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The Gene Promoter Expression Prediction challenge consisted of predicting gene expression from promoter sequences in
a previously unknown experimentally generated data set. The challenge was presented to the community in the frame-
work of the sixth Dialogue for Reverse Engineering Assessments and Methods (DREAM6), a community effort to evaluate
the status of systems biology modeling methodologies. Nucleotide-specific promoter activity was obtained by measuring
fluorescence from promoter sequences fused upstream of a gene for yellow fluorescence protein and inserted in the same
genomic site of yeast Saccharomyces cerevisiae. Twenty-one teams submitted results predicting the expression levels of 53
different promoters from yeast ribosomal protein genes. Analysis of participant predictions shows that accurate values for
low-expressed and mutated promoters were difficult to obtain, although in the latter case, only when the mutation induced
a large change in promoter activity compared to the wild-type sequence. As in previous DREAM challenges, we found that
aggregation of participant predictions provided robust results, but did not fare better than the three best algorithms.
Finally, this study not only provides a benchmark for the assessment of methods predicting activity of a specific set of
promoters from their sequence, but it also shows that the top performing algorithm, which used machine-learning ap-
proaches, can be improved by the addition of biological features such as transcription factor binding sites.

[Supplemental material is available for this article.]

One of the main objectives of the Dialogue for Reverse Engineering

Assessments and Methods (DREAM) (Stolovitzky et al. 2007) is to

catalyze the interaction between experiment and theory in systems

biology, particularly for quantitative model building. For this purpose,

unpublished data is used to objectively test team predictions gener-

ated by their methods/algorithms. The evaluation of participants’

methods is blind, as inspired by the community challenges posed in

CASP (Critical Assessment of Techniques for Protein Structure Pre-

diction). CASP’s main goal is to obtain an in-depth and objective as-

sessment of state-of-the-art techniques for protein structure prediction

using a set of unpublished protein structures (Moult et al. 1995;

Shortle 1995; Moult 1996). This same principle is used in DREAM

where a blind benchmark is provided so predictions from different

algorithms can be easily compared, thus enhancing the reliability of

programs/methods used. We describe here the Gene Promoter Ex-

pression Prediction challenge from DREAM6, identify the best per-

formers, and discuss the main results, as well as an improvement of

the top-performing algorithm. The full description of the challenge, as

was presented to the participants, including the teams’ rankings, can

be found at the DREAM website (http://the-dream-project.org).

Gene Promoter Expression Prediction challenge
The level at which genes are transcribed is determined in large

part by the DNA sequence upstream of the gene, known as the

promoter region. Although widely studied, we are still far from

a quantitative and predictive understanding of how transcrip-

tional regulation is encoded in cis-regulatory elements of gene

promoters (Kaplan et al. 2009; Sharon et al. 2012). One obstacle in

the field is obtaining accurate measurements of transcription de-

rived from different promoters. Fusion of promoters to fluorescent

reporters can be used to determine the relative contribution of

transcription to the resulting mRNA levels, since they provide

measurements of promoter activity independent of the se-

quence of the associated transcript (Kalir et al. 2001). To further

address this, an experimental system was designed to measure

the transcription derived from different promoters, all of which

are inserted into the same genomic location upstream of a re-

porter gene—a yellow fluorescence protein gene (YFP) (Zeevi et al.

2011).

To study a set of promoters that share many regulatory ele-

ments and thus are suitable for computational learning, data per-

taining to promoters of most of the ribosomal protein (RP) genes in

yeast Saccharomyces cerevisiae grown in a rich medium condition

was obtained (Zeevi et al. 2011). Although ribosomal promoters

may not capture generic promoter features, the challenge pre-

sented sought to model RP promoters to address questions left

unanswered by successful genome-wide models (Beer and Tavazoie

2004; Gertz and Cohen 2009; Irie et al. 2011), such as what are the

mechanisms behind the equimolar expression of the RP genes
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despite their varying copy numbers and how the information for

fine-tuned expression is encoded in promoter regions. Also, un-

derstanding the basis of fine-tuned regulation of highly homolo-

gous promoters could provide clues to engineer promoter libraries

of desired activity, starting from a parent promoter sequence.

The promoter regions for the S. cerevisiae RP genes were de-

fined as the sequence immediately upstream of the ribosomal

protein coding region beginning at the translation start site (TrSS)

and continuing 1200 bp or until reaching another upstream

gene’s coding sequence, selecting whichever came first. This

removes a source of variability between strains derived from post-

transcriptional regulation related to the coding and 39 un-

translated regions. Each promoter was linked to a URA3 selection

marker (Linshiz et al. 2008) and inserted into the same fixed lo-

cation in the yeast genome (Gietz and Schiestl 2007) of a master

strain that contained the YFP gene (see Fig. 1A). In addition to 110

natural RP promoter strains, we constructed 33 strains with site-

specific mutated RP promoters using similar methods (Gietz and

Schiestl 2007; Linshiz et al. 2008).

The strains containing the different RP derived promoters

were synchronized and grown, and their YFP fluorescence was

recorded in a plate reader. The transcription initiated by each

Figure 1. Overview of the experimental system and results. (A) Illustration of the master strain into which we integrated all the tested promoters. At a fixed
chromosomal location, the master strain contains a gene that encodes a red fluorescent protein (mCherry), followed by the promoter for TEF2, and a gene that
encodes for a yellow fluorescent protein (YFP). Every tested promoter is integrated into this strain, together with a selection marker, between the TEF2 promoter
and the YFP gene. (B) Strains with different promoters have highly similar growth rates. Shown is the growth of 71 different promoter strains, measured as optical
density (OD). Measurements were obtained from a single 96-well plate, with glucose-rich media and a small number of cells from each strain inserted into each
well at time zero. The exponential growth phase is indicated (vertical dashed gray lines). (C ) Same as B, but where the measurements correspond to mCherry
intensity. Note the small variability in the intensity of mCherry, which is driven by the same control promoter across the different strains. (D) Same as C, but where
the measurements correspond to YFP intensity. Note the large variability in the intensity of YFP, which is driven by a different promoter in each strain. (Adapted
with permission from Zeevi et al. [2011].) (E) Black line shows the scores from different participating teams plotted in descending order, and red line shows scores
of aggregated teams starting with the score obtained from averaging the prediction results of the two best-performing teams, followed by the three best-
performing teams, and so on until all 21 teams are included. The stand-alone dot represents the post-hoc model combining SVM and biological features.
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promoter was measured by its promoter activity, defined as the av-

erage YFP fluorescence during the exponential growth phase di-

vided by the average optical density (OD) during that time period

(see Fig. 1B,D). Hence, promoter activity represents the average

rate of YFP production from each promoter, per cell per second,

during the exponential phase of growth (Zeevi et al. 2011). As

a control for the experimental error, a red fluorescent protein

(mCherry) was driven by a control promoter, identical in all strains

(see Fig. 1C). Several tests were performed to gauge the accuracy

and sensitivity of the system. The results showed that growth

curves of all strains were nearly identical, YFP levels of indepen-

dent clones of the same promoter sequence were indistinguishable

from those of replicate measurements of the same clone, signals

measured in the YFP wavelength were not affected by the presence

of the mCherry protein, and no correlation was found between the

YFP and mCherry promoter activities across the different RP pro-

moter strains. Finally, the average difference between any two

mCherry strains was ;5%, and when using replicate measure-

ments, the relative error in the estimated YFP promoter activity of

an RP promoter is ;2%, indicating that it is possible to distinguish

between any two promoters whose activities differ by as little

as ;8% (Zeevi et al. 2011).

The challenge

The challenge consisted of predicting the promoter activity de-

rived from a given RP promoter sequence. Participants were

provided with a training set of 90 natural RP promoters (see Sup-

plemental Table S1) for which both the promoter sequence and

activity were known and a test set of 53 promoters (see Supple-

mental Table S2) for which only the promoter sequence was given.

The test set was divided into two subsets. The first subset had 20

natural RP promoters. The second subset contained 33 promoters

that are similar to natural RP promoters but have some mutations

in their sequence. These mutations can be separated into six types:

mutations of TATA boxes (Basehoar et al. 2004), of binding sites

for Fhl1 and Sfp1—known transcriptional regulators of RP genes

(Badis et al. 2008; Zhu et al. 2009), mutations to nucleosome

disfavoring sequences, random mutations that occurred un-

intentionally while creating the natural promoters, and finally,

sequences mutated intentionally with additional random muta-

tions (see Table 1). The goal was to predict as accurately as possible

the promoter activity of the 53 promoters in the test set using the

90 promoters for training.

Results and analysis
The challenge was scored in four different ways using criteria that

considered the ‘‘distance’’ between measured and predicted values

or differences in rank between measured and predicted values. The

first metric consists of a Pearson correlation between the predicted

and measured promoter activity. The second metric is a normalized

sum of squared differences. The third is the Spearman rank corre-

lation, which is essentially the Pearson correlation between the

ranks, and the fourth metric is a normalized sum of the squared

difference in ranks. These metrics were then combined into a score

(see Methods, Eqs. 1–5).

As shown in Figure 1E and Table 2, out of 21 participating

teams, team FiRST was the best performer, with a score of 1.88,

followed by team c4lab with 1.55, in a close race for the second

place with the third team, which was then followed by a monoto-

nous decrease in the participants’ scores. When a series of aggre-

gated teams are formed by averaging the predicted promoter

activity values of the best N teams, the score of the aggregated best

15 teams becomes 1.49, close to that of the second-best performing

team (c4lab) (see Fig. 1E). Scores for the remaining aggregated teams

are also observed to be above the fourth ranked team, showing that

blending community predictions produces robust results (see Sup-

plemental Material, DREAM6 Participants Predictions files).

We analyzed whether some participants were better at pre-

dicting specific promoters but could not find any correlation be-

tween overall team ranking and the number of promoters a team

predicted best. Also, when predicting single promoters, the overall

highly ranked methods did not rank first more often than lower

ranked ones but fared well across all promoters.

In order to investigate whether some promoters were harder

to predict, we calculated the average distance d2
i

over all partici-

pants for promoter i from the promoter’s predicted value to its

measured value (see Eq. 6, Methods). As seen in Figure 2A, where

promoters are ordered by increasing d2
i
, five promoters out of the

53 stand out for being predicted with less accuracy. We next di-

vided the promoters based on d2
i
into two groups consisting of the

best 30 predictions (green dots, Fig. 2A) and the 23 worst pre-

dictions (red dots, Fig. 2A) and plotted the Pearson correlation of

each of the participating teams for these two groups of promoters

(Fig. 2B). For all teams, the Pearson correlation clearly separated

the best-predicted and worst-predicted promoters as defined by d2
i
,

showing that, for all participants, promoters could be consistently

divided into two groups, one of which was harder to predict than

the other.

To identify the source of the difficulty in predicting the ex-

pression values of these 23 promoters, we explored the possibility

of this list being enriched for mutant promoters. Wild-type pro-

moters were found to be distributed equally between the worst-

predicted promoters (10 empty dots on red side of Fig. 2A) and

best-predicted promoters (10 empty dots on green side of Fig. 2A).

A Fisher test shows no statistical significance for mutant or wild-

type promoter enrichment. We next used measure xi (see Eq. 7,

Methods) to evaluate whether promoter activity was correlated to

the difficulty of predicting its value. Figure 2C, showing how xi

varies for each promoter, reflects that participants’ performance is

anti-correlated with promoter activity, with a Pearson correlation

of �0.836. Participants’ prediction accuracy can be divided into

three groups according to their promoter activity ji : ji values be-

tween 1 and 3 ( < xi > = 0.25 6 0.73 for i such that 1 > ji > 3, 18

promoters)—which fared significantly better than the following

two groups: ji values less than 1 ( < xi > = 3.02 6 1.10 for i such that

ji < 1, 8 promoters, t-test p < 1.1 3 10�11); and ji values higher than

3 ( < xi > = �1.48 6 0.51 for i such that ji > 3, 7 promoters, t-test

p < 1.75 3 10�7). Both observations are independent of whether

the promoters contain mutations (Fig. 2C, full and empty dots).

As we could not find clear differences between mutant and

wild-type promoters when using the d2 measure, we calculated

a different type of distance d1 to compare participant predictions

and measurements (see Eq. 8, Methods). As shown in Figure 3A, d1
i

clearly distinguishes wild-type promoters (mean value of d1
i

is

1.62 6 0.22) from mutant promoters (mean value of d1
i

is 2.23 6

0.41, t-test P < 8 3 10�8). In order to understand the differences in d1

for the various mutant promoters, we formed six groups according

to the nature of their mutations. In Figure 3B, the different groups of

mutations were ordered according to the associated d1 mean value.

Participants’ predictions fared better for mutations typically in-

ducing small changes in promoter expression (low d1 in Fig. 3B),

such as random mutations. Conversely, sequence mutations known

Meyer et al.
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to induce large changes by lowering promoter expression, such as

mutations to the TATA box, were the worst-predicted group (high d1
i

in Fig. 3B). As there is not enough data to extract a statistical measure

of the differences between groups of promoters, we decided to follow

up on the previous observation and compare the d1
i

value for each

mutant promoter to the relative promoter activity difference induced

by the mutations. As shown in Figure 3C, d1
i

grows exponentially

with increasing differences between wild-type and mutant promoter

expression. Hence, prediction accuracy for mutant promoters wors-

ened when mutations induced higher changes on expression.

Improving promoter expression prediction
by adding biological features
As shown in Figure 1B, scores of aggregated teams were observed to

be robustly above the fourth-ranked team but did not fare better

than the three best-performing teams. As the best-performing

models of this challenge did not include biological features such as

the binding sites for Fhl1 and Sfp1, known transcriptional regu-

lators of RP transcription factors, we decided to try to improve

model performance by including biological features in the best-

performer algorithm of team FiRST. To do this, we modified a re-

cently published mechanistically motivated model that takes into

account the competition between transcription factors and nu-

cleosomes for DNA binding sites in the regulation of gene ex-

pression (Zeevi et al. 2011) (Eqs. 9 and 10; see Methods). The score

for this model based on Cp, the Pearson correlation between pre-

dicted and observed activity, was 0.49 (see Eq. 1, Methods). We

then combined this model with that of the best-performing team,

FiRST, in two ways. In the first approach, we averaged the predicted

activity of each promoter by team FiRST and the mechanistic

model. The correlation between the predicted and actual activities

Table 1. Information on the promoter sequence mutations

For every promoter, locations of TATA boxes (pink circles), and of binding sites for Rap1 (red), Fhl1 (green), and Sfp1 (blue) are shown. In addition, shown is the
per-base pair nucleosome occupancy of every promoter (occupancy is shown in a white to black scale, with white corresponding to no occupancy and black to
full occupancy), predicted using a computational model of nucleosome sequence preferences (Kaplan et al. 2009). Also shown is a matrix (left) summary of the
number of factor sites that appear in every RP promoter (counts for Rap1 are only shown for the 400 bp upstream of the TrSS; for Fhl1 and Sfp1, 300 bp; and for
TATA, 200 bp), along with a column representing whether the corresponding RP gene exists in a single copy in the yeast genome (first column, black) and
whether it is an essential gene (second column, gray). The length of each native promoter is indicated (cyan vertical line) if it is shorter than 600 bp.
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remained the same as for FiRST (;0.65) (see Table 1), demonstrating

the robustness of aggregating predictions even when one method

has considerably lower performance. Given that the method by team

FiRST did not explicitly use transcription factor binding, we reasoned

that incorporating the transcription factor binding site information

directly into team FiRST’s model should be complementary to the

method and could reveal interactions between transcription factors

and sequence context. To test this idea, we included the transcrip-

tion factor binding affinities for each promoter as additional features

to those used by team FiRST (see Supplemental Table S3 for details

on the features). We then trained a support vector machine (SVM)

using the combined features from both models. The resulting model

provided predictions that had a correlation of 0.67 to the actual

promoter activity and a combined score of 2.6 (Cp = 0.67289; X2 =

39.79601; Sp = 0.66815; R2 = 30.75429) (see Fig. 1E and Supple-

mental Data, DREAM6 Participants Predictions files), presenting

a significant improvement and best performance compared to all

the other teams or the aggregate of their predictions.

Discussion
The scoring and analysis of submitted predictions for the DREAM6

Gene Promoter Expression Prediction challenge revealed excellent

performances (see Fig. 1E and Table 2). This is, indeed, remarkable, as

the data set presented a difficult learning problem due to the high

homology between the promoters in the relatively small RP promoter

training set—yeast only has 137 ribosomal promoters—and lower

dynamic range of promoter activity compared to what would be

observed on a genome-wide scale. Methods with typically high

accuracy in genome-wide predictions ranked 11 and 12 here (see

Supplemental Table S4), indicating that the challenge posed by RP

promoters is distinct and requires the development of specific

methods in order to be solved.

Choosing the right scoring scheme to evaluate the challenge

was essential, as participants fared differently depending on the

metric used (see Table 2). The best-performing team did not get the

top score for all metrics nor all promoters but was the most con-

sistent. Also, participants had difficulties while predicting low-

expressed promoters and certain mutant RP promoters. Finally,

community predictions were robust to the aggregation of teams’

results, and the best score of 2.6 was obtained by combining fea-

tures from team FiRST’s machine-learning model and a mechanis-

tic model based on biophysical assumptions.

During their presentations at the DREAM6 conference, the

best-performing teams, FiRST and c4lab, showed that mutated

promoters were harder to predict than natural promoters. Team

FiRST mainly used the first 100 bp of the promoter to predict pro-

moter activity, and team c4lab used a 12-mer motif. Team FiRST

tried to include features such as k-mer counts (mono, di, tri, tetra,

and penta), homopolymer stretches, promoter length, DNA bend-

ability, DNA protein deformability, DNA bending stiffness, and

nucleosome binding potential. They used a machine-learning SVM

approach to select 12 features that can be summarized as follows:

one mononucleotide G, one dinucleotide GT, six trinucleotides, 12

tetranucleotides, length of T-tracts and TA-tracts, DNA deform-

ability (a detailed description of this model will appear in a different

manuscript). Team c4lab also used different k-mer counts to finally

concentrate on 12-mer motifs used in a support vector regression

approach but did not find any correlation between the 12-mers and

biological features such as distance to a TrSS or copy number motifs

(see Supplemental Table S4 for a brief description of other partici-

pants’ methods).

Neither of the best-performing teams directly used general

features related to transcription factors such as TATA boxes and

nucleosome occluding sequences. Actually, none of the four bi-

ological features targeted by the mutations—TATA boxes, binding

sites for the transcriptional regulators Fhl1 and Sfp1, and muta-

tions to nucleosome disfavoring sequences—were detected by the

participants. Since most participants did not include these features

in their models, it is not surprising that many fared worse with

Table 2. Scores from different teams ranked in descending order

Rank Cp X2 Sp R2 p1 p2 p3 p4 Score

FiRST 1 0.6475 52.6197 0.6469 35.852 0.0035 0.515 0.0011 0.0152 1.8759
c4lab 2 0.5386 30.8202 0.4938 37.7716 0.0979 0.0013 0.162 0.0306 1.5462
Team263 3 0.5184 29.7988 0.4436 37.1604 0.1461 0.0007 0.3505 0.0245 1.5107
Team164 4 0.4925 35.1053 0.4837 40.5142 0.2243 0.0121 0.1946 0.07 1.1079
Team259 5 0.4959 31.3914 0.456 48.8889 0.2132 0.0019 0.2982 0.3445 1.0941
Team140 6 0.534 61.2089 0.5887 47.7112 0.1077 0.8205 0.0136 0.2944 0.8628
Team250 7 0.4743 40.7905 0.5262 50.29 0.291 0.0783 0.0825 0.4066 0.7791
Team84 8 0.5253 65.7449 0.4732 37.8666 0.1285 0.9089 0.2315 0.0317 0.7669
Team17 9 0.5211 69.0551 0.477 41.6918 0.1391 0.9477 0.2176 0.0945 0.6418
Team154 10 0.4457 55.4508 0.4901 40.4362 0.4071 0.6326 0.1735 0.0685 0.6286
Team21 11 0.4197 57.103 0.5661 49.2351 0.5181 0.694 0.029 0.3599 0.6065
Team76 12 0.469 50.4026 0.4598 42.6173 0.3116 0.4159 0.2826 0.1176 0.5914
Team61 13 0.5327 55.4348 0.4514 46.5912 0.1109 0.632 0.3171 0.2494 0.564
Team187 14 0.5467 61.9649 0.5064 55.8043 0.0825 0.8386 0.1266 0.6453 0.5619
Team257 15 0.502 47.6773 0.4547 50.6775 0.1939 0.2976 0.3036 0.4244 0.5322
Team253 16 0.4478 91.0982 0.4386 50.7745 0.3984 0.9996 0.3721 0.4286 0.2993
Team264 17 0.3278 44.0867 0.2259 77.3447 0.8439 0.1645 0.9776 0.9916 0.2178
Team245 18 0.3031 46.4831 0.2973 60.9865 0.8963 0.2503 0.8949 0.8163 0.1964
Team265 19 0.3932 50.2789 0.3729 81.9649 0.6294 0.4104 0.665 0.9973 0.1916
Team176 20 0.2658 47.6607 0.2385 72.0592 0.9485 0.2969 0.9699 0.9737 0.1438
Team138 21 0.1279 88.8242 0.0928 106.762 0.9984 0.9994 0.9997 1 0.0003

Only names of the two best-performing teams are indicated. Cp (see Eq. 1) indicates the Pearson metric, X2 the score based on the x2 metric (see Eq. 2),
Sp the score based on the Spearman metric (see Eq. 3), and R2 the score based on the rank2 metric (see Eq. 4). p1, p2, p3, and p4 are the associated
P-values based on the null-hypothesis generated from randomized values for the distances Cp, X2, Sp, and R2. Note that P-values become significant

across the table if a less stringent null-hypothesis is applied. The last column is the final score calculated as the P-value product: � 1
4 log

Q4
j = 1 pj (see Eq. 5).
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promoters where these sequences were mutated. Figure 3, B and C

show precisely that, as mutation-induced expression changes in-

crease, predictions become worse. One exception is team FiRST’s

machine-learning method that was able to identify a number of

nucleosome disfavoring features, in particular TA-tracts, as being

useful in predicting promoter activity.

During the DREAM6 conference discussion, an audience

member proposed that the training set should have included mu-

tated promoter sequences. However, an intended feature of the

challenge was to indicate that mutated sequences were present in

the test set without giving hints or providing training data on se-

quence changes that could affect the promoter expression level.

We expected participants to analyze the origin of these mutations

and think that our strategy was correct, as Figure 2A shows that,

although participants did not look for the origin of mutated pro-

moters, these were distributed equally between the groups of best-

and worst-predicted promoters. It is only when all mutated and

wild-type promoters are separated into two groups that participants’

predictions for those two groups can be differentiated (Fig. 3A).

The mechanism by which Fhl1, Sfp1, Rap1, and TATA boxes

contribute to the promoter expression appear to follow a simple

rule, where more sites from these factors in closer proximity to the

Figure 2. Analysis of promoter prediction results. (A) Promoters are ordered by increasing d2
i
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<
ðXip�jiÞ2

ji
2 > p

q
, where Xip is the predicted value of

promoter i and participant p = 1,2. . .21 , and ji is the measured value for promoter i = 1,2. . .53. Green dots represent the 30 best predictions, and red dots
the 23 worst predictions. Empty dots represent the 20 wild-type promoters; full dots represent the 33 mutated promoters. (B) The Pearson correlation of
each of the participating teams is shown in green dots for the best predictions and in red dots for the worst predictions as defined in A. Teams are ordered
by rank based on their final score. (C ) For each promoter, xi is plotted in logarithmic scale against the promoter activity value. Empty dots represent wild-
type promoters and full dots mutant promoters.
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TrSS result in higher promoter activity (Zeevi et al. 2011). The

contribution of one of these factors to the overall promoter activity

depends on the specific organization of its sites within the pro-

moter (Lieb et al. 2001; Wade et al. 2004; Sharon et al. 2012). As

shown in Figure 2C, participants had difficulties predicting low-

and high-expressed promoters. The thresholds for low/high pro-

moter activity are sharply defined and define values lower than

1.5 and higher than 3, respectively. Seven of the eight promoters

whose activity is higher than 3 are mutated promoters, shown to

be difficult to predict. Low-activity promoters are RPL41B_Mut1,

RPL15A_Mut1, RPL21B, RPL4A_Mut6, RPL11A, RPL35B, RPL39_

Mut1, and RPS14B_Mut1. As the experimental setup can distinguish

promoter activities separated by less than 8%, we do not think that the

difficulties with predicting low promoters arise from experimental

limitations while measuring lower signals. Instead, as shown in Table

1, promoters RPL41B_Mut1, RPL21B, RPL11A, RPL35B, RPL39_Mut1,

and RPS14B_Mut1 have dispersed or lack binding motifs (see also

Supplemental Table S5). The other mutations present in promoters of

low activity are RPL4A_Mut6 and RPL15A_Mut1, which cause an

;70% decrease in promoter activity, and as discussed, participants

had difficulties predicting strong mutation effects. We conclude that

the difficulty participants had while predicting low-expressed pro-

moters is, indeed, due to less information available in these promoter

sequences and a less coherent organization of the different sequence

features, with very few TATA boxes, Fhl1, Rap1, and Sfp1 sites.

Finally, the improvement of the best-performing model, by

mixing a biology-based mechanistic approach and machine-

learning techniques, implies that the wisdom of crowds could be

tapped further by methods that directly incorporate distinct fea-

tures from independent models. Simple aggregation might miss

the interactions between the different features in the models se-

lected. Estimating the relative contributions of features extracted

from each model could be approached as a learning problem where

the different models are reduced to being independent tools for

feature selection. Once the relevant features are selected, they are

integrated into a new model, and adequate parameters are learned

once again. Overall, we think this study not only provides

a benchmark for the assessment of methods predicting promoter

activity from sequence, but it also shows that understanding the

basis of fine-tuned regulation of highly homologous promoters

could provide clues for engineering promoter libraries to obtain

a desired promoter strength from a parent promoter sequence.

Methods

Constructing promoter strains
A construct of ADH1 terminator–mCherry–TEF2 promoter–YFP–
ADH1 terminator–NAT1 was inserted into the SGA-compatible
strain Y8205 at the his3 deletion location (the construct replaced
chromosome 15, at base pairs 721987–722506). The resulting
strain served as a master strain for the entire library. Desired pro-
moters were lifted by PCR from the BY4741 yeast strain. Primers
contained one part matching the ends of the lifted promoters, and
a constant part at their 59 end matching the first 25 bases of the YFP
gene (for reverse primers) or a linker sequence (for forward primers;
see all primer sequences in Zeevi et al. 2011). Each promoter was
linked to a URA3 selection marker (Linshiz et al. 2008) and then
amplified such that its genomic integration sites increased to 45/
50 bp. Integration into the genome was performed by homologous
recombination as described in Gietz and Schiestl (2007). All steps
were performed on 96-well plates, except for growing the final
clones, which was performed on six-well plates (2% agar, SCD–
URA). To validate the inserted promoter sequences, the insertions
were lifted from each target strain by PCR and sequenced.

Constructing promoter strains with targeted mutations

To create a mutated promoter, we amplified it in two parts which
flank the desired mutation area. The left part was amplified using
a reverse primer with a 35-bp tail at its 59 end that contains the
desired mutation, while the right part was amplified using a for-

Figure 3. Analysis of prediction results for mutated promoters. (A)
Promoters were divided into two groups depending on whether they were
wild type (empty dots) or contained mutations (full dots) and plotted according

to d1
i = <

Xip�ji

ji
> p, where Xip is the predicted value of promoter i and

participant p = 1,2. . .21, and ji is the measured value for promoter i =
1,2. . .53. (B) Mutant promoter expression values were grouped
according to the nature of the mutation and ordered by mean d1 value
for each group. The six groups consist of mutations of TATA boxes
(Dtata), of binding sites for Fhl1 (Dfhl1) and Sfp1 (Dsfp1), mutations to
nucleosome disfavoring sequences (DNucDisf), random mutations (Ran-
dom), and finally, sequences mutated intentionally with additional ran-
dom mutations (Addition). The d1 value for each promoter is indicated
by full dots; the mean value of d1 for each of the six grouped mutations is
indicated by a thick bar. (C ) For each mutated promoter i, d1

i
is plotted as

a function of the percentage of expression value change induced in the
wild-type promoter by the mutation. The vertical scale is logarithmic.
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ward primer that also had a similar tail. The two new parts, both
containing the desired mutation in an overlapping region of 35 bp,
were then connected, similar to the way in which we connected
promoters to the URA3 selection marker. See Table 1 and Supple-
mental Table S6 for more information.

Library measurements

Cells were inoculated from stocks kept at�80°C into SCD (180 mL,
96-well plate) and left to grow at 30°C for 48 h, reaching complete
saturation. Next, 8 mL were passed into fresh medium (180 mL)
according to the desired condition (e.g., SCD, ethanol, heat shock).
Measurements were carried out every ;20 min using a robotic
system (Tecan Freedom EVO) with a plate reader (Tecan Infinite
F500). Each measurement included optical density (filter wave-
lengths 600 nm, bandwidth 10 nm), YFP fluorescence (excitation
500 nm, emission 540 nm, bandwidths 25/25 nm, accordingly),
and mCherry fluorescence (excitation 570 nm, emission 630 nm,
bandwidths 25/35 nm, accordingly). Measurements were carried
out using a total of eight different conditions. In all experiments,
yeast cells were grown on SC (6.9 g/L YNB, 1.6 g/L amino acids
complete). Four conditions used different 2% sugar growth media:
SC-glucose, SC-galactose, SC-ethanol, and SC-glycerol. The other
four conditions used SC-glucose with an additional stress factor:
Rapamycin (40 mg/mL), amino acid starvation (no amino acids
except histidine and leucine), heat shock (39°C), and osmotic
stress (750 mM KCl). Every strain was measured in three biological
replicates for each condition. Most of the data analysis was per-
formed on data from growth on SC-glucose (without stress), which
was measured in five replicates.

Scoring

The challenge was scored in four different ways using criteria based
on the ‘‘distance’’ between measured and predicted values or dif-
ferences in rank between measured and predicted values. As we
requested predictions of the expression levels from N = 53 pro-
moter sequences, let us denote by Xip the predicted activity of
promoter i for participant p, and ji the measured activity of pro-
moter i = 1, 2 . . ., 53 and p = 1,2. . ..,P, where P = 21 is the number of
teams that participated in the challenge. The score based on
a Pearson metric for participant p is defined by

Cp ¼
< Xip : ji > � < Xip > < ji >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
Xip

s2
ji

q : ð1Þ

In order to calculate for each participant the probability of
getting by chance a score at least as good, we randomly sampled
the predictions across the entire set of participants. For each pro-
moter i = 1,2. . .53, we chose at random one of the Xip predic-
tions, where p = 1,2,. . .,P. We thus obtained a value of Cp which
corresponded to one possible random choice of predictions among
all the participants. By repeating the same process 100,000 times, we
generated a null distribution of distances between measured and
estimated values, from which a P-value can be estimated for Cp. For
each participant, that P-value was denoted as p1.

The score based on the x2 metric for participant p is defined by

j2
p ¼ +

N

i¼1

ðXip � jiÞ2
1
P +P

i¼1 ðXi � jiÞ2
: ð2Þ

The null hypothesis was generated in a similar way by gen-
erating P-values resulting from the permutation of participants’

predicted values for a given promoter, and also for each partici-
pant, and that P-value was denoted as p2.

We also defined the score by comparing the rank of predicted
values to the actual rank of measured values. Let us denote by Rip

the predicted rank of promoter i for participant p, 1< Rip <53 and ri

the rank of the measured promoter i = 1, 2 . . ., 53 and p = 1,2,. . .,P.
Then, the score based on a Spearman metric for participant p is
defined by

Sp ¼
1
N +N

i¼1 Rip : ji � 1
N +N

i¼1 Rip:
1
N +N

i¼1 jiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N +N

i¼1 ðRip � 1
N +N

i¼1 RipÞ2: 1
N +N

i¼1 ðji � 1
N +N

i¼1 jiÞ2
q : ð3Þ

A null prediction was created by randomly permuting par-
ticipants’ predicted values for a given promoter and then ranking
a given ‘‘random’’ participant i to obtain the Rip ranks across the 53
different rankings of promoters, thus generating a distribution of
distances between measured and estimated values, for which a
P-value denoted as p3 can be estimated for Sp. The score based on
a rank2 metric for participant p is defined by

R2
p ¼ +

N

i¼1

ðjip � jiÞ2
1
P +P

i¼1 ðjip � jiÞ2
ð4Þ

where jip is the rank of proximity of Xipto ji, 1 < jip < P, and ri the
rank of the measured promoter i = 1, 2 . . ., 53. The null hypothesis
was derived from the random permutation of participants’ pre-
dicted values for a given promoter and then ranking a given
‘‘random’’ participant. The derived P-value is denoted as p4. The
overall score was defined as a function of the product of all the
P-values defined as

Score ¼ �1

4
log

Y4
j¼1

pj: ð5Þ

Prediction distances to promoter values

The average distance d2
i
over all participants p for promoter i from

the promoter predicted value (Xip) to the promoter measured value
(ji) is defined as

d2
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<
ðXip � jiÞ2

ji
2

>p

s
: ð6Þ

We also considered whether promoter activity was correlated
to the difficulty to predict its value and used the following measure
xi defined by

xi ¼
< Xip >p �jiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXip � < Xip >pÞ2

q : ð7Þ

We finally calculated a different type of distance d1
i

to
compare participant predictions and measurements, defined such
that

d1
i ¼ <

Xip � ji

�� ��
ji

>p : ð8Þ

Combined model

We considered binding sites for three transcription factors—Rap1
(Wade et al. 2004), Fhl1 (Harbison et al. 2004; Schawalder et al.
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2004; Wade et al. 2004), Sfp1 (Badis et al. 2008; Zhu et al.
2009)—that have been shown to influence yeast ribosomal gene
expression. Our model considered promoter activity Xp as directly
proportional to the binding likelihood of each of the three tran-
scription factors to their cognate motifs, above a specific thresh-
old, relative to the nucleosome binding potential of the same
sites:

Xp ¼ 1þ +
t TFs

+
pðtÞ

i¼1

wtPðt ¼ bjS½i�Þ ð9Þ

where P(t) is the set of all potential binding sites for transcription
factor t above a certain threshold, wt is a coefficient measuring the
relative contribution of factor t to the promoter activity de-
termined using MATLAB’s nonlinear solver, and P t = bjS i½ �ð Þ is the
probability that transcription factor t binds its potential site at
position i in promoter sequence S. To determine the binding sites
for the three transcription factors, we used their sequence speci-
ficities documented in position weight matrices (PWMs) (Basehoar
et al. 2004; Badis et al. 2008; Zhu et al. 2009). In estimating the
binding threshold for each transcription factor, we explored
the correlation between promoter activity and sites above each
possible threshold at intervals of 0.1. For each transcription
factor, we considered potential binding sites as those with an
affinity above the threshold and located within known spatial
localization sites: for Rap1, 400 bp upstream of the TrSS; for Fhl1
and Sfp1, 300 bp upstream of the TrSS (Zeevi et al. 2011). We
then modeled the probability for transcription factor binding as
the weight of the configuration in which the factor is bound
divided by the sum of the weight of that configuration, the
weight of the configuration in which the DNA is unbound, and
the weight of the configuration in which a nucleosome is bound
to the site:

P t ¼ bjS½i�ð Þ ¼ AtS½i�
1þ AtS½i� þ AnucS½i�

ð10Þ

where 1 represents the DNA unbound configuration, AtS½i� repre-
sents the affinity of transcription factor t for the binding site at
position i in promoter S, and AnucS½i� is the affinity of nucleosomes
for position i in promoter S.

For AnucS½i�, we used a sequence-based nucleosome affinity
model to compute the average nucleosome occupancy (Kaplan
et al. 2009).

We applied wt coefficients obtained from a nonlinear solver
trained on 90 promoters to predict promoter activities of a held-out
set of 53 promoters used in the DREAM challenge.
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