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Abstract
Aminoglycoside-modifying enzymes (AMEs) and 16S rRNA methylases (16S RMTase) are two main resistance mechanisms against

aminoglycosides. This study aimed to evaluate the frequency of AMEs and 16S rRNA methylase genes among aminoglycoside non-

susceptible Acinetobacter baumannii isolates and to assess their clonal relationship using repetitive extragenic palindromic-PCR (rep-PCR).

In this cross-sectional study, a total of 192 A. baumannii isolates were collected from the patients hospitalized in Qazvin, Iran (January

2016 to January 2018). Identification of isolates was performed by standard laboratory methods and API 20E strips. Antimicrobial

susceptibility was determined by Kirby–Bauer method followed by examination of the genes encoding the AMEs and 16S RMTase by

PCR and sequencing methods. The clonal relationship of isolates was carried out by rep-PCR. In total, 98.4% of isolates were non-

susceptible to aminoglycosides, 98.4%, 97.9% and 83.9% of isolates were found to be non-susceptible against gentamicin, tobramycin and

amikacin, respectively. The frequencies of aph(30)-VI, aac(60)-Ib, aac(3)-II, aph(30)-Ia and armA genes were 59.3%, 39.2%, 39.2%, 31.7% and

69.8%, respectively, either alone or in combination. Rep-PCR results showed that the aminoglycoside non-susceptible isolates belonged to

three distinct clones: A (79.4%), B (17.5%) and C (3.2%). The findings of this study showed a high frequency for AMEs with the

emergence of armA genes among the aminoglycoside non-susceptible A. baumannii isolates. Rational administration of aminoglycosides as

well as using an appropriate infection control policy may reduce the presence of resistance to antibiotics in medical centres.
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Introduction
Acinetobacter baumannii is a clinically important Gram-negative
pathogen in medical centres. This bacterium is responsible for
various types of nosocomial infections including pneumonia,

bacteraemia, surgical site infections, and urinary tract infections
[1]. In recent years, the emergence of multidrug resistance to

antibiotics has become a major clinical concern for physicians.
This is an open access arti
This problem leads to serious limitations in the treatment of

patients infected with these pathogens, and to increased
morbidity and mortality [2,3]. Aminoglycosides are the most

frequently used antibiotic agents among topically applied anti-
biotics in the treatment of infections caused by Gram-negative

bacteria. Combining an aminoglycoside with a β-lactam is
considered to be more effective treatment againstinfections
caused by Gram-negative bacteria [4]. These antibiotics block

protein synthesis in the bacterium by binding to 30S ribosome
and eventually lead to bacterial death [5]. Indiscriminate use of

these antibiotics increases antibiotic resistance in bacteria and
makes the therapy ineffective [6]. Resistance to aminoglycosides

may occur based on the following mechanisms: (a) drug inac-
tivation using aminoglycoside-modifying enzymes (AMEs), (b)

ribosomal binding site alterations, (c) reduction of antibiotic
enzyme regulation by down-regulation of porin genes; and (d)
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outer membrane proteins (i.e. efflux transport systems) [6,7].

Among these mechanisms, enzymatic modification is one of the
most common types of aminoglycoside resistance mechanism

among Gram-negative bacteria [7]. Three main classes of AMEs
are known; O-phosphotransferases, which catalyse ATP-

dependent phosphorylation of a hydroxyl group; N-acetyl-
transferases (AAC), which catalyse acetyl coenzyme A-depen-
dent acetylation of an amino group; and O-adenyltransferases,

which catalyse ATP-dependent adenylation of hydroxyl groups
[8,9]. Acetyl group transfer of acetyl coenzyme A to an amine

function of aminoglycoside is carried out by AACs. Also,
transfer of γ-phosphate and nucleotide monophosphate to

hydroxyl groups of aminoglycosides is performed using O-
phosphotransferases and O-adenyltransferases, respectively

[10]. aac(30)-II and aac(60)-Ib are common encoding genes for
AMEs in the isolates of Gram-negative bacteria [11,12]. The
genes encoding for AMEs are usually found on chromosomes,

plasmids and transposons [13].
Production of 16S rRNA methyl transferase (16S RMTase)

is another mechanism of resistance to aminoglycoside, which
is responsible for the methylation of these antibiotics [7,14].

Methylation of target sites is induced by 16S RMTase, leading
to decreased affinity of 16S rRNA for aminoglycosides [15].

Plasmid-mediated 16S RMTase is identified among various
Gram-negative bacterial species in different geographical re-

gions [15–19]. To date, 11 16S RMTase genes marked as rmtA,
rmtB, rmtC, rmtD, rmtD2, rmtE, rmtF, rmtG, rmtH, armA and
npmA have been detected in several species of Gram-negative

bacteria with the armA and rmtB genes being the most prev-
alent and widely distributed in Asia [20,21]. The genes

encoding 16S RMTase were first isolated from Klebsiella
pneumoniae in France in 2003, and later named armA [22]. The

prevalence rate of armA has been reported to be steadily on
the rise, worldwide [19,20,23]. Horizontal gene transfer be-

tween different bacterial species can easily spread the
encoding genes of these enzymes that are located on the
transposon [24]. Not much information is available on AMEs

and the spread of 16S RMTase genes in clinical isolates of
A. baumannii in different part of Iran.

To better control and prevent the distribution of these
bacteria, and to plan for antibiotic administration, epidemio-

logical survey, and detection of resistant strains of these bac-
teria, the current study was carried out to determine the

prevalence of AMEs and 16S RMTase genes among clinical
isolates of A. baumannii strains and also to investigate their

clonal relationship in the teaching hospitals of Qazvin, Iran.
© 2021 The Authors. Published by Elsevier Ltd, NMNI, 42, 100883
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Materials and methods
Study design
In this cross-sectional study, a total of 192 A. baumannii isolates

were obtained from different clinical specimens collected from
two major hospitals of Qazvin, Qazvin province, Iran, during

January 2016 to January 2018. Each clinical specimen was
collected from one patient. These specimens, including respi-
ratory secretions (sputum, trachea and bronchoalveolar lavage),

urine, blood and wounds, were taken from the patients
admitted to intensive care units, and to internal, infectious

diseases, neurosurgery, and surgery wards. Written informed
consent was obtained from all participants included in this trial.

The study was approved by the ethics committee of Qazvin
University of Medical Sciences (IR.QUMS.REC.1396.775).

Isolate identification
All bacterial isolates were identified by standard laboratory
methods including Gram-staining, oxidase and catalase tests

(Merck, Darmstadt, Germany), motility, oxidative/fermentative
tests and growth ability at 37°C and 42°C [25]. Species identity

was confirmed by amplification of gltA (encoding species spe-
cific citrate synthase) and blaOXA-51-like genes as described
previously [26,27]. The positive control strain used in our ex-

periments was A. baumannii American Type Culture Collection
(ATCC) 19606. The A. baumannii isolates were stored at –70°

C in trypticase soy broth with 20% glycerol until used for study.
Isolates were subcultured before tests.

Antimicrobial susceptibility testing
Antimicrobial susceptibility testing was performed using the
Kirby–Bauer disc diffusion method against the following anti-

biotic discs according to the Clinical and Laboratory Standards
Institute guidelines [28]. Microbial susceptibility test was con-

ducted using the following antimicrobials: gentamicin (10 μg),
tobramycin (10 μg), amikacin (30 μg), imipenem (10 μg),

meropenem (10 μg), ciprofloxacin (5 μg), ceftazidime (30 μg),
piperacillin/tazobactam (100/10 μg), ampicillin/sulbactam (10/10
μg) and levofloxacin (5 μg) (Mast Group Ltd., Bootle Mersey-

side, UK). Acinetobacter baumannii ATCC 19606 was used as the
quality control strain in antimicrobial susceptibility testing.

Detection of AMEs and 16S-RMTases genes by PCR and
sequencing
Isolates that were non-susceptible to at least one of the ami-

noglycosides were selected for PCR to detect the genes
nses/by-nc-nd/4.0/).
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encoding AMEs (aac(60)-Ib, aac(3)-II, aac(3)-Ia, ant(200)-la, ant(40)-
IIb, ant(40)-Ia, aph(30)-IIIa, aph(30)-VI, aph(30)-Ia) and 16S RMTase
(armA, rmtA, rmtB, rmtC, rmtD, rmtE, rmtF and npmA) using the

specific primers listed in Table 1 [12,29–37]. PCR amplification
was performed in a thermocycler (Applied Biosystems, Foster

City, CA, USA) as follows: first initial denaturation at 96°C for
8 minutes and then 35 cycles of 96°C for 1 minute, annealing
temperature for each primer 1 minute, 72°C for 1 minute; and

a final extension step at 72°C for 10 minutes. Amplification
reaction was prepared in a total volume of 25 μL containing 1 U

of Taq DNA polymerase 2X Master Mix with 1.5 mM MgCl2
(Ampliqon, Odense, Denmark), 0.5 μM forward primer, 0.5 μM

reverse primer, 9 μL nuclease-free water and 2.5 μL DNA
template (50 pg concentration). Amplification products were

electrophoresed on 1% agarose gel at 100 volts for 40 minutes.
The gel was stained with ethidium bromide solution and further
visualized in a gel documentation system (Uvitec, Cambridge,

UK). After these steps, the purified PCR products were sent to
the Macrogen Company (Seoul, South Korea) to identify the

sequence of the target genes. The online BLAST program of the
National Center for Biotechnology Information (http://blast.

ncbi.nlm.nih.gov/Blast) was applied for sequence alignment.

Clonal analysis by rep-PCR
Repetitive extragenic palindromic-PCR (rep-PCR) was used in a

final volume of 25 μL; 2.5 μL 10X PCR buffer, 0.5 μL of dNTP
TABLE 1. Sequences of primers used in this study

Target genes Primer sequence (50 –30)

aac(60)-lb -F TTGCGATGCTCTATGAGTGGCTA
aac(60)-lb -R CTCGAATGCCTGGCGTGTTT
aac(3)-II -F TGAAACGCTGACGGAGCCTC
aac(3)-II -R GTCGAACAGGTAGCACTGAG
aac(3)-Ia -F ATGGGCATCATTCGCACATGTAGG
aac(3)-Ia -R TTAGGTGGCGGTACTTGGGTC
ant(200)-Ia -F ATGGACACAACGCAGGTCGC
ant(200)-Ia -R TTAGGCCGCATATCGCGACC
ant(40)-IIb -F TATCTCGGCGGCGGTCGAGT
ant(40)-IIb -R CACGCGGGGAAACGCGAGAA
ant(40)-Ia -F CAAACTGCTAAATCGGTAGAAGCC
ant(40)-Ia -R GGAAAGTTGACCAGACATTACGAACT
aph(30) – III -F GGCTAAAATGAGAATATCACCGG
aph(30) – III -R CTTTAAAAAATCATACAGCTCGCG
aph(30)-VI -F ATGGAATTGCCCAATATTATT
aph(30)-VI -R TCAATTCAATTCATCAAGTTT
aph(30)-Ia -F CGAGCATCAAATGAAACTGC
aph(30)-Ia -R GCGTTGCCAATGATGTTACAG
armA -F ATTCTGCCTATCCTAATTGG
armA -R ACCTATACTTTATCGTCGTC
rmtC -F CGAAGAAGTAACAGCAAAG
rmtC -R ATCCCAACATCTCTCCCACT
rmtA -F CTAGCGTCCATCCTTTCTC
rmtA -R TTGCTTCCATGCCCTTGCC
rmtD -F CGGCACGCGATTGGGAAGC
rmtD -R CGGAAACGATGCGACGAT
npmA -F CTCAAAGGAACAAAGACGG
npmA -R GAAACATGGCCAGAAACTC
rmtB -F GCTTTCTGCGCGGGCGATGTAA
rmtB -R ATGCAATGCCGCGCTCGTAT
rmtE -F ATGAATATTGATGAAATGGTTGC
rmtE -R TGATTGATTTCCTCCGTTTTG
rmtF -F GCGATACAGAAAACCGAAGG
rmtF -R ACCAGTCGGCATAGTGCTTT

This is an open access artic
Mix (10 mol), 5 μL MgCl2, 25 pM primer F, 25 pM primer R, 2 U

of Taq DNA polymerase, 3 μL extracted template DNA, and
16.1 μL distilled water. The amplification conditions included an

initial denaturation at 95°C for 5 minutes followed by 30 cycles
at 94°C for 1 minute, annealing at 45°C for 1 minute and an

extension step at 72°C for 2 minutes. Eventually, a final
extension step at 72°C for 16 minutes was applied. Amplifica-
tion products were electrophoresed on 1.2% agarose gel,

stained with ethidium bromide. Similar patterns of rep-PCR
profile (up to two-band difference) were considered to be

related to the same DNA groups [38].
Statistical analysis
Statistical package for the social sciences (SPSS) version 25.0

software (IBM, Armonk, NY, USA) with descriptive statistics
including frequencies/cross-tabulation of the results of micro-
bial tests, clinical findings and demographic characteristics were

used to analyse the data.
Results
During the period of the study, 192 isolates were identified as
A. baumannii based on standard biochemical and microbiological

methods and amplification of gltA and blaOXA-51-like genes. The
Annealing temperature (°C) Product size (bp)
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55 589
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TABLE 2. Antimicrobial susceptibility of clinical isolates of

A. baumannii in Qazvin hospitals, Iran

Antibiotics R, n (%) I, n (%) S, n (%) Total, n (%)

Gentamicin 180 (93.8) 9 (4.7) 3 (1.6) 192 (100)
Tobramycin 177 (92.2) 11 (5.7) 4 (2.1)
Ciprofloxacin 179 (93.2) 6 (3.1) 5 (2.6)
Levofloxacin 180 (93.8) 3 (1.6) 9 (4.7)
Ampicillin/Sulbactam 167 (87) 10 (5.2) 15 (7.8)
Imipenem 172 (89.6) 3 (1.6) 17 (8.9)
Meropenem 167 (87) 6 (3.1) 19 (9.9)
Ceftazidime 169 (88) 3 (1.6) 20 (10.4)
Piperacillin/Tazobactam 162 (84.4) 6 (3.1) 24 (12.5)
Amikacin 145 (75.5) 16 (8.3) 31 (16.1)

Abbreviations: I, intermediate resistant; R, resistant; S, susceptible.
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isolates were obtained from the following samples: respiratory

specimens 130 (67.7%) (including trachea 109 (56.8%), sputum
17 (8.9%) and bronchoalveolar lavage 4 (2.1%)), urine 30

(15.6%), blood 22 (11.5%) and wound 10 (5.2%). The
A. baumannii isolates were separated from the patients admitted

to intensive care units 114 (59.4%), and internal 32 (16.7%),
infectious diseases 27 (14.1%), neurosurgery 12 (6.3%) and
surgery 7 (3.6%) wards. Of all samples, 103 (53.64%) specimens

were isolated from women and 89 (46.35%) from men. The
mean age of patients in this study was 55 ± 12 years (range

26–81 years).
In total, the highest rates of resistance were against genta-

micin (98.4%), tobramycin (97.9%) and ciprofloxacin (96.3%),
respectively, whereas amikacin (16.1%) showed the highest

rates of susceptibility among antibacterials tested. In total, 189
(98.4%) isolates were found to be non-susceptible against at
least one of the aminoglycosides tested (Table 2).

PCR and sequencing showed that 112 (59.3%), 74 (39.2%),
74 (39.2%), 60 (31.7%) and 132 (69.8%) isolates carried the

aph(30)-VI, aac(60)-Ib, aac(3)-II, aph(30)-Ia and armA genes either
alone or in combination, respectively. The study isolates were

negative for the presence of aac(3)-Ia, ant(200)-Ia, ant(40)-IIb,
ant(40)-Ia, aph(30)-IIIa, rmtA, rmtB, rmtC, rmtD, rmtE, rmtF and

npmA genes. In total, 100% of isolates carrying AMEs and armA
genes were non-susceptible to gentamicin and tobramycin,

whereas 90.2%, 88.6%, 85%, 77% and 74.3% of those isolates
found to harbour aph(30)-VI, armA, aph(30)-Ia, aac(3)-II and
aac(60)-Ib genes were non-susceptible to amikacin, respectively.

As shown in Table 3, aac(60)-Ib gene was found to coexist with
aac(3)-II, aph(30)-VI and armA genes in 14 (7.4%) isolates with a

co-occurrence of aph(30)-VI, aac(60)-Ib and armA in 11 (5.8%)
isolates. Moreover, the coexistence of armA, aph(30)-VI and

aph(30)-Ia genes was established in 11 (5.8%) isolates.
All aminoglycoside non-susceptible isolates belonged to

three distinct genotypes including A (150, 79.4%), B (33, 17.5%)
and C (6, 3.2%) isolates, indicating the clonal dissemination of
these resistant isolates among the target hospitals. As shown in

Table 3, the armA-positive isolates mostly belonged to group A
(107, 79.4%) isolates followed by 22 (17.5%) isolates related to

group B and 3 (3.2%) isolates related to group C. Moreover, the
co-existence of armA with aph(30)-VI+aac(60)-Ib+aac(3)-II genes
was shown in 14 (7.4%) isolates in which 10 (5.3%) and 4 (2.1%)
isolates belonged to groups A and B, respectively.
Discussion
Aminoglycosides are an important category of antibacterial
medications that are used against a wide range of Gram-

negative bacteria such as A. baumannii [5]. Antibiotic
© 2021 The Authors. Published by Elsevier Ltd, NMNI, 42, 100883
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resistance against aminoglycosides has resulted in increased

health-care costs, hospital stay, morbidity and mortality of pa-
tients infected with A. baumannii [3]. Among the well-known
resistance mechanisms to aminoglycosides, AMEs and 16S

RMTase are the most prevalent mechanisms observed among
Gram-negative bacteria, worldwide [6]. There are few reports

regarding the frequency of AMEs and in particular the 16S
RMTase genes in the clinical isolates of A. baumannii within the

local hospital settings. We previously showed the appearance of
AMEs with the emergence of armA genes among the clinical

isolates of K. pneumoniae in Iran [19]. In our study, 189 (98.4%)
A. baumannii strains were non-susceptible against the amino-
glycosides used, among those 98.4%, 97.9% and 83.9% of iso-

lates were non-susceptible against gentamicin, tobramycin and
amikacin, respectively. These findings were similar to those

reported by Khoshnood et al. [39] from Iran in 2018 in which
93% and 90% of clinical isolates of A. baumannii were resistant

to gentamicin and kanamycin, respectively. In another study by
Shoja et al. [40] conducted in Iran in 2017, high resistance rates

against tobramycin (87.5%), gentamicin (85%) and amikacin
(80%) among the clinical isolates of A. baumannii were revealed.

Also, Gholami et al. [41] in Iran showed that 100%, 96.36% and
90.9% of clinical isolates of A. baumannii were resistant to
tobramycin, gentamicin and amikacin, respectively. According

to these findings, a high rate of resistance to aminoglycosides is
present in our hospital settings. Carbapenems were adminis-

tered as effective antibiotics in treating the infections caused by
multidrug-resistant A. baumannii; however, the excessive use of

these antibacterials has led to a growing number of
carbapenem-resistant A. baumannii strains. In the present study,

89.6% and 87% of A. baumannii strains were resistant to imi-
penem and meropenem, respectively. Other reports from Iran
are indicative of high prevalence of resistance against these

drugs within the hospital settings. Mortazavi et al. in a report
from Ahvaz (Iran) demonstrated that 90% of their A. baumannii

strains were simultaneously resistant to both gentamycin and
amikacin and that 91.25% and 80% of the isolates also showed
nses/by-nc-nd/4.0/).
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TABLE 3. Clonal distribution of AMEs and 16S-RMTases genes among Acinetobacter baumannii isolates

Genes
Type A
n (%)

Type B
n (%)

Type C
n (%)

Total
n (%)

armA 47 (24.9) 4 (2.1) – 51 (27)
aph(30)-VI+aac(60)-Ib+aac(3)-II+armA 10 (5.3) 4 (2.1) – 14 (7.4)
aph(30)-VI+aac(60)-Ib+armA 8 (4.2) 3 (1.6) – 11 (5.8)
aph(30)-VI+aph(30)-Ia+armA 8 (4.2) 3 (1.6) – 11 (5.8)
aph(30)-VI+aph(30)-Ia+aac(60)-Ib+armA 8 (4.2) 2 (1.1) – 10 (5.3)
aph(30)-VI+aac(3)-II+armA 6 (3.2) 1 (0.5) 1 (0.5) 8 (4.2)
aph(30)-VI+aph(30)-Ia+aac(3)-II+armA 4 (2.1) – 2 (1.1) 6 (3.2)
aac(60)-Ib+aac(3)-II+armA 4 (2.1) 2 (1.1) – 6 (3.2)
aph(30)-Ia+aac(60)-Ib+aac(3)-II+armA 5 (2.6) – – 5 (2.6)
aph(30)-VI+aac(3)-II 3 (1.6) 2 (1.1) – 5 (2.6)
aph(30)-Ia+aac(60)-Ib+aac(3)-II+aph(30)-VI+armA 4 (2.1) – – 4 (2.1)
aph(30)-Ia+aac(3)-II+armA 3 (1.6) 1 (0.5) – 4 (2.1)
aac(60)-Ib+aac(3)-II 1 (0.5) 1 (0.5) 2 (1.1) 4 (2.1)
aph(30)-Ia+aac(60)-Ib+aac(3)-II+aph(30)-VI 2 (1.1) 1 (0.5) – 3 (1.6)
aph(30)-Ia+aac(60)-Ib+aac(3)-II 2 (1.1) 1 (0.5) – 3 (1.6)
aph(30)-VI+aac(60)-Ib+aac(3)-II 3 (1.6) – – 3 (1.6)
aph(30)-VI+aph(30)-Ia 3 (1.6) – – 3 (1.6)
aph(30)-VI+aac(60)-Ib 2 (1.1) 1 (0.5) – 3 (1.6)
aph(30)-Ia+aac(60)-Ib+armA – 2 (1.1) – 2 (1.1)
aph(30)-Ia+aac(3)-II – – 1 (0.5) 1 (0.5)
aph(30)-VI+aph(30)-Ia+aac(3)-II – 1 (0.5) – 1 (0.5)
No AMEs and 16S-RMTases genes 27 (14.3) 4 (2.1) – 31 (16.4)
Total 150 (79.4) 33 (17.5) 6 (3.2) 189 (100)

Abbreviations: 16S-RMT, 16S rRNA-methylases; AMES, aminoglycoside-modifying enzymes.
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resistance to imipenem and meropenem, respectively [42]. In
another study from Iran, Fallah et al. reported that 40.7% and

80.6% of their A. baumannii isolates revealed resistance against
gentamycin and amikacin, respectively [43]. The authors also

found that 91.7% of the isolates were resistant to imipenem and
meropenem. Finally, in a study by Ghajavand et al. carried out in
Isfahan (Iran), the authors reported that 93% of their

A. baumannii isolates were resistant to both imipenem and
meropenem [44]. Inappropriate and extensive use of these

antibiotics in our hospitals plays an important role in the
emergence of these resistant isolates. Therefore, it seems that

establishing a local and national antimicrobial resistance sur-
veillance system to assess, control and prevent antimicrobial

resistance in our hospital settings is necessary. Such valuable
information on antibiotic resistance can be made available to
physicians for planning an appropriate and effective therapy

protocol for their patients. On the other hand, this seems to be
the ideal and most efficient strategy in controlling the noso-

comial infections.
The present study revealed that aph(30)-VI (59.3%), aac(60)-Ib

(39.2%), aac(30)-II (39.2%) and aph(30)-Ia (31.7%) genes were the
most common genes, either alone or in combination with other

genes, among the aminoglycosides non-susceptible A. baumannii
isolates. In addition, these isolates were found to be negative for

the presence of aac(3)-Ia, ant(200)-Ia, ant(40)-IIb, ant(40)-Ia,
aph(30)-IIIa, rmtA, rmtB, rmtC, rmtD, rmtE, rmtF and npmA genes.
Aghazadeh et al. [45], in their report from Iran in 2013, showed

that aph(30)-VIa (90.6%), ant(200)-Ia (53.33%), aph(30)-Ia (32%),
aph(300)-Ia (17.33%), aph(30)-Ia (17.33%) and aac(60)-Ib (8%)

were the most prevalent AMEs genes in A. baumannii. The
This is an open access artic
isolates were negative for aac(30)-IIa and rmtB genes and 26% of
amikacin-resistant isolates were positive for armA methylase. In

another study reported from Iran, Heidary et al. [46], in 2016,
showed that 85%, 77%, 72% and 68% of their A. baumannii

isolates harboured the aac(3)-IIa, aac(60)-Ib, aadB and aadA1
genes, respectively. Altogether, these data demonstrate the
important role of aph(30)-VI, aac(60)-Ib, aac(3)-II and aph(30)-Ia
genes in resistance to aminoglycosides in Iran. In other coun-
tries, similar studies with findings comparable to the results of

this study have been documented. Polotto et al. [47] from Brazil
in 2019 reported that 55% of their A. baumannii isolates were

positive for the presence of aph(30)-VI gene, followed by aac(60)-
Ib (47%), aac(3)-Ia (27%), and aph(30)-Ia in 22% of the isolates.

Likewise, Al-kadmy et al. [48] in 2015 in Iraq showed the
presence of aac(60)-Ib, ant(40)-IIb, aph(30)-VI and aac(30) genes
among aminoglycoside-resistant A. baumannii isolates. The re-

sults of the present study also revealed the co-existence of
AME-encoding genes such as aph(30)-VI+aac(60)-Ib+aac(3)-
II+armA, aph(30)-VI+aac(60)-Ib+armA, aph(30)-Ia+aac(3)-II+armA
and aph(30)-VI+aph(30)-Ia+aac(3)-II. However, the co-existence

of 16S RMTase and AME-encoding genes in the same clinical
isolate of A. baumannii is well established and the literature

includes several studies reported from different countries,
worldwide [41,48].

There is no comprehensive information on the prevalence of
16S RMTase genes in the clinical isolates of A. baumannii in our
region. In the current study, the armA (69.8%) gene was the

most prevalent 16S RMTase gene; however, the authors failed
to detect rmtA, rmtB, rmtC, rmtD, rmtE, rmtF and npmA genes

among the target isolates. Similarly, Sheikhalizade et al., [49] in
© 2021 The Authors. Published by Elsevier Ltd, NMNI, 42, 100883
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2017 in a study from Iran, reported that 64.2% of clinical iso-

lates of A. baumannii carried the armA gene. Similar results were
obtained in the present study and none of the isolates were

positive for rmtB and rmtC genes. In China, Wang et al., [50]
performed a study in 2016 and showed the presence of armA in

72.0% of A. baumannii isolates with high-level resistance to
aminoglycosides. Similarly, high prevalence of armA (78.1%) in
pan-aminoglycoside-resistant isolates of A. baumannii was re-

ported by Shrestha et al. [51] from Nepal in 2016. Since the 16S
RMTase genes are mostly located on the mobile genetic ele-

ments, it is worth paying attention to the fact that the presence
of this gene in our hospital settings should be considered as a

serious clinical concern with the potential to transfer these
resistant bacteria to others. The results of rep-PCR in our

research revealed that all aminoglycoside non-susceptible
A. baumannii isolates belonged to three distinct clones, indi-
cating the clonal dissemination of these resistant isolates among

the target hospitals. The genotype A was the most common
(79.4%) type, which was strongly associated with the clonal

spread of these resistant isolates and patient-to-patient trans-
mission. The distribution and co-existence of the AMEs and 16S

RMTase genes among different clones in the current study
suggests the clonal spread of not only the aminoglycoside non-

susceptible isolates in different wards but also the resistant
genes among these bacterial strains.

In conclusion, the findings of the present study showed the
emergence of high rates of aminoglycoside resistance as the
result of the appearance of AMEs gene among the clinical iso-

lates of A. baumannii within the study hospitals in which aph(30)-
VI, aac(60)-Ib and aac(3)-II genes were the most predominant

genes. Moreover, a high rate of 16S RMTase armA gene was
observed in this region. Our findings also showed the clonal

dissemination of these resistant isolates in target hospital set-
tings. Based on the results of this study, there are serious

clinical concerns regarding the capability of such bacteria to
transfer their resistance genes to other bacteria. These results
suggest that managing and controlling A. baumannii infections

largely depends on adequate and appropriate antibiotic therapy,
which eventually could lead to less antibiotic resistance.
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