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Background: The causal direction and magnitude of the associations between

telomere length (TL) and cardiovascular diseases (CVDs) remain uncertain

due to susceptibility of reverse causation and confounding. This study aimed

to investigate the associations between TL and CVDs using Mendelian

randomization (MR).

Materials and methods: In this two-sample MR study, we identified 154

independent TL-associated genetic variants from a genome-wide association

study (GWAS) consisting of 472,174 individuals (aged 40–69) in the UK

Biobank. Summary level data of CVDs were obtained from different

GWASs datasets. Methods of inverse variance weighted (IVW), Mendelian

Randomization-Egger (MR-Egger), Mendelian Randomization robust adjusted

profile score (MR-RAPS), maximum likelihood estimation, weighted mode,

penalized weighted mode methods, and Mendelian randomization pleiotropy

residual sum and outlier test (MR-PRESSO) were conducted to investigate the

associations between TL and CVDs.

Results: Our findings indicated that longer TL was significantly associated

with decreased risk of coronary atherosclerosis [odds ratio (OR), 0.85; 95%

confidence interval (CI), 0.75–0.95; P = 4.36E-03], myocardial infarction (OR,

0.72; 95% CI, 0.63–0.83; P = 2.31E-06), ischemic heart disease (OR, 0.87; 95%

CI, 0.78–0.97; P = 1.01E-02), stroke (OR, 0.87; 95% CI, 0.79–0.95; P = 1.60E-

03), but an increased risk of hypertension (OR, 1.12; 95% CI, 1.02–1.23;

P = 2.00E-02). However, there was no significant association between TL and

heart failure (OR, 0.94; 95% CI, 0.87–1.01; P = 1.10E-01), atrial fibrillation (OR,

1.01; 95% CI, 0.93–1.11; P = 7.50E-01), or cardiac death (OR, 0.95; 95% CI,

0.82–1.10; P = 4.80E-01). Both raw and outlier corrected estimates from MR-

PRESSO were consistent with those of IVW results. The sensitivity analyses

showed no evidence of pleiotropy (MR-Egger intercept, P > 0.05), while

Cochran’s Q test and MR-Egger suggested different degrees of heterogeneity.
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Conclusion: Our MR study suggested that longer telomeres were associated

with decreased risk of several CVDs, including coronary atherosclerosis,

myocardial infarction, ischemic heart disease, and stroke, as well as an

increased risk of hypertension. Future studies are still warranted to validate

the results and investigate the mechanisms underlying these associations.

KEYWORDS

telomere length, cardiovascular diseases, genetic variants, Mendelian randomization,
causal association

Introduction

Telomeres are DNA-protein complexes composed of
deoxyribonucleic acid repeats and are located at the termini of
linear chromosomes. Telomeres protect the genes from damage
and are thus important for chromosomal stability and cellular
integrity (1). Telomere length (TL) has long been regarded as
a reliable biomarker for cellular aging due to its progressive
shortening at each cell cycle division (2–4). At a population
level, TL is often measured in blood leukocytes, which has
been suggested highly correlated with TL across different tissues
(5). Previous studies have shown that TL is largely genetically
determined (6, 7). The shortening of telomeres can induce
DNA damage and provoke apoptosis and cell senescence,
which may contribute to many aging-associated diseases (8, 9).
Epidemiological studies have shown that telomere shortening is
related to an increased risk of diabetes (10), cancer (11), and
non-vascular, non-neoplastic causes of mortality (12).

Cardiovascular diseases (CVDs) are defined as disorders
of the heart and blood vessels that include hypertension,
coronary heart disease, myocardial infarction, ischemic heart
disease, atrial fibrillation, heart failure, and stroke (13). With
the aging of the global population, the socioeconomic burden
brought about by CVDs continues to increase every year.
Globally, CVDs are continuing to be the leading cause of death
in 2019, causing an estimated 17.9 million deaths each year
(13). Telomeres have been suggested to play an important
role in the development and prognosis of CVDs, which has
drawn considerable research interest in recent years (14–17).
A multicenter, community-based cohort study from the UK
Biobank showed that reduced leukocyte TL was associated
with increased cardiovascular mortality (18). Meanwhile, a
meta-analysis involving 43,725 individuals indicated a negative
correlation between TL and coronary heart disease, but no
significant association with cerebrovascular disease was found
(19). However, a recent study suggested that TL was not
associated with cardiovascular mortality (20). Therefore, it
still remains unclear whether TL is causally involved in
the development of CVDs, as the results have been varied

and inconsistent across observational studies mainly due to
confounding, and reverse causation. A clear understanding
of the relationship between TL and the risk of CVDs is
essential to the prevention and treatment of CVDs among the
elderly population.

Mendelian randomization (MR) is a robust method of
establishing a causal association between an exposure and an
outcome using genetic variants related to the exposure of
interest (21). These genetic variants are randomly inherited
from parents and are thus not affected by confounders of
the exposure-outcome association. Compared to traditional
epidemiological approaches, MR is better at establishing
causal relationships between the exposure and outcome
variables with much less confounding and biases and has
gained increasing popularity in research. In recent years,
MR study has been widely used to assess causality in
epidemiologic settings. In the present study, we conducted
the largest two-sample MR study to assess the possible
associations between TL and the risk of CVDs using the
latest genome-wide association study (GWAS) summary
data.

Materials and methods

Mendelian randomization estimates

This is a two-sample MR study design based on the data
from different large-scale GWAS datasets. The study design
overview of the MR analysis is presented in Figure 1. The
potential genetic variants selected to estimate the effects must
comply with three key assumptions (22): (1) the genetic variants
should be associated with TL (P < 5 × 10−8); (2) the
genetic variants must not be associated with the outcome and
confounding factors of the exposure-outcome association; (3)
the genetic variants must be associated with CVDs only through
TL. All contributing studies have received ethical approval
from their respective medical ethical committees and obtained
informed consent from all study participants.
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FIGURE 1

Assumptions of the Mendelian randomization (MR) analysis for TL and the risk of CVDs. The MR study assumes that genetic variants are
associated with only TL and not with confounders or alternative causal pathways, that is, the IVs affect the risk of CVDs only directly through TL.
TL, telomere length; CVDs, cardiovascular diseases; IVs, instrument variables.

TABLE 1 Details of studies included in Mendelian randomization (MR) analyses.

Phenotype Consortium of study Sample size Ethnicity Year

Telomere length UKB 472,174 European (mostly) 2021

Hypertension FG 218,754 European 2021

Myocardial infarction FG 199,462 European 2021

Coronary atherosclerosis FG 211,203 European 2021

Ischemic heart disease FG 218,792 European 2021

Heart failure HERMES 977,323 European 2020

Atrial fibrillation AF Gen, etc. 1,030,836 European (mostly) 2018

Stroke MEGASTROKE, etc. 446,696 European (mostly) 2018

Cardiac death FG 218,792 European 2021

UKB, UK biobank; FG, FinnGen; HERMES, heart failure molecular epidemiology for therapeutic targets; AF Gen, atrial fibrillation genetics.

Genetic instrument selection

Genetic variants associated with TL were retrieved from
a hitherto largest GWAS (Dataset ID: ieu-b-4879) including
472,174 individuals (aged 40–69) in the UK Biobank, with a
similar proportion of males (45.8%) and females (54.2%) (23).
The self-reported ethnicity was predominantly White European
(94.3% White, 1.9% Asian, 1.5% Black, 0.3% Chinese, 0.6%
Mixed, and 0.9% other ethnicities) (23). Age, sex, and ethnic
group were adjusted in this study. In the UK Biobank cohort,
DNA was extracted from the peripheral blood leukocytes,
and TL was measured as the T/S ratio using the quantitative
polymerase chain reaction methodology (24). We selected
only independent (R2 < 0.001) and genome-wide significant

(P < 5 × 10−8) single nucleotide polymorphisms (SNPs) from
this GWAS as the instrumental variables (IVs) for TL, which
resulted in 154 SNPs (Supplementary Table 1). The strength
of each genetic instrument was measured using F-statistics
(F = R2/(1-R2) × [(N-K-1)/K], where R2 is the proportion of the
exposure explained by the genetic instrument, N is the sample
size, and K is the number of SNPs) (25). The PhenoScanner
database V2 was used to assess and remove those SNPs that
are associated with other phenotypes, including the potential
confounders and mediators (i.e., diabetes, hyperlipidemia,
hypertension, smoking, and body mass index) (26, 27). We also
removed SNPs for palindromic or incompatible alleles when
harmonizing TL and outcomes. In the present study, 130, 128,
128, 128, 119, 116, 130, and 138 SNPs were eventually obtained
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Outcome
Hypertension

Myocardial infarction

Coronary atherosclerosis

Ischemic heart disease

Heart failure

Atrial fibrillation

Stroke

Cardiac death

Method
IVW
MR−RAPS
MR−Egger  
PWM
Weighted mode
Maxinum likelihood 
IVW*
MR−RAPS
MR−Egger  
PWM
Weighted mode
Maxinum likelihood 
IVW
MR−RAPS
MR−Egger  
PWM
Weighted mode
Maxinum likelihood 
IVW
MR−RAPS
MR−Egger  
PWM
Weighted mode
Maxinum likelihood 
IVW*
MR−RAPS
MR−Egger  
PWM
Weighted mode
Maxinum likelihood 
IVW
MR−RAPS
MR−Egger  
PWM
Weighted mode
Maxinum likelihood 
IVW
MR−RAPS
MR−Egger  
PWM
Weighted mode
Maxinum likelihood 
IVW*
MR−RAPS
MR−Egger  
PWM
Weighted mode
Maxinum likelihood

11,622 / 199,462

23,363 / 211,203

31,640 / 218,792

47,309 / 977,323

60,620 / 1,030,836

40,585 / 446,696

7,563 / 218,792

Cases / participants SNPs
55,917 / 218,754 130

128

128

128

119

130

116

138

OR (95% CI)
1.12 (1.02 −1.23)
1.11 (1.01−1.22)
1.11 (0.93−1.33)
1.10 (0.97−1.24)
1.04 (0.89−1.22)
1.12 (1.04−1.21)
0.72 (0.63−0.83)
0.72 (0.62−0.82)
0.70 (0.54−0.91)
0.73 (0.58−0.93)
0.71 (0.52−0.97)
0.72 (0.63−0.83)
0.85 (0.75−0.95)
0.82 (0.73−0.92)
0.80 (0.65−0.99)
0.85 (0.71−1.02)
0.82 (0.62−1.07)
0.84 (0.76−0.94)
0.87 (0.78−0.97)
0.82 (0.75−0.90)
0.83 (0.68−1.00)
0.87 (0.74−1.02)
0.86 (0.67−1.11)
0.87 (0.79−0.95)
0.94 (0.87−1.01)
0.95 (0.88−1.03)
0.91 (0.79−1.05)
0.87 (0.77−0.98)
0.86 (0.76−0.99)
0.94 (0.87−1.01)
1.01 (0.93−1.11)
1.02 (0.94−1.11)
0.98 (0.83−1.16)
1.02 (0.92−1.13)
1.02 (0.91−1.15)
1.01 (0.96−1.08)
0.87 (0.79−0.95)
0.89 (0.82−0.97)
0.83 (0.60−1.00)
0.94 (0.83−1.06)
0.92 (0.79−1.07)
0.87 (0.80−0.93)
0.95 (0.82−1.10)
0.94 (0.82−1.10)
0.95 (0.73−1.24)
0.94 (0.74−1.06)
0.91 (0.69−1.18)
0.95 (0.82−1.10)

P value
0.02
0.03
0.23
0.13
0.59

<0.01
<0.01
<0.01

0.01
0.01
0.03

<0.01
<0.01
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0.15

<0.01
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0.75
0.69
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0.44
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0.59
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FIGURE 2

Associations of genetically predicted telomere length (TL) and the risk of cardiovascular diseases (CVDs). SNPs, single nucleotide
polymorphisms; IVW, inverse variance weighted (random-effects model); IVW*, inverse variance weighted (fixed-effects model); MR-RAPS,
Mendelian randomization robust adjusted profile score; MR-Egger, Mendelian randomization-Egger; PWM, penalized weighted median; OR,
odds ratio; CI, confidence interval.

as the IVs for TL to assess the associations between TL and
hypertension, myocardial infarction, coronary atherosclerosis,
ischemic heart disease, heart failure, stroke, atrial fibrillation,
and cardiac death, respectively.

Outcome data

Summary-level data for CVDs were obtained from recently
published GWAS datasets. The GWAS summary data of
hypertension (55,917 cases and 162,837 controls), coronary
atherosclerosis (23,363 cases and 187,840 controls), ischemic
heart disease (31,640 cases and 187,152 controls), myocardial
infarction (11,622 cases and 187,840 controls), and cardiac death
(7,563 cases and 211,229 controls) were from the FinnGen
consortium. The heart failure GWAS dataset (47,309 cases
and 930,014 controls) was from the Heart Failure Molecular
Epidemiology for Therapeutic Targets (HERMES) consortium.
The atrial fibrillation (60,620 cases and 970,216 controls) data

was from a GWAS meta-analysis of The Nord-Trøndelag
Health Study (HUNT), the Michigan Genomics Initiative
(MGI), deCODE, UK Biobank, DiscovEHR, and the AFGen
Consortium (28). The GWAS data of stroke (40,585 cases
and 406,111 controls) was also from different consortiums
(MEGASTROKE, etc.) (29). The participants included in this
study were mostly of European ancestry. All datasets included
in the current study are summarized in Table 1.

Statistical analysis

The IVW method was used as the principal MR analytic
approach to assess the associations between TL and the risk of
CVDs. All statistical analyses were performed using R software
(version 4.1.2). Analyses were performed using TwoSampleMR
R package (30), which included inverse variance weighted
(IVW), Mendelian Randomization-Egger (MR-Egger), and
weighted mode. A P-value less than 0.05 (two-sided) was
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FIGURE 3

Scatter plots for Mendelian randomization (MR) analyses of the correlation between telomere length (TL) and cardiovascular diseases (CVDs).
(A) TL-hypertension; (B) TL-myocardial infarction; (C) TL-coronary atherosclerosis; (D) TL-ischemic heart disease. The slope of each line
corresponds to the estimated association effect between TL and the risk of CVDs of different MR methods.

considered statistically significant. We used the IVW (Q)
and MR-Egger methods to test for heterogeneity, the MR-
Egger regression (MR-Egger intercept test) to evaluate the
horizontal pleiotropy (statistical significance was set at a level
of P < 0.05), and the leave-one-out analysis to exclude the
possible influence of individual SNPs on the overall results.
For sensitivity analyses, P < 0.05 in Cochran’s Q test suggested
significant heterogeneity. The MR-IVW fixed-effects model was
adopted for SNPs without heterogeneity (P > 0.05 in Cochran’s
Q test), while the MR-IVW random-effects model was used for
heterogeneous SNPs. We further performed the robust adjusted
profile score (MR-RAPS), maximum likelihood estimation, and
penalized weighted median (PWM) method to assess the effects
of TL on the risk of CVDs (31–33). Additionally, we used
the Mendelian randomization pleiotropy residual sum and
outlier (MR-PRESSO) test to identify and remove the horizontal
pleiotropic outliers (34).

Results

In our MR study, 154 independent leukocyte TL-associated
SNPs were obtained as IVs (Supplementary Table 1). The

F-statistics of all these genetic variants were above the threshold
of 10 (range: 29.86–1628.82), indicating that our IVs were
strongly predictive of TL. The SNPs that were associated with
confounding factors and SNPs for palindromic or incompatible
alleles were removed.

Six different methods of MR analyses, i.e., the IVW method,
MR-RAPS, MR-Egger, PWM, weighted mode, and maximum
likelihood, were implemented. The IVW method was used as
the principal MR analytic approach. Using the IVW method, we
found that genetically increased TL was significantly associated
with lower odds of coronary atherosclerosis [IVW: odds ratio
(OR), 0.85; 95% confidence interval (CI), 0.75–0.95; P = 4.36E-
03], myocardial infarction (IVW: OR, 0.72; 95% CI, 0.63–0.83;
P = 2.31E-06), ischemic heart disease (IVW: OR, 0.87; 95% CI,
0.78–0.97; P = 1.01E-02), and stroke (IVW: OR, 0.87; 95% CI,
0.79–0.95; P = 1.60E-03), but higher odds of hypertension (IVW:
OR, 1.12; 95% CI, 1.02–1.23; P = 2.00E-02). However, we did not
find enough evidence for the relationships between TL and heart
failure (IVW: OR, 0.94; 95% CI, 0.87–1.01; P = 1.10E-01), atrial
fibrillation (IVW: OR, 1.01; 95% CI, 0.93–1.11; P = 7.50E-01),
and cardiac death (IVW: OR, 0.95; 95% CI, 0.82–1.10; P = 4.80E-
01). The two-sample MR estimates for the associations between
TL and the risk of CVDs were presented in Figure 2. The scatter
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FIGURE 4

Scatter plots for Mendelian randomization (MR) analyses of the correlation between telomere length (TL) and cardiovascular diseases (CVDs).
(A) TL-heart failure; (B) TL-atrial fibrillation; (C) TL-stroke; (D) TL-cardiac death. The slope of each line corresponds to the estimated association
effect between TL and the risk of CVDs of different MR methods.

plots for the MR TL-to-CVDs association were presented in
Figures 3, 4.

The MR-PRESSO test identified one outlier SNP for
ischemic heart disease (rs429358, Rssobs = 5.08E-03,
P < 0.128), five outlier SNPs for atrial fibrillation (rs12369950,
Rssobs = 2.05E-03, P < 0.13; rs2306646, Rssobs = 8,89E-04,
P < 0.13; rs4743037, Rssobs = 1.06E-03, P < 0.13; rs6584579,
Rssobs = 1.11E-03, P < 0.13; rs6751209, Rssobs = 7.48E-
04, P < 0.13), and one outlier SNP for stroke (rs6584579,
Rssobs = 1.69E-03, P < 0.116). No outlier SNPs were
identified for hypertension, myocardial infarction, coronary
atherosclerosis, heart failure, and cardiac death. Both raw and
outlier corrected estimates from MR-PRESSO were consistent
with the IVW results (Table 2). After removing the outlier
SNPs, the IVW analysis showed basically the same results
(Supplementary Table 2).

The IVW, MR-Egger, and MR-Egger intercept tests were
performed as sensitivity analyses to detect the potential
heterogeneity and horizontal pleiotropy (Table 3). According
to the sensitivity analyses, the intercept test for MR-egger
suggested no pleiotropy; however, Cochran’s Q test and
MR-Egger test suggested different degrees of heterogeneity
(Table 3). The leave-one-out sensitivity analysis was presented

in Supplementary Figures 1–8, which validated the stability of
the results.

Discussion

In our study, we found that TL was associated with the
risk of certain kinds of CVDs. To be specific, longer TL
predicted a lower risk of coronary atherosclerosis, myocardial
infarction, ischemic heart disease, and stroke, but a higher risk
of hypertension. However, we did not find enough evidence
to support the associations of TL with heart failure, atrial
fibrillation, and cardiac death.

The findings that longer TL was associated with decreased
risk of coronary atherosclerosis, ischemic heart disease,
myocardial infarction, and stroke were consistent with previous
studies. For instance, a recent meta-analysis based on 18 studies
(involving 14,491 individuals) showed that the TL in patients
with coronary artery disease was significantly shorter than that
in the controls (standard mean difference = –0.45; 95% CI, –
0.65–0.25) (35). A meta-analysis involving 32 studies (44,610
participants) reported that the shortest TL was related to a
higher risk of myocardial infarction (risk ratio, 1.39; 95% CI,
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TABLE 2 The Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO) tests of the relationship between telomere length (TL)
and cardiovascular diseases (CVDs).

Outcome Raw estimates Outlier corrected estimates

N OR 95% CI P-value N OR 95% CI P-value

Hypertension 130 1.12 1.02–1.23 0.02 – – – –

Myocardial infarction 128 0.73 0.63–0.84 <0.01 – – – –

Coronary atherosclerosis 128 0.85 0.76–0.95 <0.01 – – – –

Ischemic heart disease 128 0.87 0.78–0.96 <0.01 127 0.86 0.78–0.94 <0.01

Heart failure 119 0.95 0.88–1.03 0.21 – – – –

Atrial fibrillation 130 1.03 0.94–1.12 0.55 125 1.02 0.95–1.10 0.58

Stroke 116 0.88 0.80–0.95 <0.01 115 0.89 0.82–0.96 <0.01

Cardiac death 138 0.96 0.85–1.10 0.56 – – – –

OR, odds ratio; CI, confidence interval.

TABLE 3 Heterogeneity and horizontal pleiotropy of the associations between telomere length (TL) and cardiovascular diseases (CVDs).

Outcome Heterogeneity test (IVW) Heterogeneity test (MR Egger) MR Egger intercept test

Q-value P Q-value P I SE P

Hypertension 198.56 <0.01 198.56 <0.01 0.00 0.00 0.97

Myocardial infarction 141.33 0.11 141.21 0.10 0.00 0.00 0.75

Coronary atherosclerosis 150.69 0.04 150.25 0.04 0.00 0.00 0.56

Ischemic heart disease 163.00 0.01 162.45 0.01 0.00 0.00 0.53

Heart failure 121.03 0.07 121.37 0.07 0.00 0.00 0.60

Atrial fibrillation 268.73 <0.01 269.28 <0.01 0.00 0.00 0.62

Stroke 148.95 0.01 149.28 0.01 0.00 0.00 0.62

Cardiac death 103.03 0.87 103.28 0.88 0.00 0.00 0.62

IVW, inverse variance weighted; MR-RAPS, Mendelian randomization robust adjusted profile score; Q-value, the statistics of Cochrane’s Q test; I, intercept; SE, standard error.

1.16–1.67) (36). A cohort study with 29 years of follow-up
reported that the lowest TL was modestly related to an increased
risk of ischemic heart disease (hazard ratio, 1.55; 95% CI, 1.02–
2.35). A meta-analysis based on 11 studies (25,340 individuals)
indicated a significant association between shortened TL and
stroke (OR: 1.5; 95% CI, 1.13–2.00) (37). All these findings
supported the protective roles of increased TL in certain CVDs
and suggest that special attention should be paid to those with
shortened TL and certain measures to be taken to prevent the
occurrence of CVDs in the future.

Of note, we found that longer TL was related to an
increased risk of hypertension, which was opposite to the
findings regarding coronary atherosclerosis, ischemic heart
disease, myocardial infarction, and stroke. Previous studies have
reached inconsistent conclusions on the correlation between TL
and hypertension. For instance, some previous studies suggested
that there was no association between TL and blood pressure
(38–40). A previous meta-analysis of 10 studies indicated a
significant negative correlation between TL and hypertension
(41), which was also observed in recent studies (42–45).
However, it has also been reported that longer TL is associated
with higher blood pressure (46, 47). Meanwhile, several studies

have found a non-linear correlation between TL and blood
pressure (48–50). These findings suggest inconclusive and
contradictory associations between TL length and hypertension,
which warrant further research. Additionally, although our
MR study did not find evidence to support the associations
between TL and heart failure or cardiac death, the ORs
for these associations were both less than 1.0, suggesting
that TL might be a potential risk factor for heart failure
and cardiac death. Previous studies have shown inconsistent
results in the associations of TL with heart failure, atrial
fibrillation, and cardiac death (14, 51–57), indicating the need
for further research.

The mechanism of the associations between TL and
CVDs remains elusive. Previous studies have reported that
accelerated telomere shortening was associated with oxidative
stress and chronic inflammation, both were critical factors
that contribute to CVDs (58). Telomere shortening might
also induce endothelial cell senescence and thereby promote
human atherogenesis (59, 60). In addition, accelerated telomere
shorting has been reported to be related to bone marrow-
derived endothelial injury, which was important for the re-
endothelialization of damaged vessels (61). It has also been
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suggested that TL was related to the development of type
2 diabetes, a common risk factor for CVDs (62). Cellular
senescence in arteries induced by telomere dysfunction might
contribute to the pathogenesis of hypertension (39). Besides,
multiple social, environmental, and psychological factors could
also affect these relationships. For example, it has been found
that lack of physical activity, smoking, drinking, and high body
mass index was negatively associated with TL, while regular
exercise and a high-fiber diet were positively associated with the
length of telomeres (63).

Several strengths of this MR study should be noted. First,
we excluded the genetic variants that were related to potential
confounders commonly found in epidemiological studies and
selected only the SNPs strongly associated with TL. Second,
the large sample size of our MR analysis enhanced our
statistical power and provided reliable evidence of associations.
Besides, we used the MR-PRESSO test to identify and remove
variants that were horizontal pleiotropic outliers. Finally, we
performed several sensitivity analyses, such as IVW, MR-Egger,
and leave-one-out analysis, to confirm the robustness of these
findings. Despite the strengths, there are some limitations to this
study. First, our summary-level MR analysis assumed a linear
relationship between TL and CVDs, which might not be the fact.
Second, selection bias, such as the potential “healthy volunteer”
bias and low recruitment rate, and bias from sample overlap
could not be completely avoided. Third, different degrees of
heterogeneity were observed in the MR-Egger and IVW (Q)
methods, suggesting that our findings might be affected by
pleiotropy. Furthermore, the participants in this study were
mostly of European ancestry, which minimized the population
stratification bias but limited the generalizability of our findings
to other populations.

Conclusion

Our MR study provided strong evidence of the relationships
between TL shortening and increased risk of coronary
atherosclerosis, myocardial infarction, ischemic heart disease,
and stroke, as well as decreased risk of hypertension. We
did not find the casual associations of TL with heart failure,
atrial fibrillation, and cardiac death. Future studies are still

warranted to validate the results and investigate the mechanisms
underlying these associations.
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