V02 

V05 V05 V02   V11 V20 V24 V16 

Vau-wi 

4–5 

V22 V23   V10 V10 V04 Vsu-au 1–3 

V23 Vau-wi 

4–5 

V16   V02 V14 Vsp-su 

4–5 

V11  

V10 Vsu-au 

1–2   

Vsu-au 

1–3 

V05 V18 Vsp-su-au 

1–5  

V16 Vsu-au 

1–3   

V19 Vsu-au 

1–3 

V10 Vsu-au 2–5  

Vau-wi 

2–5 

V15   V17 Vsp-su 

4–5 

V09 Vsu-au 4–5   

V10    V02 V08 Vsu-au 1–2       

Vsp-su 

1–2 

V19 V23        

Vsp-su 

2–5 

V19        

Vsp-su 

2–3 

V17        

Vsp-su 

1–2 

V08        

V05 V04        

Vau-wi 

1–5 

Vsp-su 1–3        

Vau-wi 

2–5 

V20        

V12 Vsp-su 2–3        

Vau-wi 

2–3 

V10        

Vsp-su 

3–4 

Vsu-au 3–5        

V06 Vsp-su 4–5        

V03 V14        

Vsp-wi 

1–5 

V18  
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3. Results and analyses 

3.1. Cumulative distribution of SVI features 

In tree species classification, the cumulative distribution of SVIs extracted using the three algorithms in the MFSs + SVIs (160 TEXs 
(extracted under different scale windows) + 20 SBs + 4 DSMs + 57 SVIs) is shown in Fig. 3(a) and (c). 

As shown in Fig. 3(a) and (c), with the increase of texture extraction windows in tree species recognition, the cumulative distri-
bution of SVIs extracted using the three algorithms in the feature sets of MFSs + SVIs gradually changes from a relatively front dis-
tribution to a rear distribution. Regardless of the scale window used to extract texture, the cumulative distribution of SVIs extracted 
using algorithm 3 in the feature sets of MFSs + SVIs was more forward than those extracted using the other algorithms. The SVIs 
extracted using algorithms 2 and 3 have similar distributions in the MFS + SVI feature sets (textures derived from different extraction 
windows). 

3.2. Optimal feature participation number in tree species classification 

Fig. 4(a) and (c) shows the overall accuracy change of tree species recognition in which the feature participation number was 
between 20 and 240, and 10 features were eliminated each time. Fig. 5(a) and (c) shows the participation number range of the most 
suitable quantitative features for tree species discrimination and the overall accuracy change of the tree species discrimination with 
one feature eliminated each time. 

As shown in Fig. 4(a)-(c), with the gradual reduction of participating features, the overall accuracy of tree species discrimination 
first rises and then begins to decline. When the size of the texture extraction window was small (i.e., 3 × 3 and 9 × 9), a few 
participating features can make tree species classification achieve high overall accuracy (Fig. 4(a) and (b)). In contrast, when the size of 
the texture extraction window was large (under a 43 × 43 window), the high accuracy of tree species recognition was determined by 
the participation of many features (Fig. 4(c)). 

Under the 3 × 3, 9 × 9, and 43 × 43 windows, the numbers of features in the best feature set in tree species discrimination for the 
MFSs + SVIs constructed using the three algorithms were approximately 40, 70, and 30; 30, 40, and 40; and 150, 190, and 180, 
respectively. 

As can be seen from the more detailed feature elimination process (Fig. 5(a)-(c)), in a small-scale window (e.g., 3 × 3 and 9 × 9), the 
MFSs + SVIs constructed using algorithms 1 and 3 exhibit better performance in tree species classification than those constructed using 
algorithm 2 (i.e., in most cases, the overall tree species identification accuracy of algorithms 1 and 3 was higher than that of algorithm 
2) (Fig. 5(a) and (b)). However, under the optimal texture extraction window (43 × 43), the MFSs + SVIs constructed using algorithms 
2 and 3 outperformed those constructed using algorithm 1 in tree species classification (Fig. 5(c)). Based on Figs. 4 and 5, regardless of 
which window scale was used to extract texture, the feature set MFS + SVIs constructed using algorithm 3 has satisfactory performance 
in tree species classification. 

3.3. Status of SVIs in the OFS 

The selected numbers and feature names of SVIs extracted using the three algorithms in the OFSs of tree species discrimination are 
shown in Table 4. 

In Table 4, when the 3 × 3 and 43 × 43 windows were used for texture extraction, the SVIs calculated using the three algorithms 
were selected in the OFSs. Conversely, when the processing window used for texture extraction was 9 × 9, only the SVI features 
calculated using algorithm 3 were selected in the OFS. The number of features contained in the OFS for tree species classification 
obtained by extracting texture under a large window (43 × 43) was more than that in the OFS obtained by extracting texture under the 
small windows (3 × 3 and 9 × 9). Correspondingly, under the optimal texture extraction window, the number of SVI features involved 
in the OFS was more than that involved in the OFS when the textures were extracted under the small windows. 

The overall accuracies of the MFSs + SVIs, OFSs of the MFSs + SVIs, and MFSs for tree species classification are shown in Table 5. 
From Table 5, the overall accuracies of the OFSs for tree species classification were higher than their parent feature sets MFSs +

SVIs and the smaller the windows for texture extraction, the more obvious the difference in their accuracy. The overall accuracy of the 
OFS with the participation of the SVI calculated using algorithm 3 for tree species discrimination was higher than that of the OFS with 
the participation of the SVI calculated using the other two algorithms. Using MFSs for tree species discrimination, the maximum 
accuracies of tree species recognition were 79.38%, 84.82%, and 92.16%. However, when the SVIs extracted using the three 

Table 5 
Accuracy difference between the mixed feature set and optimal feature set constructed using the three algorithms in tree species recognition under 
different texture extraction windows.  

Window size for texture extraction SVI calculated using Alg. 1 SVI calculated using Alg. 2 SVI calculated using Alg. 3 MFSs 

MFS + SVIs OFS 1 MFS + SVIs OFS 2 MFS + SVIs OFS 3 

3 × 3 75.95 80.59 75.98 79.85 75.42 80.56 79.38 
9 × 9 84.04 86.86 84.20 86.41 83.73 87.37 84.82 
43 × 43 92.18 92.34 92.55 92.56 92.44 92.76 92.16  
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algorithms were combined, the accuracy of tree species discrimination exceeded that of the combination of the three types of features. 

3.4. Only SVI features were used for tree species discrimination 

By only using the SVI features extracted using the three algorithms to classify tree species, the obtained overall accuracies and 
Kappa coefficients are shown in Table 6. 

As shown in Table 6, the accuracy of the SVI features extracted using algorithm 2 for tree species classification was slightly higher 
than that extracted using algorithm 1. The accuracy of the SVI features extracted using algorithm 3 for tree species classification was 
considerably higher than that extracted using algorithms 1 and 2. 

3.5. OFS classification accuracy analysis 

Using a window size of 43 × 43 to extract textures and algorithm 3 to calculate SVIs, when 187 features were involved in the 
classification, the accuracy of tree species discrimination achieved the highest value. Therefore, the MFS containing 187 features was 
the OFS for tree species discrimination. Fig. 6 shows the fitted histogram of producer and user accuracies obtained using the OFS for 
tree species classification. 

From Fig. 6 and the actual data, using the OFS for 32 greening tree species discrimination, the producer accuracies varied from 
81.43% (lowest producer accuracy, T7) to 99.93% (highest producer accuracy, T11). The user accuracies ranged from 69.59% (lowest 
user accuracy, T24) to 100.00% (highest user accuracy, T3). Except for T24 (69.59%), T25 (72.39%), T26 (77.05%), T29 (76.94%), 
and T31 (73.49%), the user accuracies of all the other tree species remained high. Except for T6, T24, T25, T26, T29, T31, and T32, the 
producer and user accuracies of all the other tree species had a minimal difference. In general, a satisfactory recognition result was 
obtained when the OFS was used for tree species classification. 

3.6. Comparison of the effectiveness of tree species discrimination 

Fig. 7(a) and (b) show the producer and user accuracies in spider-web graphs generated by the OFSs (supported by the three al-
gorithms) and the MFS classification results under the 43 × 43 texture extraction window, respectively, and their tree species iden-
tification maps are presented in Fig. 8(b) and 8(e). 

Fig. 7(a) shows that the difference in the producer accuracy among the OFSs and MFS for the tree species classification was 
extremely small. The discrimination effect of T6, T10, T13, T15, T16, T28, T29, and T32 when using OFS 3 was slightly better than that 
when using other feature sets. Moreover, the discrimination effect of T5, T9, and T30 when using OFS 3 was slightly worse than that 
when using other feature sets. For user accuracy (Fig. 7(b)), the discrimination effect of T4, T5, T8, T9, T12, T25, and T27 when using 
OFS 3 was slightly better than that when using other feature sets. Moreover, the discrimination effect of tree species T13, T15, and T19 
when using OFS 3 was slightly worse than that when using other feature sets. 

Overall, the curve shapes trend of producer and user accuracies generated from the four types of datasets in tree species classi-
fication was relatively similar on the spider-web graphs. The OFS supported by the algorithm 3 construction was better than the other 
feature sets in the tree species recognition. 

Fig. 8(a) shows the true distribution of the patches of tree species in the study area. The results of discriminating them using the 
OFSs and MFS demonstrated a high degree of consistency with their actual distribution. However, some tree species were incorrectly 
classified at the edges and inside of the patches. For example, in Fig. 8(b)-8(e), parts of T1, T7, and T16 were mistakenly identified as 
T24 and T25, T6, and T4, respectively. Some slight differences were observed in the tree species identification results when using the 
four types of datasets. However, their overall effects on tree species identification were consistent and satisfactory. 

4. Discussion 

When extracting texture under the most suitable window, the number of features in the OFSs for tree species classification was 
considerably larger than that in the optimal texture feature sets obtained by extracting texture under nonoptimal windows (Figs. 4 and 
5, Table 4). Previous studies have concluded that in tree species recognition based on high-dimensional data, an optimal tree species 
identification feature set with a few features can be obtained via feature optimization [2,56]. When the window for texture extraction 
was relatively small, the results obtained in this study were consistent with those of previous studies. However, when the window of 
texture extraction was relatively large, the results differed considerably from those of previous studies. A possible reason for this is that 
texture extraction in a small window cannot result in high-accuracy tree species classification, and the presence of a few features can 
result in tree species discrimination accuracy reaching the upper limit. To extract texture under an optimal large window, more 
features must be considered in decision-making to increase the accuracy of tree species classification to the upper limit. The findings of 
this study suggest that the optimal large window could be utilized for texture extraction in multitype feature–based tree species 
identification. 

The cumulative distribution of SVIs in the MFS (Fig. 3), accuracy of tree species classification (Fig. 5, Tables 5 and 6), and number of 
features selected in the OFSs (Table 4) of the SVI extracted using algorithm 3 were better than those obtained using the remaining two 
algorithms. In addition, algorithms 1 and 2 exhibit large randomness in the SVI features of the OFSs under different texture windows 
(Table 4). The number of SVI features extracted using algorithms 1 and 2 in the OFSs is 0 under the 9 × 9 window. This finding in-
dicates that the number of image features contained in the OFSs decreases with the increasing importance of texture features in tree 
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species classification and that the SVIs extracted using the two algorithms were not satisfactory, resulting in no SVI features being 
selected. This reveals that algorithms 1 and 2 are not superior to algorithm 3. 

The performance of the SVIs extracted with a relative volume constraint in tree species classification was better than that of the SVIs 
extracted without volume constraints. Algorithm 2 (texture extracted under the 43 × 43 window) was better than algorithm 1 in terms 
of the evaluation of the cumulative distribution of feature importance, accuracy of tree species classification, and number of SVIs 

Table 6 
Situation of the SVI feature sets for tree species classification.  

Algorithm used Overall accuracy % Kappa coefficient 

Algorithm 1 55.59 0.5401 
Algorithm 2 55.80 0.5422 
Algorithm 3 57.18 0.5567  

Fig. 8. Tree species discrimination maps of different feature sets. (a) Ground truth; (b) classification result of OFS 1; (c) classification result of OFS 
2; (d) classification result of OFS 3; and (e) classification result of MFS. 
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included in the OFS. The comparison between algorithms 3 and 1 also shows that the SVIs extracted with a relative volume constraint 
are considerably helpful for tree species classification. These results indicate that the SVI extracted with relative volume constraints 
exhibits satisfactory performance in the case of tree species discrimination. The SVI extracted by constraining the cylinder volume can 
improve the accuracy of tree species classification, probably because the volume constraint makes the differences between various tree 
species obvious. The effect of the variable constraint is better than that of the constant constraint, probably because the variable 
constraint makes the spectral volume difference of the same tree species consistent at different pixel positions and increases the 
spectral volume difference of different tree species. However, the constant constraint fails to consider the variation of different pixels 
with respect to the same tree species in different bands, and the calculated spectral volume may make the same tree species have 
certain differences. 

Herein, the SVI extracted using algorithm 3 exhibits excellent performance. Taking this as an example, when the texture was 
extracted under small windows (3 × 3 and 9 × 9), most of the important SVI variables in the OFSs could be found in the OFS 
determined by extracting textures under a large window (43 × 43) (Table 4); however, some changes were present in the importance 
order. This finding shows that the important SVIs in tree species recognition are deterministic rather than random. We can determine 
the SVIs that are useful in tree species identification from multiple experiments, and these variables can be directly selected in sub-
sequent studies. 

The window size of texture extraction affects the performance of SVIs in tree species classification. When extracting textures under 
nonoptimal windows, the accuracy of tree species classification of the original MFS with SVIs is lower than that without SVIs (Table 5). 
When extracting textures under the optimal window and adding the SVI feature to the original MFS, the accuracies of tree species 
recognition of the three types of feature sets (92.18%, 92.55%, and 92.44%) were higher than that of the original MFS (92.16%) 
(Table 5). This finding shows that the most suitable window for texture feature extraction can make the real performance of SVIs well 
displayed in tree species classification. A possible reason for this is that a certain correlation exists among the extracted SVI features. 
When the texture performance is not very strong, a severe Hughes phenomenon occurs, inhibiting the excellent tree species identi-
fication performance of the feature set. However, when the texture performance becomes stronger, the severe Hughes phenomenon is 
eliminated. This result indicates that suitable large windows should be used to extract texture features in tree species discrimination. 

Feature optimization seems to be crucial in tree species classification based on high-dimensional mixed features. As shown in Fig. 4 
and Table 5, whether the texture feature is extracted under a small window or a suitable large window, after the SVI feature is 
incorporated, the accuracy of tree species classification is not as high as that of the OFS obtained after feature optimization. These 
experimental results show that in tree species discrimination based on high-dimensional mixed features, the features that are beneficial 
for tree species classification should be screened, and negative features should be eliminated. After removing some features with high 
correlation and little use, the mapping of tree species can be improved to a certain extent. 

Herein, data were collected from two dormancy periods of some tree species (i.e., spring and winter). During these two periods, the 
spectral reflectance information of patches where dormant tree species are located mainly reflects the comprehensive effect of the 
spectral reflectance of ground objects, such as tree trunks, fallen leaves, and soil background. Combining SVI features for tree species 
identification is reasonable and effective when the underlying surface environment of a tree species remains the same. However, when 
the underlying surface environment is highly heterogeneous, the volume of prisms formed by the spectral curves of same tree species 
may show large differences and introducing SVI features for tree species classification may result in large errors. Therefore, introducing 
SVI features for tree species classification requires consideration of similarities and differences in the stand environment where the 
same dormant tree species are located. 

In this study, only one small study area was considered, and a preliminary test was performed using single-type imagery from four 
periods. Whether the use of more time-series RS data in other regions could obtain similar results is worth discussing. In the future, 
other RS data will be obtained from additional periods and tested in additional areas, and whether some SVI features can always 
improve the accuracy of tree species identification, which bands calculated by SVIs play a key role, and why these SVIs are conducive 
for tree species discrimination will be gradually discovered. 

5. Conclusions 

Herein, general and improved expressions for SVIs were developed by considering the spectral reflection value, wavelength, and 
time as parameters. Data were obtained by applying RedEdge-MX to four phases, the SVI extracted using the three algorithms was used 
for tree species discrimination, and an RF algorithm was employed to preliminarily test if the SVI can promote tree species recognition 
and which algorithm has better performance. The following conclusions were derived from this study.  

(1) The SVI extracted with volume constraints had better performance in tree species discrimination than the SVI extracted without 
volume constraints. The performance of the SVI extracted with the variable-constrained volume was better than that extracted 
with the constant-constrained volume.  

(2) Combining SVI features with other features could improve the accuracy of tree species discrimination; however, the 
improvement was limited.  

(3) The window size of texture extraction affected the performance of SVIs in tree species classification. Extracting textures and 
building the MFS with a suitable large window could maximize the importance of SVIs.  

(4) Useful SVI features appearing in the OFS were generally deterministic rather than random. 

This study reports that SVIs could be incorporated into image feature sets in tree species classification to promote the tree species 
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identification effect. In particular, in pure forest tree species classification, only used the mixed features of the SB, texture, and DSM 
(without combining SVI features) could achieve high classification accuracy. It seems unnecessary to combine the SVIs with the mixed 
features to classify tree species. However, for non-pure forest species discrimination, whether an MFS combined with SVI features can 
greatly promote the discrimination effect needs further exploration. 
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[34] M. Immitzer, M. Neuwirth, S. Böck, H. Brenner, F. Vuolo, C. Atzberger, Optimal input features for tree species classification in central europe based on multi- 
temporal sentinel-2 data, Rem. Sens. 11 (22) (2019) 2599, https://doi.org/10.3390/rs11222599. 
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Obs. Geoinformation. 71 (2018) 144–158, https://doi.org/10.1016/j.jag.2018.05.005. 

H. Liu                                                                                                                                                                                                                     

https://doi.org/10.1007/s12524-020-01227-z
https://doi.org/10.1007/s12524-020-01227-z
https://doi.org/10.3390/rs70911249
https://doi.org/10.1016/j.jag.2018.05.005

	Spectral volume index creation and performance evaluation: A preliminary test for tree species identification
	1 Introduction
	2 Materials and methods
	2.1 Data acquisition and preprocessing
	2.1.1 RedEdge-MX imagery
	2.1.2 Tree species sample data

	2.2 Methods
	2.2.1 Creation of SVIs
	2.2.2 Extraction of SVI features
	2.2.3 Mask construction and auxiliary feature extraction
	2.2.4 Image classification and OFS determination
	2.2.5 SVI performance evaluation


	3 Results and analyses
	3.1 Cumulative distribution of SVI features
	3.2 Optimal feature participation number in tree species classification
	3.3 Status of SVIs in the OFS
	3.4 Only SVI features were used for tree species discrimination
	3.5 OFS classification accuracy analysis
	3.6 Comparison of the effectiveness of tree species discrimination

	4 Discussion
	5 Conclusions
	Author contribution statement

	Funding statement
	Data availability statement
	Additional information
	Declaration of competing interest
	Acknowledgements
	References


