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Abstract
An enigma in studies of neuropsychiatric disorders is how to translate polygenic risk into disease biology. For schizophrenia,
where > 145 significant GWAS loci have been identified and only a few genes directly implicated, addressing this issue is a
particular challenge. We used a combined cellomics and proteomics approach to show that polygenic risk can be
disentangled by searching for shared neuronal morphology and cellular pathway phenotypes of candidate schizophrenia risk
genes. We first performed an automated high-content cellular screen to characterize neuronal morphology phenotypes of 41
candidate schizophrenia risk genes. The transcription factors Tcf4 and Tbr1 and the RNA topoisomerase Top3b shared a
neuronal phenotype marked by an early and progressive reduction in synapse numbers upon knockdown in mouse primary
neuronal cultures. Proteomics analysis subsequently showed that these three genes converge onto the syntaxin-mediated
neurotransmitter release pathway, which was previously implicated in schizophrenia, but for which genetic evidence was
weak. We show that dysregulation of multiple proteins in this pathway may be due to the combined effects of schizophrenia
risk genes Tcf4, Tbr1, and Top3b. Together, our data provide new biological functions for schizophrenia risk genes and
support the idea that polygenic risk is the result of multiple small impacts on common neuronal signaling pathways.

Introduction

Schizophrenia (SCZ) is a severe neuropsychiatric disorder
characterized by persistent delusions and hallucination and
abnormal social behavior. SCZ has a high heritability and
genetic risk factors have an important role in disease
pathogenesis [1, 2]. Despite many years of research, few
genes have been identified that may be directly involved.
Whole-exome sequencing led to the identification of
SETD1A [3] and RBM12 [4] and three rare copy number
variants (CNVs) have been identified that impact single
genes (i.e., NRXN1 [5], TOP3B [6], and VIPR2 [7]). Other
CNVs have been identified [6, 8–11], but these are difficult
to interpret functionally because they change the dosages of
many genes and often present with complex, multi-system
clinical phenotypes.

In contrast, common variation in the genome seems to
have a large impact on the development of SCZ [2]. More
than 145 independent genomic risk loci have been asso-
ciated with SCZ or in genome-wide association studies
(GWAS) [12, 13]. Some of these loci include associated
gene variants that can modify the expression of large
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numbers of other genes or proteins. Examples include
miR137 [14] genes whose transcripts are bound by the
fragile X mental retardation protein (FMRP) [15], and
several transcription factors (e.g., TCF4 [16]), providing an
extra layer of genetic complexity to the disease. Together,
all evidence suggests that SCZ is a highly polygenic dis-
order with many genes contributing to its development and
symptomatology.

The high number of candidate risk loci poses an unpre-
cedented biological challenge. It is currently not understood
how this polygenic risk translates into common patterns of
brain alterations underlying the disease. Are there many
different cellular and molecular pathways that lead to dis-
ease, or do risk genes converge onto a small number of
shared pathways underlying SCZ? We addressed this issue
by performing a combination of cellular phenotyping (cel-
lomics) and proteomics analysis. We used RNA inter-
ference in combination with automated high-content
screening to identify neuronal phenotypes associated with
reduced expression of 41 SCZ risk genes, and subsequent
proteomics analysis to identify cellular pathways for genes
sharing similar phenotypes. Our data show that inhibition of
Tcf4, Tbr1, and Top3b each cause a similar synaptic mor-
phological phenotype. The three genes converge onto a
neurotransmitter release pathway that was previously asso-
ciated with SCZ, and molecular changes induced by each
gene are needed to significantly impact this pathway. Our
data suggest that polygenic risk in SCZ may at least in part
converge onto common cellular disease pathways that
cannot be detected by computational pathway enrichment
analyses alone, and that the high polygenic risk challenge in
SCZ may be solved at the level of experimentally defined
pathway sharing.

Materials and methods

Primary neuron culture

Hippocampal primary neuron cultures from E18 wildtype
C57Bl/6 mouse embryos were prepared as previously
described [17]. Hippocampal tissue was incubated 25 min
at 37 °C in a Hanks balanced salt solution (Sigma) con-
taining 1% HEPES buffer solution (1 M; Gibco) and 10%
trypsin (Gibco). After three washes, the tissue was placed
in Neurobasal medium (Gibco) completed with 2% B27
(Gibco), 2% HEPES solution, 0.25% glutamine (200 mM;
Gibco) and 0.1% Pen/Strep (Gibco) and triturated
with a fire-polished Pasteur pipette. Cells were counted
in a Fuchs-Rosenthal chamber and plated in multi-well
plates (Greiner Bio-one) that were previously coated
with poly-D-lysine (Sigma). Cells were plated at 12.5K/
well in 96-well glass bottom plates for morphological

analyses, at 125K/well in 24-well plates for RNA
extraction, or at 300K/well in 12-well plates for protein
extraction.

Lentivirus production

Bacterial glycerol stock (MISSION library, Sigma; Sup-
plementary Table S1) were grown in agar plates with LB
medium and 1% ampicillin. Single colonies were picked
and expanded for DNA extraction (QIAprep spin mini
prep kit; Qiagen). HEK 293T cells were transfected with
the small hairpin RNA (shRNA) plasmid DNA together
with envelope and packaging plasmids. One day after
transfection medium was replaced with Optimem medium
(Gibco) completed with 1% Pen/Strep and 1% glutamine.
On the third day, the medium was collected and cen-
trifuged at 1000 ×g for 5 min; the supernatant containing
the viral particles was filtered (0.45 μm pore size) and
aliquoted.

Virus infection efficiency test

Primary hippocampal neurons were plated and infected at
DIV1 with 1, 3, or 6 μl virus in 200 μl culture medium per
well. At DIV2, puromycin (0.2 mg/ml; Gibco) was added.
Cells were fixed at DIV7 and stained with Hoechst
(1:10,000; Invitrogen) and anti-MAP2 (1:5000; Bio-con-
nect). Infection efficiency was determined as the percentage
of living cells compared with untreated non-infected
control wells.

Immunocytochemistry

Hippocampal neurons were infected with shRNAs at
DIV1 and cultures were fixed and stained at DIV7,
DIV14, or DIV21. Cells were fixed with 4% paraf-
ormaldehyde and 4% sucrose in phosphate-buffered salie
(PBS; pH 7.4) followed by permeabilization with PBS
containing 0.5% Triton X-100. Cells were incubated at
room temperature (RT) with PBS containing 0.1% Triton
X-100 and 1% BSA and then for two nights at 4 °C in
PBS containing 0.1% Triton X-100, 1% BSA, anti-
synapsin 1 (1:1000; Chemicon/Millipore: #AB1543P),
anti-PSD-95 (1:250; Thermo Scientific; #MA1046) and
anti-MAP2 (1:5000; Chemicon/Millipore, #AB5543).
After washing twice with PBS, neurons were incubated
for 90 min at RT in Alexa-488-conjugated goat anti-
mouse (1:400; Abcam, #A11001), Alexa-568-conjugated
goat anti-rabbit (1:400; Abcam, #A11011) and Alexa-
647-conjugated goat anti-chicken (1:400; Abcam,
#A21449). After washing twice with PBS and once with
distilled H2O, the neurons were incubated for 10 min at
RT with Hoechst (1:10000; Invitrogen).
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Imaging and image analysis

Images were acquired on an Opera™ LX (PerkinElmer)
automated confocal microscopy system at × 10 and at × 40
magnification and were analyzed using Columbus image data
storage and analysis software (v2.5.2.124862; PerkinElmer).
Exposure and image analysis settings were kept constant
throughout the entire screen. At × 10 magnification the entire
well was imaged and quantitative parameters related to cell
numbers and the length and complexity of dendritic trees
were extracted based on Hoechst and anti-MAP2 staining.
Glial nuclei were excluded based on their larger size and
dimmer Hoechst staining compared with neurons and average
MAP2 intensity per soma (i.e., in a circle around each
nucleus) was used to select neurons. Dendrites were traced
based on MAP2 staining. Dendrite selection parameters were
set such that background MAP2 staining (often glial cells or
debris) did not contribute to dendrite length measurements.
Dendrite roots (primary dendrite origins) and nodes (branch
points) were collected as measures of dendrite complexity. At
× 40 magnification quantitative parameters related to synaptic
development were extracted based on anti-MAP2, anti-
synapsin and anti-PSD-95 staining. Synapsin-positive pre-
synaptic puncta and PSD-95-positive postsynaptic puncta
were traced specifically on MAP2-positive dendrites. Ten
relevant measures of neuronal survival and network devel-
opment were calculated: total number of nuclei per well, total
number of neurons per well, number of primary neurites per
neuron, number of dendritic branch points per neuron, total
dendrite length per neuron, number of presynaptic puncta per
dendrite length, presynaptic puncta average intensity, number
of postsynaptic puncta per dendrite length, postsynaptic
puncta average intensity, and number of colocalized pre- and
postsynaptic puncta per dendrite length.

Cellomics data analysis

Cellomics data (n= 3 cultures per shRNA) was normal-
ized per plate against the scrambled control and log2
transformed. Log-normalized data were checked for nor-
mality of distribution and rank correlation was used to
check for parameter correlation. Multi-level modeling was
applied to the data to estimate the contribution of tech-
nical and experimental variation to the overall variance of
each parameter. The R package lme4 [18] was used to fit a
mixed-effect model for every parameter. Batch, plate,
edge, DIV, and shRNA treatment were taken as potential
sources of variation. A Mann–Whitney U test was per-
formed per gene/parameter combination under the null
hypothesis that the distribution of control wells and
experimental wells behave the same. A null distribution of
10,000 p values was generated for each gene/parameter by
a random shuffle of control and experimental well data

within each plate. The Mann–Whitney U test was per-
formed on this permutated parameter set per gene. The
null-p value was then used to obtain an empirical p value
by comparing the distribution of observed and null-p
values. To correct for multiple testing, a second permu-
tation analysis was performed and the minimum p value
for all gene tests per permutated sample was acquired.
Again, an empirical p value was obtained by comparing
the observed and minimum p value distributions. This
final empirical p value can be interpreted as the corrected
p value and accounts for the number of tests as well as the
correlation between test statistics. Cluster analysis of
shRNA- or gene-level phenotypes was performed using a
Pearson correlation distance matrix. Significance of
shRNAs co-clustering was determined using a χ2-test.

Real-time qPCR

RNA was extracted from hippocampal neurons at DIV7 (n
= 4 cultures per shRNA) using the RNAeasy mini kit
(Qiagen). RNA concentration was determined using the
NanoDrop ND-1000 spectrophotometer (NanoDrop Tech-
nologies). For cDNA synthesis, 200 ng RNA was mixed
with hexanucleotide primers (25 pmol/μl), heated to 37 °C
for 1 min, and then snap-cooled on ice. A mix with reverse
transcriptase (200 units/μl; Promega) and dNTPs (10 mM)
was added and samples were incubated for 45 min at 37 °C.
Real-time qPCR was performed using SYBR green (GC
Biotech) as the reporter dye. The following primers were
used: Tcf4 (fwd: TGAACCCGGCAAACCCTGAA, rev:
TCCCTAAGGCAGCCATTCGC), Top3b (fwd: GAGCC
GCGTTTAGTGGGCA, rev: GCCAATGCTGACTCCTC
GGG), Tbr1 (fwd: GGCGGATCCCAATCACTGGA, rev:
AGACCCGGTTTCCTTGCACA). Hprt (fwd: ATGGGAG
GCCATCACATTGT, rev: ATGTAATCCAGCAGGTCA
GCAA) and Actb (fwd: GCTCCTCCTGAGCGCAAG, rev:
CATCTGCTGGAAGGTGGACA) were used for normal-
ization. Data were analyzed using the 2−ΔΔCp method [19].

Proteomics

Proteins were extracted from neuronal cultures at DIV7 (n=
3 cultures per shRNA). After washing twice with PBS at
4 °C, 500 μl of PBS with protease inhibitor (Roche) was
added to each well. Cells were scraped and recovered in
Eppendorf tubes, centrifuged at 3000 × g for 5 min at 4 °C,
supernatant discarded, and cells resuspended in 15 μl of
loading buffer. Samples were processed for mass spectro-
metry as described previously [20, 21]. Protein samples were
run on an sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis gel and the gel was fixed and stained with Coo-
massie blue. Gel lanes were cut into small pieces, de-stained
with two incubations with 50 nM ammonium bicarbonate
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(Fluka)/50% acetonitrile (JT Baker) and dried with 100%
acetonitrile. Proteins were in-gel digested overnight at 37 °C
with trypsin (Promega) and the digested peptides were
extracted with two incubations with 0.1% trifluoroacetic acid
(Applied Biosystems)/50% acetonitrile and one incubation
with 0.1% trifluoroacetic acid/80% acetonitrile. The eluted
peptide solution was dried in a speedvac and dissolved in
0.1% acetic acid solution before being loading into an Ulti-
mate 3000 liquid chromatography system (Dionex, Thermo
Scientific). Peptides were electro-sprayed into the TripleTOF
5600 mass spectrometer (Sciex), with a micro-spray needle
voltage of 5500 V and analyzed by data independent acqui-
sition. Each SWATH cycle consisted of a parent ion scan of
150msec and 8 Da SWATH windows, with scan time of 80
msec, through 450–770 m/z mass range. The collision energy
for each window was calculated for a 2+ ion centered upon
the window (spread of 15 eV).

Proteomics data analysis

MS spectra were analyzed with Spectronaut software
(Biognosys) and searched against a spectral library of cul-
tured mouse primary hippocampal neurons for peptide
identification. The optimal quality (q) value threshold for
each proteomics data set was set on the average median q
value of all samples. For protein identification, peptides
were allowed to fail detection in only one replicate sample
within groups and all but one samples between groups.
Outlier analysis was performed when the sample coefficient
of variance was higher than 0.12. In that case, replicates
with median q values deviating > 10 times compared with
other replicates were considered outliers and were removed
from the data set. After removal of contaminant proteins
(i.e., immunoglobulins, keratins, and trypsin), regulated
proteins were selected based on two criteria: proteins had to
show (i) a significant log2-fold change compared with
scrambled control in at least one shRNA sample per gene
(Student’s t test, p < 0.05), and (ii) a concordant log2-fold
change (in the same direction, but not necessarily sig-
nificant) in all other shRNA samples per gene.
Protein–protein interaction analysis was performed using
STRING [22]. “Interaction sources” was set to “experi-
ments” only and “interaction score” was set to “high con-
fidence” (0.7 or higher). Addition of a maximum of 10 1st
shell interactors was allowed. Functional enrichment was
tested for GO terms using gProfiler [23]. Enrichment was
tested for “molecular function” GO terms only.

Results

We selected 41 neuronally expressed genes for which an
association with SCZ has been demonstrated or suggested

(Table 1). Most genes (25) are genetically associated with
SCZ, others are associated with autism spectrum disorder
(ASD; 19 genes) or bipolar disorder (BPD; 10 genes) and
have been implicated in SCZ otherwise. For instance, many
predicted miR137 and FMRP targets are included as these
represent dysregulated pathways in SCZ [14, 15]. Full gene
names, gene function summaries, and additional evidence
for SCZ involvement for all genes are listed in Supple-
mentary Table S2. For all genes, shRNA constructs were
obtained for RNA interference. Given the variation in effi-
cacy and the possibility of off-target effects, multiple
shRNA constructs per gene were used (Supplementary
Table S1). shRNA-containing lentiviral (LVV) particles
were produced and tested for infection efficiency on mouse
primary hippocampal neurons (Supplementary Fig. S1a).
For each LVV production batch, a random selection of
shRNAs was tested including at least one shRNA per target
gene. At optimal virus concentrations, an average infection
efficiency was observed of 80% ± 28% (Supplementary
Fig. S1b). Real-time quantitative PCR demonstrated a
knockdown efficiency of 64% ± 15% at 14 days post
infection (n= 5; data not shown).

For RNA interference screening, neurons were trans-
duced with shRNA-containing LVV particles at day 1
in vitro (DIV1) and plates were fixed and stained at three
time points (DIV7, DIV14, DIV21) to collect morphologi-
cal data at different stages of neuronal network development
(Fig. 1a). Neurons were stained for nuclei (Hoechst), den-
drites (anti-MAP2), presynaptic puncta (anti-synapsin), and
postsynaptic puncta (anti-PSD-95). Images were acquired
using automated confocal microscopy and analyzed using
automated image analysis software (Fig. 1b; Supplementary
Fig. S2). Ten relevant measures of neuronal survival and
network development were calculated (Fig. 1c) and a
combination of data analysis tools and proteomics dis-
covery experiments was used to identify neuronal pheno-
types and molecular pathways of interest (Fig. 1d).

Inspection of plate heat maps revealed no major edge,
plate, or batch effects on total cell numbers per well.
When plotting all data per plate, one plate was a clear
outlier with disproportionally high occurrence of low cell
counts (Supplementary Fig. S3a), and these wells were
removed. Data plots also revealed a consistent increase in
total dendrite length per neuron and pre- and postsynaptic
puncta densities with increasing DIV (Supplementary
Fig. S3a), indicating that the image analysis algorithms
reliably capture neuronal network maturation over time
without saturation. To allow overall comparison, all data
were normalized per plate against the median of the
scrambled control and then log2 transformed. Untreated
samples were found evenly distributed around zero,
whereas shRNA-treated samples were skewed toward
negative values, indicating that multiple shRNAs had
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negatively affected one or more neuronal network
parameters (Supplementary Fig. S3b). Combining log-
normalized data from all plates confirmed a normal
distribution around zero for all 10 normalized and log2-
transformed parameters with a slight skewedness toward
negative values (Supplementary Fig. S4).

Correlation analysis showed that the 10 selected para-
meters cluster into nuclear, dendritic, and synaptic para-
meter sets (Fig. 2a). Within each set, most parameters show
a relatively strong positive correlation. Interestingly, pre-
and postsynaptic intensities are negatively correlated with
the other synaptic parameters (i.e., the intensities of

Table 1 List of selected genes and evidence for their association with SCZ, ASD of BPD

Gene SCZ evidence ASD evidence BPD evidence

Adnp Exome sequencing [44], FMRP target [45, 46] De novo mutation [39]

Ank2 FMRP target [45, 46] De novo mutation [39]

Arid1b FMRP target [45, 46] SNP [47], de novo mutation [39] SNP [48]

Atp2a2 GWAS [12], FMRP target [45, 46]

Bcl11a miR137 target [14]

C4a GWAS [12]

Cacna1c GWAS [12] SNP [49] SNP [50]

Cacna1d miR137 target [14] SNP [51]

Cacna1i GWAS [12], miR137 target [14], FMRP target [45, 46] SNP [49]

Cacna2d3 Exome sequencing [52] De novo mutation [39]

Cacnb2 GWAS [12], miR137 target [14] SNP [53]

Chd8 De novo mutation [54], FMRP target [45, 46] De novo mutation [39]

Cntnap2 SNP [55] SNP [55]

Csmd1 GWAS [12], miR137 target [14] SNP [56]

Cttnbp2 miR137 target [14]

Drd2 GWAS [12] SNP [50]

Dyrk1a De novo mutation [39]

Fmr1 GWAS [15]

Gabrb3 CNV [8] SNP [57]

Grm3 GWAS [12] SNP [58]

Katnal2 De novo mutation [39]

Kctd13 GWAS [12]

Kmt2c FMRP target [45, 46] De novo mutation [59]

Kmt5b De novo mutation [39]

Kynu Exome sequencing [15]

Mecp2 De novo mutation [60], FMRP target [45, 46] De novo mutation [60]

Mib1 miR137 target [14]

Nrxn1 CNV [5], miR137 target [14], FMRP target [45, 46] CNV [61]

Pogz CNV [62], de novo mutation [39]

Pten miR137 target [14]

Reln SNP [63], FMRP target [45, 46] SNP [64]

Scn2a miR137 target [14], FMRP target [45, 46] De novo mutation [39]

Setd1a Exome sequencing [3]

Shank3 CNV [9], FMRP target [45, 46] CNV [65]

Stxbp1 FMRP target [45, 46]

Stxbp5 miR137 target [14]

Syngap1 Exome sequencing [66], FMRP target [45, 46] De novo mutation [39]

Tbr1 De novo mutation [39]

Tcf4 GWAS [12], miR137 target [14], FMRP target [45, 46] SNP [40]

Top3b CNV [6]

Vipr2 CNV [7]
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synapsin and PSD-95 staining decrease as synapse numbers
increase). Multi-level modeling was used to estimate the
relative contribution of technical and experimental variation
to overall variance in the data set, and we found that the
experimental manipulation of shRNA treatment accounted
for most of the parameter variance. Technical sources of
variation had little effect (i.e., batch number, plate number

within batch, edge location, and DIV). For dendritic para-
meters, relatively high variation was observed owig to
plate-within-batch effects (Fig. 2b; Supplementary
Table S3).

To determine gene-level effects in the data, we first
performed an unbiased statistical analysis of the averaged
normalized values of all shRNAs per gene across all 10

DIV1 DIV21DIV14DIV7DIV0

Number of nuclei
Nuclear shape
Hoechst intensity per nucleus

MAP2 intensity per cell
Total number of dendrite roots
Total number of dendrite nodes
Total dendrite length

Synapsin intensity per synapse 

PSD-95 untensity per synapse

Total number of neurons per well

Number of primary dendrites per neuron
Number of dendritic branch points per neuron
Total dendrite lenght per neuron

Number of presynaptic puncta per dendrite length
Presynaptic puncta intensity

Number of postsynaptic puncta per dendrite length
Postsynaptic puncta intensity

Number of colocalized puncta per dendrite length

Hoechst

MAP2

synapsin

PSD-95

Hoechst
MAP2

1 32

4 5 6 7

Hoechst
MAP2
SYN
PSD-95

Total number of presynaptic puncta

Total number of postsynaptic spots

Total number of colocalized puncta

10
x

40
x

plating of E18
primary neurons

infection with
lentiviral particles

fix and stain neurons at
3 different timepoints

automated image
acquisition and analysis

a

b

c

d

10x

40x

QC and normalization:
1. Detection of edge,
   plate and batch effects
2. Removal of outliers
3. Data normalization

Explotatory
data analysis:
1. Parameter
   correlation
2. Sources of
   variation

Phenotypic
characterization:
1. Gene level
   statistics
2. shRNA phenotypic
   correlation

Gene
selection:
Select
genes
of interest

Proteomics
analysis:
Identify gene-
associated
molecular
changes

Total number of nuclei per well

Pathway
analysis:
Identify common
pathways for
multiple SCZ
risk genes

Staining: Quantified image parameter: Derived image parameter:
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parameters. Gene-level averaged parameter values were
tested against the average of the scrambled control values
for each time point separately. Statistically significant
changes in any parameter other than “number of nuclei” or
“number of neurons” were detected for Ank2, Atp2a2,
Cacna1i, Mib1, Nlgn1, Stxbp1, Tcf4, Top3b, and Vipr2 and
(Mann–Whitney U, p < 0.05, corrected for multiple testing;
Fig. 3). However, unbiased statistical analysis considers all
shRNAs per gene as equally effective, which is unlikely and
would result in underestimation of true biological effects.
We therefore performed a cluster analysis to detect simila-
rities in phenotypes across individual shRNAs and deter-
mined which shRNAs produce consistent, biologically
relevant phenotypes. We selected four representative para-
meters: total number of neurons, total dendrite length per
neuron, presynaptic puncta density, and postsynaptic puncta
density. shRNAs with effect sizes less than twice the stan-
dard deviation of the scrambled controls for all four

parameters at all three time points were excluded and were
considered the no-effect group (Fig. 4; cluster “0”). Indi-
vidual shRNAs were then clustered using a Pearson corre-
lation distance matrix, resulting in five distinct clusters
(Supplementary Fig. S5). These five clusters were char-
acterized by: a reduction in neuron numbers (cluster “I”;
31 shRNAs); a reduction in dendrite length and synapse
densities with little or no effect on neuron numbers (cluster
“II”; 41 shRNAs); an overall reduction in all parameters
(cluster “III”; 48 shRNAs); a reduction in synapse densities

Fig. 1 High-content screening and data analysis workflow. a E18
embryonic mouse neurons were seeded in 96-well cell culture plates
and infected with lentiviral particles containing shRNA constructs
against the 41 genes of interest (4–5 shRNAs per gene). Neurons were
only cultured in the inner 60 wells of a 96-well plate and infected on
day 1 in vitro (DIV1). On each plate, at least three wells were infected
with a scrambled control shRNA, three wells with a positive control
shRNA (against NLGN1), and at least three wells were left uninfected.
The remaining wells were infected with ~ 50 different experimental
shRNAs. Controls and experimental shRNAs were always in a ran-
domized order as to minimize plate position effects. Cultures were
fixed at DIV7, DIV14, or DIV21. For each time point, shRNA repli-
cates (n= 3) were divided over three different culture plates as to
minimize plate effects. b Neurons were stained with a nuclear marker
(Hoechst), a dendritic marker (anti-MAP2), a presynaptic marker (anti-
synapsin) and a postsynaptic marker (anti-PSD-95) and imaged using
automated confocal high-content microscopy. Neurons were first
imaged at × 10 magnification (panel 1) to determine neuron numbers
(panel 2; MAP2-positive neurons in green; MAP2-negative cells in
red), and total dendrite length and numbers of primary dendrites and
branch points (panel 3; selected neurons in red, traced dendrites in
green). Neurons were subsequently imaged at × 40 magnification
(panel 4) to quantify presynaptic puncta (panel 5; selected puncta in
red), postsynaptic puncta (panel 6; selected puncta in green), and
colocalized pre-and postsynaptic puncta (panel 7; colocalized puncta
in yellow). Images are representative examples of DIV14 neurons.
Examples of neurons at all DIV are included in Supplementary
Fig. S2. Scale bars: 100 μm (panels 1–3), 20 μm (panels 4–7). c Based
on these primary measurements, 10 core parameters were derived that
measure relevant aspects of neuronal viability and survival, neuronal
network formation, and synaptic connectivity. d Data were checked for
batch, plate, and edge effects and outliers were removed. After nor-
malization, multi-level exploratory data analysis was performed to
determine the relative contribution of both experimental and technical
sources of variation to overall variance in the data. Statistical analysis
was then performed to detect significant gene-level effects in the data
without prior removal of individual shRNAs. In parallel, robust bio-
logical effects were determined by filtering out individual shRNAs that
produce inconsistent phenotypes that might represent off-target effects.
Based on these two selection criteria candidate genes were selected for
proteomics analysis and subsequent cellular pathway analysis
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Fig. 2 Exploratory analysis of normalized cellomics data. a Correla-
tion analysis of 10 core parameters across all data reveals separation of
cell number, dendritic, and synaptic parameter sets and strong corre-
lations within each of these parameter sets. b Multi-level modeling
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with little or no effect on other parameters (cluster “IV”;
18 shRNAs); and a small cluster with no effect across all
four parameters (cluster “V”; 6 shRNAs) (Fig. 4). Twelve
genes were identified with at least three shRNAs in the
same phenotypic cluster: Adnp, Ank2, Drd2, Dyrk1A,
Kmt2c, Mib1, Reln, Stxbp1, Tbr1, Tcf4, Top3b, and Vipr2.
The co-clustering of three or more shRNAs for a single
gene in the same phenotypic cluster was significantly dif-
ferent from chance (χ2 test, p= 1.6 × 10−5). When com-
bining the effects of the co-clustered shRNAs per gene, the
following phenotypes were identified: reduced neuron
numbers (Kmt2c, Adnp, Dyrk1a), reduced dendrite length
followed by a reduction in neuron numbers (Drd2, Ank2,

Stxbp1, Mib1, Reln), and reduced dendrite length and
synapse densities (Tcf4, Top3b, Tbr1, Vipr2) (Fig. 5a).

Given the polygenic nature of SCZ and the assumption
that combined risk of many genes with small effect size is
needed to develop SCZ, it is possible that risk genes whose
knockdown produce similar cellular phenotypes converge
on similar molecular pathways underlying those pheno-
types. To test this hypothesis, we selected Tcf4, Top3b, and
Tbr1 as all showed a relatively strong and specific synaptic
phenotype upon knockdown (Fig. 5a). Knockdown of all
three genes resulted in a significant reduction of pre-, post-,
and colocalized synaptic puncta densities starting at DIV7,
whereas neuronal cell numbers were not reduced until
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Fig. 4 Phenotypic clustering of individual shRNAs. Hierarchical
clustering was performed based on time point (DIV7, DIV14, and
DIV21)-averaged data for four representative core parameters, total
neuron number per well, total dendrite length per neuron, presynaptic
puncta density, and postsynaptic puncta density. Before clustering,
shRNAs with log-normalized effect sizes of ≤ 2 × the SD of the
scrambled controls were excluded from the data and designated as the

no-effect cluster (cluster “0”). For the remaining shRNAs, five phe-
notypic clusters were identified that are characterized by primarily a
reduction in neuron numbers (cluster “I”), primarily a reduction in
dendrite length and synapse densities (cluster “II”), an overall reduc-
tion in all parameters (cluster “III”), a reduction in synapse densities
with little or no effect on other parameters (cluster “IV”), or the
absence of a marked phenotype (cluster “V”)
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DIV21 (Fig. 5b, c). Real-time quantitative PCR confirmed
that all shRNAs producing the synaptic phenotype had
knockdown efficiencies of 40–55% at DIV7, except for
shRNA #5 targeting Tbr1, which was therefore excluded

from further analysis (Fig. 5d). Noteworthy, the four
shRNAs that did not cluster to the same phenotype (i.e.,
Tcf4 #2, Tbr1 #1, Top3b #4, and Top3b #5) did significantly
reduce the corresponding mRNA levels. Phenotypically,
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Fig. 5 Tcf4−, Tbr1−, and Top3b-associated neuronal phenotypes.
a Cluster analysis revealed 12 genes that show distinct and progressive
neuronal phenotypes based on three or more co-clustering shRNAs per
gene. Tcf4, Tbr1, and Top3b showed early or progressive synapse loss
with a relatively small effect on neuron numbers. b Example images
illustrate the neuronal morphology phenotypes of Tcf4, Tbr1, and
Top3b knockdown cultures at DIV14 compared with a scrambled
control culture. Scale bars: 100 μm (top panels), 20 μm (bottom
panels). c Quantification of the Tcf4, Tbr1, and Top3b knockdown
phenotypes across all 10 measured parameters demonstrates a

significant reduction in pre-, post-, and/or colocalized synaptic puncta
densities starting at DIV7, whereas neuronal cell numbers are not
reduced until DIV21. Error bars represent SD; two-sided Student’s
t test, n= 12 (Tbr1 and Tcf4) or 9 (Top3b), *p < 0.05, **p < 0.01.
d Quantitative real-time PCR shows that shRNAs targeting Tcf4, Tbr1,
and Top3b reduce the corresponding mRNA levels by 30–70% relative
to scrambled controls. Expression levels are normalized to the aver-
aged expression levels of Actb and Hprt. Error bars represent SD; two-
sided Student’s t test, n= 4, * p < 0.05, **p < 0.01, #p < 0.01
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Tcf4 #2 and Top3b #5 showed in addition to a synapse loss
also reduced cell viability, indicating potential off-target
effects; Tbr1 #1 and Top3b #4 showed a very mild synaptic
phenotype but were classified as negatives, suggesting that
they might actually be false negatives (Fig. 4).

To identify molecular pathways affected by Tcf4, Tbr1,
or Top3b, we next performed a quantitative, label-free
SWATH proteomics analysis of hippocampal cultures after
knockdown of each gene with each shRNA separately.
Proteomics analysis was performed at DIV7 when the
synaptic phenotype was observed without significant
changes in other cellular parameters. Peptide intensity dis-
tributions revealed high quality across all samples (Sup-
plementary Fig. S6a, b) and, after setting optimal q value
cutoffs for each experiment, we identified 2059 proteins in
Tbr1 knockdown samples, 2570 in Tcf4 knockdown sam-
ples, and 2561 in Top3b knockdown samples (Supple-
mentary Table S4). We next selected all proteins that
showed a significant log2-fold change compared with
scrambled shRNA-treated samples for at least one shRNA
per gene (two-sided Student’s t test, p < 0.05) and a con-
cordant change (i.e., in the same direction, but not neces-
sarily statistically significant) for all other shRNAs targeting
that gene. This analysis identified 94 consistently regulated
proteins for Tcf4, 61 for Tbr1, and 67 for Top3b (Supple-
mentary Fig. S6c; Supplementary Table S5). Only 2–5
proteins were regulated in common between any two genes,
and only one protein between all three genes (Supplemen-
tary Fig. S6d).

Protein–protein interaction (PPI) analysis was performed
to predict cellular pathways that are dysregulated owing to
either Tcf4, Tbr1, or Top3b knockdown. High-confidence
PPI networks were extracted from STRING [22] based on
experimentally validated interactions only using and
allowing the addition of maximally 10 network candidate
proteins. Significant PPI enrichment was detected in the
TBR1-regulated protein set (p= 0.009), but not in the
TCF4- or TOP3B-regulated protein sets (p= 0.071 and p=
0.214, respectively), and no detected network contained
more than two regulated proteins (Fig. 6a). To identify PPI
networks that may be dysregulated owing to the combined
effect of Tcf4, Tbr1, and Top3b knockdown we also per-
formed an analysis of all 210 regulated proteins together.
PPI enrichment in this combined protein set was highly
significant (p= 0.001), and the largest PPI network that was
identified consisted of SNARE proteins involved in neu-
rotransmitter release and contained five dysregulated pro-
teins (SNAP25, SNAP29, NAPB, STX7, and STXBP5)
from all three data sets (Fig. 6b). Smaller networks con-
tained no more than three proteins from maximally two
data sets.

To exclude the possibility that detection of the SNARE
complex was owing to the addition of network candidates

that are not part of the dysregulated protein set we also
performed gene ontology (GO) enrichment analysis of
dysregulated proteins only using gProfiler [23]. Significant
enrichment was observed for “molecular function” GO
classes “SNARE binding” (p= 0.047) and “syntaxin bind-
ing” (p= 0.004), and three proteins were identified (SYP,
SYT5, and VPS11) in addition to the five found previously
using PPI analysis (Fig. 6c). PPI and GO enrichment ana-
lysis together thus strongly suggest that reduced expression
of SCZ risk genes Tcf4, Tbr1, and Top3b converges on a
canonical neurotransmitter release pathway involving the
SNARE protein complex.

Discussion

SCZ is a highly complex polygenic disorder for which >
145 genomic regions have been significantly associated in
genetic studies [12, 13]. This poses the challenging question
how this genetic variation converges onto common patterns
of cellular and molecular alterations underlying the dis-
order. In-depth studies of individual risk genes, isolated
from a spectrum of hundreds, have provided limited infor-
mation on disease biology. In this study, we integrated
cellomics and proteomics approaches to demonstrate that
significant insight into disease biology can be obtained by
combining neuronal cellular morphology and molecular
pathway information for multiple risk genes and searching
for shared characteristics.

RNA interference and subsequent high-content neuronal
cellular phenotyping of 41 candidate SCZ risk genes
resulted in the identification 12 genes showing robust
phenotypic clustering and producing reliable phenotypes
with multiple shRNAs targeting the same gene. Based on
these findings, and assuming that polygenic risk is essential
in SCZ, we hypothesized that SCZ risk genes that share a
similar neuronal phenotype may each contribute to that
phenotype in a synergistic manner. To test this, we selected
Tbr1, Tcf4, and Top3b, which all showed a common
knockdown phenotype characterized by a reduction in
synapse densities, in line with the suggested developmental
nature of SCZ [24]. Importantly, reduced synapse densities
were observed early, before neuron numbers became
affected, indicating that synaptic connectivity impairments
were driving neuronal loss, and not the other way around.
All three genes regulate gene expression, but none have
been functionally linked yet. TBR1 is a T-box transcription
factor involved in the development of cortical and amygdala
neurons [25, 26] and impairments in hippocampal neuro-
genesis were shown to correlate with reduced TBR1
expression in an induced pluripotent stem cells (iPSC)
model of SCZ [27]. TBR1 was shown to induce the
expression of NMDA receptor subunit Grin2b in
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hippocampal and amygdala neurons in an activity-
dependent manner [28]. TCF4 is a basic helix–loop–helix
transcription factor previously associated with SCZ, ASD,

and intellectual disability [29] and has been shown to reg-
ulate spine densities in the cortex and the hippocampus
[30]. TOP3B is a topoisomerase that associates with FMRP

Tcf4 (PPI enrichment p = 0.071)

Tbr1 (PPI enrichment p = 0.009)

Top3b (PPI enrichment p = 0.214)

Tcf4 + Tbr1 + Top3b (PPI enrichment p = 0.001)
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in a direct, non-mRNA-mediated manner [6]. FMRP reg-
ulates the translation of synaptic mRNAs and the develop-
ment and function of synapses [31], and genes encoding
FMRP target mRNAs are significantly enriched for SCZ-
associated rare mutations [15]. It is not clear whether TBR1,
TCF4, and TOP3B regulate synaptic functions indepen-
dently, or if they converge on shared synaptic pathways.

Our proteomics experiments and subsequent PPI and
pathway analyses highlight syntaxin-mediated neuro-
transmitter release as a prominent pathway onto which
TCF4-, TBR1-, and TOP3B-regulated protein expression
converges. Central in this network is syntaxin 1A (STX1A),
which is crucial for synaptic vesicle docking and neuro-
transmitter release [32]. A genetic association between
STX1A and SCZ has been suggested [33] and STX1A
mRNA and protein levels are decreased in post-mortem
brain tissue from SCZ patients [34]. Importantly, STX1A
itself was not dysregulated in our proteomics experiments.
Instead, multiple nodes in the STX1A PPI network were
affected by Tcf4, Tbr1, or Top3b knockdown. Other genes
that were included in the screen may impact on the same
pathway. Stxbp1 for instance is essential for syntaxin-
mediated neurotransmitter release [35], and its knockdown
resulted in a much stronger phenotype than Tcf4, Tbr1, or
Top3b knockdown, including also reduced dendrite length
and reduced neuronal viability. This suggests that neuro-
transmitter release in SCZ may be affected owing to subtle
dysregulation via indirect upstream gene regulatory
mechanisms rather than a dysregulation of proteins that are
directly involved. In line with this, we could not find other
SZC GWAS candidate genes that are part of the same
neurotransmitter release pathway, nor did we observe sig-
nificant enrichment for low p value GWAS hits among all
proteins dysregulated by Tcf4, Tbr1, or Top3b knockdown
(p= 0.44, 0.48, and 0.91, respectively; hypergeometric
test). Together, these observations demonstrate that inter-
preting polygenic risk from a protein regulatory network
perspective is able to uncover hidden aspects of disease
biology.

Our study provides proof-of-principle that multi-level
morphological and molecular phenotyping is able to extract
disease-relevant pathway information about neuropsychia-
tric disorders, however, several limitations apply. For
instance, stringent selection criteria (i.e., three or more
shRNAs against the same gene producing a similar phe-
notype) led to the identification of only 12 candidate genes
for follow up analysis. Although this prevented potential
off-target effects from biasing the data towards false posi-
tive hits, it likely also increased false negative findings.
Interestingly, another 10 genes (Atp2a, Cacna1d, Cacna1i,
Csmd1, Gabrb3, Kctd13, Kmt5b, Mecp2, Shank3, and
Syngap) were assigned with two shRNAs to one of the three
phenotypic clusters marked by synaptic changes (i.e.,
clusters II, III, or IV in Fig. 4), including candidate synapse-
or neurotransmission-modifying genes such as Cacna1d,
Cacna1i, Gabrb3, Mecp2, Shank3, and Syngap. Likewise,
additional pathways may be revealed when proteomics
profiling is performed for more candidate genes in every
phenotypic cluster. In particular, our screen included, in
addition to Tcf4, Tbr1, or Top3b, nine more transcriptional
regulators and chromatin modifiers that produced dendritic
or synaptic changes (i.e., Adnp, Arid1b, Bcl11a, Chd8,
Kmt2c, Kmt5b, Mecp2, Pogz, and Setd1a in clusters II, III
of IV; Fig. 4). These are interesting candidate genes to
discover additional converging pathways leading to neuro-
nal connectivity changes underlying SCZ.

In this study, we used mouse primary neuronal cultures
combined with RNA interference to study SCZ risk gene
function. Given the fact that SCZ is a complex human
disease and the underlying genetic variation cannot simply
be modeled by reducing the expression of individual genes,
this is a strongly reductionist approach. It is however unli-
kely that patient mutations that individually do not increase
SCZ risk would produce detectable phenotypes in a cellular
assay. RNA interference on the other hand allows functional
characterization and clustering of candidate SCZ risk genes
based on detectable phenotypes, and permits subsequent
identification of shared molecular and cellular pathways.
Our data show that using this approach, disease-relevant
pathway information can be obtained and used to generate
testable hypotheses with respect to multi-gene interactions
that increase SCZ risk in humans. These hypotheses can
then be tested in other models, for instance iPSC-derived
human neurons, in which mutations that are predicted to
converge onto common cellular pathways co-exist, either by
nature or engineered.

It is still an open question whether genetic risk for SCZ
converges onto one or more common cellular pathways. The
fact that three non-synaptic genes show downstream con-
vergence onto an important synaptic signaling pathway
argues that the disease may be more homogeneous
than suggested by its apparent genetic complexity, and is

Fig. 6 Tcf4−, Tbr1−, and Top3b-associated molecular pathways.
a Proteomics analysis was used to identify dysregulated proteins
owing to Tcf4, Tbr1, or Top3b knockdown. Dysregulated proteins
were analyzed in STRING to identify PPI networks. Significant PPI
enrichment was only detected in the Tbr1 knockdown protein set. Red,
blue, and green circles are query proteins that are dysregulated upon
Tcf4, Tbr1, or Top3b knockdown, respectively, gray circles are can-
didate proteins added by STRING. b The same analysis was per-
formed for the combined dysregulated protein set, identifying the
SNARE complex as a potential common target of Tcf4, Tbr1, and
Top3b. c GO enrichment analysis of the combined dysregulated pro-
tein set (without addition of candidate interactors) confirms enrichment
for proteins involved in “SNARE binding” and “syntaxin binding”
contributed by TCF4−, TBR1−, and TOP3B-dysregulated proteins
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consistent with previous speculations based on genetic find-
ings that synapses are an important substrate in SCZ pathol-
ogy [36–38]. Another issue of debate is the genetic similarity
between SCZ and other psychiatric disorders, in particular
BPD and ASD. TBR1 has also been associated with ASD [39]
and TCF4 with BPD [40], and TOP3B was shown to bind
multiple mRNAs derived from ASD-linked genes [41], rais-
ing the possibility that STX1A-mediated neurotransmitter
release is dysregulated in multiple psychiatric disorders.
Indeed, genetic or functional associations exist between
STX1A and BPD [42] or ASD [43]. Pathway analysis of
additional risk genes may strengthen the hypothesis that
neurotransmitter release pathways are common substrates for
multiple psychiatric disorders.
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