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Abstract: Non-syndromic intellectual disability (NS-ID or idiopathic) is a complex neurodevelop-
mental disorder that represents a global health issue. Although many efforts have been made to
characterize it and distinguish it from syndromic intellectual disability (S-ID), the highly heteroge-
neous aspect of this disorder makes it difficult to understand its etiology. Long noncoding RNAs
(lncRNAs) comprise a large group of transcripts that can act through various mechanisms and be
involved in important neurodevelopmental processes. In this sense, comprehending the roles they
play in this intricate context is a valuable way of getting new insights about how NS-ID can arise and
develop. In this review, we attempt to bring together knowledge available in the literature about
lncRNAs involved with molecular and cellular pathways already described in intellectual disability
and neural function, to better understand their relevance in NS-ID and the regulatory complexity of
this disorder.

Keywords: long noncoding RNA; non-syndromic intellectual disability; molecular and cellular
pathways; neurodevelopment; neural function

1. Intellectual Disability

Intellectual disability (ID) is characterized by significant intellectual functioning lim-
itation and adaptive behavior occurring before the age of 18 [1]. It is usually defined by
an intelligence quotient (IQ) of less than 70 and severe deficiency in the environment and
social milieu adaptation [2], which can be caused by genetic, prenatal, and environmental
factors, representing a health issue in both developed and developing countries [3].

ID can be classified by severity into five categories (mild, moderate, severe, profound,
and unable to classify), and it is also divided into syndromic intellectual disability (S-ID),
which includes patients with one or more clinical co-morbidities in addition to ID, and
non-syndromic intellectual disability (NS-ID), where ID is the exclusive clinical feature [4].
Distinguishing NS-ID from S-ID is not easy because subtle neurological anomalies and
psychiatric disorders are more difficult to diagnose due to the non-specific cognitive
impairment [5]. Despite that, many mutations have been identified in genes related to
non-syndromic intellectual disability [6–9]. More than 200 candidate genes have been
associated with NS-ID, most of which are not shared between NS-ID and S-ID and/or
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neurological and neuropsychiatric diseases [10]. Taken all together, these show the efforts
being made to understand the etiology of NS-ID and demonstrate the complexity of trying
to define this heterogeneous disorder.

2. LncRNAs

Long noncoding RNAs form a large and miscellaneous group of non-protein-coding
RNAs, defined as transcripts of more than 200 nucleotides in length. They can regulate
gene transcription through a great variety of mechanisms, such as: by the interaction
with chromatin-modifying complexes, by binding to other RNA-binding factors which
can induce or repress transcription, by acting as enhancers, and by acting as decoys [11].
Because of this wide variety of possible functions, they have been identified and described
as acting in countless biological processes, including human embryonic development and
neurodevelopment.

In the early stages of human fetal growth, it has been shown that lncRNAs represent
the most abundant class of transcripts, both during and after embryonic gene activa-
tion [12]. Many of them have also been described as human embryonic stem cells (hESCs)
pluripotency regulators, like lncPRESS1, that controls a gene network that controls pluripo-
tency [13], and GAS5, a lncRNA that is directly regulated by pluripotency factors and acts
on hESCs self-renewal [14]. Additionally, they have also been described during brain de-
velopment, a very genetically organized and dynamic process [15], where neural induction
takes place. Failures in any step of this process can lead to neurological and cognitive im-
pairments [16], highlighting the importance of a fine and coordinated regulation for healthy
brain development. Some lncRNAs have already been associated with neural development,
such as PNKY, a transcript involved in the suppression of neuronal commitment of neural
stem cells (NSCs) [17], FMR4, a lncRNA that promotes the proliferation of human neural
precursor cells (NPCs) [18], and splicing variants of the lncRNA C130071C03Riken, which
are involved in neural differentiation [19].

In this context, some lncRNAs have also been directly associated to several neu-
rodevelopmental disorders that have intellectual disability as one of their characteristics,
like autism spectrum disorder (ASD) [20–23], Fragile X syndrome [24], Prader-Willi syn-
drome [25–27], Rett syndrome [28], and Angelman syndrome [29–31]. However, many
neurodevelopmental disorders are associated with defective neural differentiation and
circuit formation [32], most genes known to cause these diseases belong to a few molec-
ular pathways that are commonly affected [33]. Additionally, little is known about how
lncRNAs may be regulating those pathways and how they can be involved in ID. Indeed,
scientific articles regarding “lncRNA and intellectual disability” in the PubMed database
returns less than 100 articles spanning the last 27 years, and, in a more stringent search,
less than 20 articles if the query is specified for “Text word” or “Title/Abstract”.

In this review, we sought to explore the roles of lncRNAs in the main pathways involved
in NS-ID [4,34], in order to contribute to the elucidation of its complex regulation network.

3. LncRNAs and Pathways Involved in Non-Syndromic Intellectual Disability and
Neural Development
3.1. Wnt/β-Catenin Pathway

The Wingless (Wnt) gene family encodes secreted signaling proteins that direct cell
proliferation, cell polarity, and cell fate determination during embryonic development and
tissue homeostasis [35]. The canonical Wnt signaling pathway (Wnt/β-catenin) governs
a developmental cascade by regulating the amount of the transcriptional co-regulator
β-catenin within the cell, controlling critical gene expression programs involved in cell
proliferation, differentiation, cell adhesion [36], as well as epigenetic/transcriptional regula-
tion [37]. Disbalanced expression of these proteins can disrupt the central nervous system’s
normal development and cause loss of neurons, fostering neurological disorders [38,39].

Next-generation sequencing enabled better comprehension of multiple dominant
mutations in the gene encoding β-catenin, clarifying its role in cognitive impairment
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and bringing in vivo evidence that deregulation of this pathway leads to intellectual
disability [38,40]. Despite the lncRNAs inability to code for proteins, it is widely accepted
that these molecules can modulate a diverse range of biological processes, including the
Wnt/β-catenin signaling pathway [41,42].

Notably, the central nervous system expresses a great diversity of lncRNAs, suggest-
ing that their dysregulation plays a critical role in neurological conditions [43,44]. A few
lncRNAs have been described to regulate coding genes that are part of the canonical Wnt
signaling pathway. For instance, mice experiments showed that downregulation of the Ma-
ternally Expressed Gene 3 (MEG3), a lncRNA commonly found overexpressed in neurons
of the forebrain of mice [45], modulates the Wnt/β-catenin signaling pathway, enhancing
nerve growth and alleviating neurological impairment of rats after brain injury [46]. The
lncRNA Neat1 was recently reported to enhance the protein levels of core factors of the
Wnt/β-catenin signaling pathway affecting neuroinflammation damage [47]. Further evi-
dence points out that the signaling axis miR-124-Neat1-Wnt/β-catenin plays an essential
role in regulating neuronal differentiation, apoptosis, and migration of mouse spinal cord
progenitor cells (SC-NPCs) [48]. This study showed that overexpression of miR-124 en-
hanced the expression of the lncRNA Neat1 and positively regulated mRNAs involved
in the Wnt/β-catenin pathway. Although the focus is on the therapeutic effectiveness of
miR-124/Neat1 for spinal cord injury, clarifying the role of lncRNAs in promoting neuronal
differentiation may be relevant to unravel ID pathways [48].

A modulator of the canonical Wnt/β-catenin signaling pathway, the SOX family of
transcription factors, is widely known for its role in the developing nervous system. For
instance, Sox2 is expressed in neural stem cells regulating self-renewal and differentiation
into neurons [49,50]. However, Sox genes suffer regulation by lncRNAs, as shown by Ng
et al. that nuclear lncRNA RMST regulates neuronal differentiation and associates with
transcription factor SOX2. The author also reported that Sox2 and RMST regulate common
targets and RMST downregulation affects SOX2 genome binding [51]. Other lncRNAs that
have also been described interfering in SOX regulation include Sox2ot [52] and lincRNA-
RoR [53]. The study of genes that affect neurodevelopment and are associated with diseases
that do not start in childhood is also useful to understand intellectual disorders. DISC1
gene, initially described in schizophrenia [54], interacts directly with the GSK3β, inhibiting
its activity and leading to β-catenin stabilization. This cascade exerts an influence on
neural progenitor proliferation [54]. DISC1 was reported to have the alternative splicing
induced by the long non-coding RNA MIAT, leading to its downregulation and disturbing
neurodevelopmental mechanisms [55,56].

As shown in this review, much still needs to be unraveled about how long non-coding
RNAs regulate genes related to intellectual deficiency. These findings corroborate these
molecules’ critical role in controlling different components of the Wnt/B-signaling pathway
during the earliest stages of neural development.

3.2. Notch Pathway

In the developing nervous system, the Notch signaling pathway is involved in re-
pressing neural differentiation-inducing genes, thus preventing NSCs from differentiating
and maintaining these embryonic cells [57,58]. This pathway is important in regulating the
balance between stem cell maintenance and proper neuronal differentiation, so the correct
timing is achieved, and the necessary quantity of neurons is produced [59]. It is a highly
conserved pathway that, in mammals, contains four receptors (Notch 1–4) and five ligands
(Dll1, Dll3, Dll4, Jagged-1, and Jagged-2). Upon ligation of the ligand with the receptor,
a proteolytic cleavage occurs, releasing the Notch intracellular domain that translocates
to the nucleus and promotes transcription of target genes by interacting with the protein
RBPJ [60].

It has already been demonstrated that the ablation of the receptor Notch1 in neuroep-
ithelial cells leads to premature differentiation and apoptosis, failing to generate neural
cells [61], which may significantly impact the central nervous system (CNS) development.
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It was also demonstrated that two essential effectors of the Notch signaling are crucial
for maintaining the embryonic nervous system structure, keeping the organization and
morphology of the cells [62]. Additionally, pathogenic variants of the Notch ligand Dll1
have recently been suggested as causative of a neurodevelopmental phenotype in a cohort
whose individuals presented with developmental delay, intellectual disability, and brain
malformations [63].

Understanding how lncRNAs may regulate the Notch signaling pathway can bring
important highlights about their roles in ID. In 2006, Rani et al. [64] functionally character-
ized a novel lncRNA, LncND, in a neurodevelopmental disorder related to a microdeletion
at 2p25.3, including the LncND locus, and showing ID as one of its phenotypic charac-
teristics. This primate-specific transcript is highly expressed in early neural progenitor
cells, and it was demonstrated that it acts as a miRNA sponge. Furthermore, this lncRNA
sequesters miR-143-3p and regulates Notch signaling since this miRNA targets NOTCH-1
and NOTCH-2 mRNAs. Through LncND knockdown experiments, the authors showed
that cells underwent premature differentiation of neural precursor cells, and through an
in vivo overexpression assay, they observed that this lncRNA regulates the expansion of
radial glial cells in the murine developing cortex [64].

In an investigation of the transcriptional landscape of embryonic and adult brains,
Goff et al. (2015) [65] generated a cohort of 13 lncRNA-null mutant mouse models, which
had evidence of expression in neural stem cells and the brain. They observed a more
significant number of differentially expressed genes at mouse embryonic day 14.5 (E14.5)
compared to adult brains, with significant enrichment of gene sets related to neuronal
differentiation and cell fate commitment. In this cohort, one of the mutant strains was
a knockout (KO) of KANTR locus. A differential expression analysis between KO and
wild-type (WT) for this strain showed a significant increase in gene sets involved in Notch
signaling and neural development in the E14.5 brain. Similarly, the deletion of the lncRNA
PERIL locus in the E14.5 brain led to a significant increase in the neural stem cell marker
genes Notch 1–3, which was also observed with the ablation of the lncRNA PANTR1
locus [65].

The trisomy 21 found in Down Syndrome (DS) is suggested as associated with de-
layed neuron formation. Recently, it was shown that the lncRNA XIST, a very well-known
transcript in the X-chromosome silencing process, is capable of silencing the extra chro-
mosome 21 (chr21) in DS iPSCs. The silencing of the extra chr21 allows a higher rate of
neuron production when compared to the non-silenced cells. Through scRNA-seq analysis,
it was revealed that the extra chr21 silencing by XIST significantly dysregulated the Notch
signaling pathway and also led to differential expression of TTYH1, an enhancer of this
pathway. The elevated expression of Notch signaling genes is then suggested to keep NSCs
in the proliferative state, delaying their terminal differentiation into neurons [66].

In summary, these studies highlight how lncRNAs may regulate the Notch signaling
pathway and play important roles in neuronal differentiation, which is shown to be strongly
related to ID development.

3.3. Sonic Hedgehog Pathway

The Sonic hedgehog (Shh) pathway plays a role in the development of tissues and
organs, including the CNS, and the determination of tissue polarity. Its role in forming
the ventral spinal cord model and early embryonic development has been previously
observed [67]. Signaling in this pathway is indispensable for a cell’s pattern and fate,
especially in the CNS. Throughout vertebrates’ CNS development, Shh is required and acts
as a morphogenic factor in proliferation, differentiation, and survival of neural precursor
cells [68]. In the brain, Shh protein is first expressed ventrally at the early development
stages [69,70].

The Shh pathway is classified as canonical when it involves three main components:
begins with the Shh ligand binding to Patched (Ptch) protein receptor, which then interacts
with and inhibits smoothened (SMO) protein and ends with the regulation of transcriptional
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effectors from the Gli family. Non-canonical Shh occurs when the activation of Ptch/SMO
independent of Gli or when the transcriptional factor Gli is activated regardless of the
Shh ligand of Ptch/SMO [71]. Shh plays an important role in neurogenesis in the adult
mammalian brain, while its receptors, Ptch and Smo, are more expressed in the adult
hippocampus and progenitors from this region [72].

Studies of gain and loss of function demonstrated that Shh is essential to induce
ventral-neural cell types, and its deficiency affects the establishment of spinal cord struc-
tures and brain development. In the brain, altered regulations of the Shh signaling can
lead to an extensive range of neurological disorders, brain tumors, and intellectual disabil-
ity [73,74]. Variants in the Shh gene have also been found in patients showing development
abnormalities, and speech and learning delays [70,75]. Several non-coding RNAs have
been reported as having a role of regulation of the Shh pathway, including lncRNAs, which
were shown to function in modulation of neural development and differentiation, with
possible effect in the intellectual disability phenotype [76].

The lncRNA AK053922, which is transcribed from the Gli3 locus, is expressed in the
early stages of brain development and was shown to have the ability to help specify distinct
neuronal cell types by working as a bifunctional transcriptional switch that can either
repress or activate Shh signaling [77–79]. Also involved in neurogenesis, lncRNA Gm15577
was identified in the Nbs1-deficient mouse model. Yue et al. [80] demonstrated that
Gm15577 regulates the RNA expression of Shh, Nerg1, and β-catenin, and has important
functions in neuronal growth and neuroplasticity [81].

One thoroughly studied lncRNA that regulates brain development is Evf2 (embryonic
ventral forebrain 2), which is transcribed antisense to the Dlx6 gene, and therefore also
known as Dlx6as1. The locus from which it is transcribed is a homeobox-containing
transcription factor, essential for forebrain neurogenesis [82,83]. Evf2 is upregulated during
GABAN neurogenesis [79] and is expressed in the telencephalon’s Shh-responsive cells
during embryonic development [82].

Bond et al. [84] used Evf2 loss-of-function mice to study its role in vivo and reported
that Evf2 regulates Dlx6 with mediated concentration-dependent transcriptional control
by competition, using both trans and cis mechanisms. The paper also demonstrated that
Shh signaling in the embryonic ventral forebrain initiates a transcriptional cascade that
requires Evf2 and other lncRNAs for proper GABAergic interneuron development. Other
authors also found that Shh activates Efv2 in the embryonic forebrain [85] and is expressed
at sonic hedgehog-activated interneuron birth sites in mice [86]. Molecular disturbance
of the expression of Evf2 in mice caused a reduction in the number of interneurons in the
hippocampus. Even though this decrease was resolved in the mature mice, it was perceived
as reducing the inhibition of CA1 pyramidal neuron activity, which suggests a functional
defect in these cells [84,87].

3.4. Growth Factors and Neurotrophic Factors

Growth factors represent a family of extracellular proteins that induce cell growth and
support biological settings [88,89]. Various growth factors have been demonstrated to play
a role in the regulation of the adult brain development, in highlighting Fibroblast growth
factor-2 (FGF-2), Insulin-like growth factor-1 (IGF-1), and Vascular endothelial growth
factor (VEGF). These factors bind to a ligand-specific receptor from the tyrosine kinase
family, resulting in the autophosphorylation and activation of its receptors, followed by
the activation of signaling pathways, such as PI3K/Akt and MAPK/ERK [90]. Several
lncRNAs associated with growth factors have been reported as affecting the brain in
conditions of oxygen-glucose deprivation and ischemic stroke, namely MALAT1 [91],
Neat1 [92], SNHG12 [93], FENDRR [94], and MEG3 [46].

Neurotrophic factors are signaling proteins playing a role during development, and
later, in the adult nervous system. Five neurotrophic factors have been identified in mam-
mals, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), Glial cell-
derived neurotrophic factor (GDNF), neurotrophin 3 (NT-3), and neurotrophin 4/5 (NT-
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4/5). In this pathway, those proteins interact with tyrosine kinases (Trk) receptors and their
co-receptor p75NTR [95]. Neurotrophins play an essential role in the moderation of neu-
ronal survival, growth, and differentiation [96], and the lack of these factors may lead to
neurodegeneration [97]. Neurotrophins have been associated with several psychiatric dis-
orders, like depression, bipolar disorder, anxiety, and autism spectrum disorders [98–101].
Its upregulation is shown to have beneficial effects on a large range of neurological dis-
orders [102]. BDNF, NGF, and NT-3 have also been considered possible etiologies for
attention-deficit/hyperactivity disorder [103].

Brain-derived neurotrophic factor (BDNF) is an important protein for neurodevel-
opment and maintenance and is one of the most abundant growth factors in the human
brain [104]. BDNF plays a role in the coordination of neuronal and glial maturation, par-
ticipating in axonal, dendritic differentiation, and protecting and enhancing neuronal cell
survival [105], and is involved in learning and memory processes [106].

The BDNF locus originates the antisense lncRNA named BDNF-AS, which regulates
BDNF mRNA and protein levels in cis [107]. Both transcripts are expressed in several
tissues, like the brain, muscle, and embryonic tissues, with the BDNF mRNA having 10-
to 100-fold higher expression. Inhibition of BDNF-AS caused a 2- to 7-fold increase in
BDNF levels, which resulted in elevated neuronal growth, differentiation, survival, and
proliferation, both in vitro and in vivo [108,109]. However, the magnitude of the increase
of BDNF protein was less than the extent of mRNA upregulation [108]. Thus, BDNF-AS is
a promising therapeutic target for neurodegenerative and neurodevelopmental disorders
in which BDNF is downregulated [110].

Localized in a novel nuclear compartment enriched in pre-mRNA splicing factors [111],
lncRNA MIAT, also known as GOMAFU/Gomafu (in humans) and RNCR2, have been
shown to play a role in retinal development, postmitotic neuronal function [112], and brain
development [79], however, these functions need further explanation. Overexpression of
MIAT was associated with reduced apoptosis of neuronal cells through miR-211 and the
neurotrophin GDNF, resulting in relief of hypoxic-ischemic injury in mice [113]. MIAT
also plays a role as a regulator of neural and vascular cell function via the MIAT/miR-
150-5p/VEGF network, and its knockdown causes cerebral microvascular degeneration,
progressive neuronal loss and neurodegeneration, and behavioral deficits in Alzheimer’s
disease [114].

MIAT is expressed in a subset of adult mice neurons, including the hippocampus’
CA1 region, which suggests the lncRNA role in neuronal excitatory transmission [112].
In two separate studies, MIAT was found upregulated in the nucleus accumbens of cocaine
and heroin users, suggesting an effect of the lncRNA in addictive behaviors [45,115].
The dysregulation of MIAT can lead to neurological disorders and has also been implicated
in the pathogenesis of schizophrenia, being downregulated upon neuronal activation [116].

Mercer et al. studied lncRNAs expression in neuronal-glial fate specification and
oligodendrocyte (OL) lineage maturation and found that MIAT was differentially expressed,
being downregulated in neuronal-OL progenitor, while upregulated during neurogenesis
and all stages of oligodendrocytes lineage specification and maturation [79]. Using MIAT
lncRNA knockout mice, Ip et al. observed that the animals exhibited no gross development
defects. However, results from behavioral tests suggested that the animals displayed a mild
hyperactivity phenotype accompanied by an increased level of dopamine in comparison
with wild-type controls [117].

3.5. Rho Pathway

Small GTPases of the Rho family comprise 20 proteins distributed in subfamilies:
Cdc42, Rac, Rho, Rnd, RhoD, RhoBTB, and RhoH [118]. These proteins play a key role in
numerous neuronal development processes, mainly in neuronal morphology controlling
dynamic events of the actin cytoskeleton as well as dendritic and synaptic plasticity. There-
fore, it is not surprising that the dysfunction of Rho GTPases is associated with intellectual
disability. Also, several ID-related mutations have been found in genes that encode effec-
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tors or regulators of the Rho GTPases: ARHGEF9 (Cdc42 guanine nucleotide exchange
factor 9), FGD1 (FYVE, RhoGEF, and PH domain containing 1), OPHN1 (oligophrenin 1),
PAK3 (p21 (RAC1)-activated kinase 3), aPIX (Rac/Cdc42 guanine nucleotide exchange
factor 6), and TRIO (trio Rho guanine nucleotide exchange factor) [119,120]. However,
no data were found in the literature corroborating the association between lncRNAs and
the RHO pathway in ID.

3.6. MAPK/ERK Pathway

The MAPK/ERK pathway, also known as the Ras-Raf-MEK-ERK, acts on the trans-
duction from extracellular information to the intracellular environment, regulating various
intracellular functions, including cell proliferation, differentiation, and survival [121–123].
This pathway has been described as acting in the development of the central nervous
system, for example, in the embryonic and early postnatal phases, the cascade signals
transmitted by MAPK/ERK to progenitor cells inhibit gliogenesis and promote neurogene-
sis [124]; in neurons, it acts on the dendritic spine stabilization, since it encodes scaffold
proteins and adhesion molecules, and participates in the modulation of ionic changes and
receptor insertion as well [125].

MAPK/ERK pathway dysfunction has been associated with many neurological
pathologies, including ASD [126–128]. It was already reported that transient blockade of
the MAPK/ERK pathway on postnatal day 6 in mice caused an increase in apoptosis in the
forebrain, and in the long term induced autistic behavioral phenotypes, including social
deficits, impaired memory, and reduced long-term potentiation (LTP) in adulthood [129].

N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels widely
expressed in the CNS, regulating neuronal communication and synaptic function [130].
Functional NMDARs are heterotetramers formed by two GluN1 subunits and two glu-
tamate binding GluN2 subunits. The GluN2 subunits can be GluN2A–GluN2D, as well
as GluN3A and GluN3B, all of which have distinguishing properties and expression pat-
terns in the CNS [131,132]. Several human genetic studies have reported alterations in
NMDARs subunits’ genes in a variety of brain diseases, such as intellectual disability,
ASD, and epilepsy [133]. Regulation of NMDARs function is a complex process involv-
ing numerous proteins in the cell, particularly various protein kinases [134]. The long
nucleolus-specific lncRNA (LoNA) has been reported as a regulator of some NMDAR
components in mice [135]. LoNA was shown to inhibit rRNA production and ribosome
biosynthesis in nucleoli, and eventually, protein synthesis. Additionally, Li et al. showed
that levels of synaptic proteins, including NMDA receptor NR1, NR2A, and NR2B, were
significantly elevated in the synaptosome fraction isolated from LoNA knockdown mice,
ultimately leading to improved neuronal plasticity and long-term potentiation (LTP) [135].
Further studies are required to evaluate whether LoNA may regulate NMDAR components
in the context of human neurologic diseases.

SynGAP is a GTPase-activating protein (GAP) selectively expressed in the brain, and
that regulates the biochemical signaling in neurons and plays critical roles in neuronal func-
tion and brain development [136,137]. This protein is a component of the NMDA-receptor
complex and acts downstream of the receptor, blocking the AMPA receptor’s insertion at
the postsynaptic membrane by inhibition of the RAS-ERK pathway [138]. SynGAP is a
negative regulator of small GTPases, such as Ras and Rap, and is essential for synaptic
development, structure, function, and plasticity Mutations in SYNGAP1, which encodes
the SynGAP protein, are a major cause of genetically defined childhood brain disorders,
and are found in individuals with ID, ASD, severe epilepsy, and schizophrenia [139,140].
Alongside mutations, non-coding RNAs may play a role in the regulation of SynGAP.
An antisense lncRNA to SYNGAP1 (SYNGAP1-AS) was upregulated in the ASD post-
mortem prefrontal cortex and superior temporal gyrus. These findings raised the idea of
regulation by the expression of SYNGAP1 mRNA while affecting epigenetic modification of
transcription factors and playing a role in ASD pathology and other neurological diseases
related to SynGAP deficiency [137,141].
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The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), also known
as nuclear-enriched transcript 2 (NEAT2), is a lncRNA consisting of more than 8700 nt
located on chromosome 11q13 and discovered as a predictive marker for metastasis in
early-stage, non-small cell lung cancer [142,143]. MALAT1 is involved in several biological
processes, including cell proliferation, migration, and apoptosis [144,145]. Regarding its
role in the nervous system and its related pathologies, MALAT1 was expressed in neurons
and induced in response to membrane depolarization [146]. In addition, MALAT1 was
described as regulating synapse formation by modulating the expression of genes involved
in synapse formation or maintenance [147]. MALAT1 has been related to the pathology
of several human neurological diseases, including stroke and Alzheimer’s disease [148].
Concerning the role of MALAT1 in the regulation of the ERK/MAPK pathway, Chen et al.
using in vitro differentiation of neuroblastoma-derived Neuro-2a (N2a) cell as a model
for the investigation of lncRNAs in neurogenesis, identified that MALAT1 was one of
the most significantly upregulated lncRNAs during N2a cell differentiation. The authors
also observed that MALAT1 knockdown resulted in defects in neurite outgrowth as well
as enhanced cell death and inhibition of the MAPK/ERK signaling pathway. Therefore,
it was found to maintain the survival and synaptic formation of neurocytoma cells by
activating the ERK/MAPK signaling pathway [149]. In contrast to the finding reported
by Chen et al. [149], a recent study conducted by Shi et al. showed the inhibitory effect of
lncRNA-MALAT1 on the MAPK/ERK signaling pathway and its influence on neuronal
apoptosis in a rat model of cerebral infarction [150].

In addition to MALAT1, other lncRNAs have been described as interacting molecules
with the MAPK/ERK signaling pathway in the nervous system’s cells. The long intergenic
non-protein-coding RNA p53-induced transcript (LINC-PINT) is a long noncoding RNA
induced by p53 and located on the human chromosome 7. In mouse cells, LINC-PINT
homologous (LincPint) is involved in Polycomb repressive complex 2 (PRC2) and promotes
cell proliferation and survival by regulating the expression of genes of the TGF-b, MAPK,
and p53 pathways [151]. Additionally, Blüthgen et al. identified that the transcription of
LincPint and other lncRNAs is hampered by MEK inhibition in the murine hippocampus,
suggesting that this lncRNA could be a candidate for conveying epigenetic changes initiated
by MAPK/ERK [152]. Interestingly, in normal human tissues, LINC-PINT expression
presents a positive correlation with members of the MAPK pathway and others [151].

The Nuclear Paraspeckle Assembly Transcript 1 (Neat1) is a ubiquitous, highly ex-
pressed, nuclear-retained regulatory lncRNA with essential roles in cellular physiology
and pathophysiology [153]. This lncRNA can be processed into two isoforms (NEAT1_1
and NEAT1_2), that accumulate in high levels in the nucleus [154,155] and is involved
in carcinogenesis [156] and non-cancerous diseases as well, including neurodegeneration
and inflammation [157]. In addition to LincPint, Blüthgen et al. also detected that the
two alternatively spliced variants of the lncRNA Neat1 were differentially regulated by
MAPK/ERK in their murine model, linking this signaling pathway to the regulation of
activity-dependent alternative splicing [152].

3.7. Synaptic Vesicle Trafficking and Exocytosis

Defects on the regulation of synaptic vesicle fusion and exocytosis may be associated
with neurodevelopmental disorders, since this is a tightly controlled process necessary for
neurotransmitters’ release and neuronal communication [158]. Neurotransmitter signaling
may influence early developmental events, such as proliferation, migration, and differ-
entiation, once they serve as chemical signals in the nervous tissue [159]. The binding of
neurotransmitters to neuron receptors generates electrical signals that alter the neighboring
neuron’s morphology and behavior. This process involves gene expression changes that
must be maintained for proper maturing neuron development [160].

Alterations that lead to impaired neurotransmission and vesicle trafficking may have
a great impact on healthy development. A novel missense mutation identified in the SYN1
gene, for example, was shown to affect synaptic vesicle (SV) clustering at presynaptic



Non-coding RNA 2021, 7, 22 9 of 22

terminals of neurons and also spontaneous SV release and mobility, causing synaptic
function alterations and inducing an X-linked ID phenotype [8]. A further study showed
that the most affected KO mice proteins for the FMR1 gene were associated with signal
transduction, neuronal development, and GABA/glutamate neurotransmission. The lack
of its encoded protein, FMRP, led to alterations in synaptic vesicles’ unloading dynamics,
contributing to the aberrant synaptic transmission in Fragile-X syndrome patients [161].

It has been demonstrated that some lncRNAs could affect intellectual development
by modulating synaptic vesicle trafficking and exocytosis. Wang et al. analyzed blood
samples of ASD children and compared them with controls. Through differential expres-
sion analysis, they demonstrated that the lncRNA SNAP25-AS1, which is derived from
the SNAP25 locus, is upregulated and associated with the synaptic vesicle cycling path-
way [21]. It is known that the synaptosomal-associated protein 25 (SNAP25), together
with syntaxin-1A (STX1A) and vesicle-associated membrane protein 2 (VAMP2), medi-
ates neurotransmitters released by the fusion of synaptic vesicles [162,163]. It was also
already reported that alterations in gene expression of SNAP25 in mammals are associated
with schizophrenia-like behavior [164], and sequence variations in the SNAP25 locus are
associated with attention-deficit/hyperactivity disorder (ADHD) [165–167].

It was recently shown that the lncRNA neuroLNC is conserved in mammals and it
is tuned by synaptic activity. It was also demonstrated that neuroLNC affects synaptic
release due to its interaction with RNA-binding protein TAR DNA binding protein-43
(TDP-43) [168]. This protein colocalizes strongly with endocytic proteins, and it is known to
bind several mRNAs that encode synaptic vesicle proteins (e.g., members of syntaxin and
synaptotagmin) [169,170]. In addition to TDP-43 participating in diverse RNA processes
such as synthesis, splicing, stability, and transport [171,172], its importance is highlighted
by the inhibition of the endocytosis process, which may be an underlying cause of disrupted
neuronal trafficking causing amyotrophic lateral sclerosis (ALS) [170]. In this sense, it was
demonstrated by loss-of-function experiments that TDP-43 might impact signaling and
endosomal trafficking in neurons [173].

3.8. Transcriptional Regulation and Chromatin Remodeling

Long non-coding RNAs promote transcriptional regulation by different mecha-
nisms [11,174]. A typical function of lncRNAs is to modulate the proteins’ activity by
recruiting chromatin-modifying complexes and specifying histone modifications pat-
terns [175]. A recent report demonstrates that the long non-coding FMR4 plays a role
as a chromatin-associated transcript with evidence of functioning as a trans-acting lncRNA
in neural precursor cells, regulating distant genomic loci [18]. Evidence pointed out that
overexpression of FMR4 significantly altered genome-wide histone methylation status
regarding H3K4Me3 and H3K27Me3 marks. The FMR4-mediated histone methylation
changes affected the expression of neurodevelopmental genes; besides, the authors suggest
that the FMR4 putative targets may be related to its function as a positive regulator of
neural precursor cell proliferation [18].

The lincRNA Dali study showed the first evidence of an intergenic long noncoding
RNA modulating transcriptional programs of genomically distal regulatory elements [176].
Dali controls the expression of a 50 kb upstream transcription factor gene, Pou3f3 (also
known as BRN1 or Oct8), which plays a role in developing the nervous system [177].
Dali and Pou3f3 share transcriptional targets, regulating gene expression during neural
differentiation. Moreover, Dali directly binds to DNA methyltransferase DNMT1, the BRG1
core component of the SWI/SNF family chromatin remodeling BAF complex, the P66beta,
and SIN3A transcriptional co-factors, validating its role in chromatin-modifying proteins
regulation [176].

A widely known gene to play a role in gene regulation during neurodevelopment is
the MeCP2. The encoded protein can bind DNA and regulate gene expression; moreover,
MECP2 mutations and dysfunctions have been associated with intellectual disability in
several neurodevelopmental disorders [178–180]. The function of MECP2 has been proven
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broader than a mere transcriptional repressor, as initially believed [179]. MeCP2/lncRNAs-
mediated chromatin remodeling received a closer look. Physical association with the
lncRNA RNCR3 (retinal non-coding RNA 3) confers new gene regulation mechanisms by
affecting chromatin structure [181].

An alternative mechanism used by lncRNAs to perform transcriptional regulation is
by targeting splicing factors. The lncRNA Pnky regulates neuronal differentiation of embry-
onic and postnatal neural stem cells by binding to the polypyrimidine tract-binding protein
1 (PTBP1), a critical splicing factor during neuronal development [17,182]. In NSCs, Pnky
binding to PTBP1 regulates neurons’ production by controlling key transcripts related to
cell differentiation. The lncRNA Tuna, which also binds to PTBP1, has a role in neurogen-
esis. However, further clarification is needed if their mechanism is by affecting splicing
machinery [183,184].

The lncRNA MIAT is involved in a neurogenic commitment by controlling the differen-
tiation of neural progenitors and newborn neurons’ survival. In vivo experiments showed
that Miat overexpression or RNAi silencing altered the splicing pattern of Wnt7b, promot-
ing changes in variants proportion [185]. The lncRNA CAT7 interacts with the Polycomb
Repressive Complex (PRC1) by co-immunoprecipitation. The evidence shows that Cat7
cooperates with the PRC1 to promote gene regulation during neuronal differentiation [186].

With respect to lncRNAs binding directly to chromatin to promote transcriptional
regulation, experiments of chromatin isolation by RNA precipitation followed by sequenc-
ing (ChIRP-seq) showed that the lnc-Nr2f1 binds to chromatin in an isoform-specific form
to distinct genomic loci, regulating neuronal genes in mouse, for instance, the gene Nrp2
involved in neural pathfinding [22].

4. Concluding Remarks

LncRNAs have been extensively explored in many biological pathways in recent years
and their regulatory importance has been increasingly recognized. Although, their roles in ID
are still not deeply understood, leaving a gap in its transcriptional network. This review shows
that many lncRNAs are acting in pathways involved in NS-ID (Figure 1). Some transcripts
were shown to participate in more than one pathway, reinforcing their versatile mecha-
nisms of action, and some new transcripts were also evidenced. We found a large number
of lncRNAs in the transcriptional regulation and chromatin remodeling pathway, followed
by Wnt/β-catenin, Notch, and MAPK/ERK pathways (Table 1), possibly representing
the main biological pathways in which lncRNAs act during neurodevelopment. On the
other side, the remaining pathways might not have been as explored as the first ones,
therefore being potential discovery fields. Another point to be considered is that lncRNAs
are relatively new in the RNA research field. Consequently, their impact in ID is still quite
limited, which is also due to the large amount of data generated by high-throughput exper-
iments together with their lack of functional characterization. In this sense, we consider
this a quite intriguing and fast-growing research area that will be better understood in the
future, as the number of researchers in this field increases, and new experimental tools and
approaches are developed to explore the diverse roles that lncRNAs play in ID.
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Table 1. Overview of lncRNAs roles in each non-syndromic intellectual disability-related pathway.

Pathway LncRNA Ensembl Gene ID Biotype 1 Role in the Pathway Reference

Wnt/β-catenin pathway

MEG3 ENSG00000214548 Intergenic
It modulates the Wnt/β-catenin signaling pathway, enhancing nerve

growth and alleviating neurological impairment of rats after
brain injury.

[46]

Neat1 ENSG00000245532 Intergenic
The signaling axis miR-124-Neat1-Wnt/β-catenin plays an important
role in regulating neuronal differentiation, apoptosis, and migration of

mouse spinal cord progenitor cells.
[48]

RMST ENSG00000255794 Intergenic Nuclear lncRNA RMST regulates neuronal differentiation and
associates with transcription factor SOX2. [51]

Sox2ot ENSG00000242808 Sense overlapping Its expression is inversely correlated to Sox2 expression during neural
differentiation of mouse ESCs. [52]

lincRNA-RoR ENSG00000258609 Intergenic
lincRNA-RoR participates in a regulatory loop, together with Sox2, to

help maintain hESC self-renewal balance and may contribute to
genetic networks’ regulation during development.

[53]

Gomafu ENSG00000225783 Intergenic
The long non-coding RNA Gomafu induces alternative splicing of

DISC1, leading to its downregulation and disturbing
neurodevelopmental mechanisms.

[45,56]

Notch

LncND NA Intergenic

It sequesters miR-143-3p, which targets NOTCH1 and NOTCH2
mRNAs. Knockdown of this lncRNA led to premature precursor cells’
differentiation in humans and its overexpression regulates radial glial

cells’ expansion in murine developing cortex.

[64]

KANTR ENSG00000232593 Sense overlapping/
Sense intronic

Knockout mice of KANTR locus increased gene sets involved in Notch
signaling and neural development. [65]

PERIL NA NA Knockout mice of these lncRNAs locus increased the neural stem cell
marker genes NOTCH1–3. [65]

PANTR1 ENSG00000233639 Intergenic

XIST ENSG00000229807 Intergenic
XIST silencing of the extra chr21 in Down Syndrome hiPSCs led to

diminished Notch pathway signaling and a higher rate of
neuron production.

[66]
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Table 1. Cont.

Pathway LncRNA Ensembl Gene ID Biotype 1 Role in the Pathway Reference

Sonic hedgehog

AK053922 NA NA
It helps to specify distinct neuronal cell types through acting as a

bifunctional transcriptional switch that can either repress or activate
sonic hedgehog (Shh) signaling.

[77,78]

Gm15577 ENSMUSG00000086708 Antisense In mice, it modulates Shh mRNA expression, playing important roles
in neuronal growth and neuroplasticity. [80]

Evf2/DLX6-AS1 ENSG00000231764 Antisense
Evf2 is required for proper GABAergic interneuron development,
through a transcriptional cascade initiated by Shh signaling in the

embryonic ventral forebrain.
[82,86]

Growth and
neurotrophic factors

BDNF-AS ENSG00000245573 Antisense
Regulates BDNF mRNA and protein levels, which are critical for the

development, survival, and maintenance of neurons in the
nervous system.

[109,110]

MIAT/Gomafu ENSG00000225783 Intergenic It is involved in brain development and regulation of neural and
vascular cell function via the Gomafu/miR-150-5p/VEGF network. [111,112]

MAPK/ERK

LoNA NA NA
Knockdown of LoNA led to an increase of NR1, NR2A, and NR2B

proteins in mice and was found in association with improved neuronal
plasticity and long-term potentiation.

[135]

SYNGAP1-AS1 ENSG00000274259 Antisense
SYNGAP1-AS is supposed to regulate the expression of SYNGAP1

mRNA in the prefrontal cortex and superior temporal gyrus of
patients with autism spectrum disorders.

[137]

MALAT1 ENSG00000251562 Intergenic
Knockdown of MALAT1 resulted in the inhibition of the MAPK/ERK

pathway in mouse N2a cells and also could inhibit this signaling
pathway in a rat model of cerebral infarction.

[149,150]

LINC-PINT ENSG00000231721 Intergenic

In mice, its homologous (LincPint) regulates genes of the MAPK
pathway and its transcription is hampered by MEK inhibition in the
murine hippocampus. In human normal tissues, the expression of

LINC-PINT was positively correlated with the expression of the MAPK
pathway genes.

[151,152]

Neat1 ENSG00000245532 Intergenic

This transcript is processed into two isoforms that are involved in the
pathogenesis of human neurodegenerative diseases and, in mice, its

alternatively spliced variants are differentially regulated by the
MAPK/ERK pathway.

[157]
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Table 1. Cont.

Pathway LncRNA Ensembl Gene ID Biotype 1 Role in the Pathway Reference

Synaptic vesicle
trafficking and

exocytosis

SNAP25-AS1 ENSG00000227906 Antisense In ASD patients, it is upregulated and associated with the synaptic
vesicle cycling pathway. [21]

NeuroLNC NA NA
It interacts with TDP-43, affecting synaptic vesicle release, which may

be the cause of disrupted neuro-trafficking in amyotrophic
lateral sclerosis.

[168]

Transcriptional
regulation and

chromatin remodeling

FMR4 ENSG00000268066 Antisense
The FMR4-mediated histone changes affected the expression of
neurodevelopmental genes and its targets may be related to its

function as a positive regulator of neural precursor cell proliferation.
[18]

Dali NA Intergenic
Dali controls the expression of the transcription factor gene Pou3f3

(also known as BRN1 or Oct8), which in turn plays a role in the
development of the nervous system.

[177]

RNCR3 ENSG00000253230 Intergenic Physical association of MECP2 with the lncRNA RNCR3 confers new
mechanisms of gene regulation by affecting chromatin structure. [181]

Pnky ENSMUSG00000107859 NA It regulates neuronal differentiation of embryonic and postnatal neural
stem cells by binding to the PTBP1 protein. [17,182]

Tuna ENSG00000250366 Intronic The lncRNA Tuna binds to PTBP1, with a possible role in neurogenesis.
However, the mechanism needs to be further investigated. [183]

MIAT ENSG00000225783 Intergenic
It is involved in a neurogenic commitment by controlling the

differentiation of neural progenitors and the survival of
newborn neurons.

[185]

CAT7 NA NA CAT7 cooperates with PRC1 to promote gene regulation during
neuronal differentiation. [186]

lnc-Nr2f1 ENSG00000248588 Antisense lnc-Nr2f1 binds to chromatin in an isoform-specific way to distinct
genomic loci, regulating neuronal genes in mice. [22]

1 Biotypes were obtained with the LNCipedia database (https://lncipedia.org/, accessed on 11 November 2020). NA: Not available.

https://lncipedia.org/
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Altogether, these evidences emphasize the relevance of lncRNAs in pathways involved
in NS-ID, which strongly indicates their relevance in this disorder. Additionally, these
studies expand the knowledge about lncRNAs regulatory roles during neurodevelopmental
events and demonstrate the highly complex gene networks involved in this process, making
it necessary to assess further and validate their NS-ID roles.
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