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A Rapid Method for Label-Free 
Enrichment of Rare Trophoblast 
Cells from Cervical Samples
Christina M. Bailey-Hytholt   1, Sumaiya Sayeed1, Morey Kraus2, Richard Joseph2, 
Anita Shukla   1 & Anubhav Tripathi   1

Extravillous trophoblasts (EVTs) have the potential to provide the entire fetal genome for prenatal 
testing. Previous studies have demonstrated the presence of EVTs in the cervical canal and the ability 
to retrieve a small quantity of these cells by cervical sampling. However, these small quantities of 
trophoblasts are far outnumbered by the population of cervical cells in the sample, making isolation of 
the trophoblasts challenging. We have developed a method to enrich trophoblast cells from a cervical 
sample using differential settling of the cells in polystyrene wells. We tested the addition of small 
quantities of JEG-3 trophoblast cell line cells into clinical samples from standard Pap tests taken at 5 
to 20 weeks of gestation to determine the optimal work flow. We observed that a 4 min incubation in 
the capture wells led to a maximum in JEG-3 cell settling on the surface (71 ± 10% of the initial amount 
added) with the removal of 91 ± 3% of the cervical cell population, leading to a 700% enrichment 
in JEG-3 cells. We hypothesized that settling of mucus in the cervical sample affects the separation. 
Finally, we performed a proof-of-concept study using our work flow and CyteFinder cell picking to 
verify enrichment and pick individual JEG-3 and trophoblast cells free of cervical cells. Ultimately, this 
work provides a rapid, facile, and cost-effective method for enriching native trophoblasts from cervical 
samples for use in subsequent non-invasive prenatal testing using methods including single cell picking.

Extravillous trophoblasts (EVTs) are cells that originate from the placenta and invade the endometrium. These 
rare cells have the potential to enhance non-invasive prenatal testing (NIPT)1,2. NIPT is an important method for 
detecting fetal complications as it has lower cost and risks compared to invasive measures3. Biomarker techniques 
and cell free fetal DNA from patient blood samples have shown promise in some prenatal testing, particularly for 
aneuploidy screening4. However, these techniques are limited by the genetic information available in the samples. 
The capture of the entire fetal genome contained in intact fetal cells would be a significant improvement over 
current testing capabilities.

During trophoblast invasion EVTs enter the endocervical canal5, which can be sampled by a cervical swab. 
Previous studies have demonstrated the ability for trophoblast retrieval and isolation from the cervix (TRIC)5–10. 
With the frequency of one EVT per 2,000 cervical cells5, novel isolation methods are needed for downstream 
testing to provide a quality sample that is not overwhelmed by maternal cells. Common cell separation techniques 
are based on cell density, size, shape, piezoelectric effects, electric capacitance, magnetic susceptibility, hydrody-
namic properties, and affinity to antibodies11,12. However, many of these techniques are not suitable for capturing 
EVTs with minimal cell loss or equipped to handle the cervical matrix13. In our investigation, we have utilized 
the intrinsic properties of these rare cells and their matrix in order to yield an EVT enriched sample based on 
differential settling of the cells in polystyrene wells.

In order to isolate putative fetal cells, studies to date have commonly used antibodies for human leukocyte 
antigen G (HLA-G), cytokeratin, beta human chorionic gonadotrophin (β-hCG), and X and Y chromosome 
probing using fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR)8,14,15. Isolation 
methods in the literature have used HLA-G coupled to magnetic beads to elute trophoblast cells from the mater-
nal cell population9,10. However, any amount of maternal cells or DNA present in a sample can pose further 
challenge during analysis of the genome. Single cell picking, in which a single fetal cell is identified and selected 
from a mixed population of both maternal and fetal cells, is one advantageous strategy to eliminate the presence 
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of maternal cells and isolate pure trophoblasts16,17. This is a similar approach to previous investigations aiming to 
isolate rare tumor cells18,19. However, a major issue of picking a single trophoblast cell from a cervical sample with 
no clean-up is the overwhelming density of cervical cells, which makes picking challenging and near impossible. 
Our strategy allows enrichment to a degree that improves the ability to pick and isolate a single trophoblast cell 
while effectively removing maternal contamination.

The goal of this work was to enrich a cervical sample to increase the trophoblast frequency for optimal single 
cell picking. In this study we provide a facile workflow that eliminates at least 90% of squamous cervical cells and 
captures at least 70% of fetal cells (Fig. 1). We used cervical cells from clinical Papanicolaou (Pap) tests stored in 
ThinPrep® PreservCyt® and supplemented with a known number of JEG-3 cells (a common trophoblast cell line) 
for parameter optimization. To achieve enrichment, we allowed the JEG-3 and cervical cells to settle in a polysty-
rene well for a variable amount of time. After the settling time, we removed the supernatant, which contained a 
large majority of cervical cells. Remaining in the capture well was the enriched population of trophoblast cells. We 
also performed a proof-of-concept on an imaging and picking platform to show the ability to pick single troph-
oblast cells for whole genome amplification. This is the first study to use cell settling for enriching trophoblast 
cells from a heterogeneous cervical cell population. Ultimately, we provide a technique that is quick, inexpensive, 
minimizes cell loss, and results in retrieval of individual trophoblast cells.

Material and Methods
Patient selection.  Approval for enrolling patients for non-invasive prenatal sample acquisition, including 
endocervical swabs, was given by the Biomedical Research Alliance of New York Institutional Review Board 
(BRANY IRB) (File # 14-02-450-408). Written informed consent was obtained from the participating women 
and all personal information was removed from the specimen prior to receiving. Women in their 5th to 20th week 
of pregnancy were selected for sampling. All studies were performed in accordance with relevant guidelines and 
regulations.

Endocervical sampling.  Retrieval of trophoblast cells from the endometrial canal was performed using 
a Cytobrush and following standard Pap test protocol. Cells were rinsed from the cytology brush into 20 mL of 
ThinPrep® PreservCyt® (Hologic, Marlborough, MA) fixative solution immediately after removal from the cer-
vix. The material was sent to the lab for experiment use within 24 h of collecting. 15 samples were used as received 
unless noted otherwise.

Trophoblast cell culture.  JEG-3 (ATCC, Manassas, VA), TCL-1 (kindly donated by Women & Infants 
Hospital Kilguss Research Institute, Providence, RI), and HTR-8 (kindly donated by Women & Infants Hospital 
Kilguss Research Institute, Providence, RI) trophoblast cell lines were cultured in Rosewell Park Memorial 
Institute medium 1640 (Gibco, Waltham, MA) (RPMI supplemented with 10% (v/v) fetal bovine serum (FBS) 
(Corning, Corning, NY) and 1% (v/v) penicillin streptomycin) at 37 °C under 5% CO2. During cell passage, cells 
were put in PreservCyt® solution at a concentration of 100,000 cells/mL and stored at 4 °C for use up to 2 months. 
JEG-3, TCL-1, or HTR-8 cells were added into a cervical specimen at a known concentration to investigate opti-
mized enrichment.

Microscopy.  Confocal microscopy.  Confocal microscopy (Nikon Instruments A1 Confocal Laser 
Microscope with NIS Elements software) was used to examine geometries of cervical and JEG-3 cells. Cells in 
PreservCyt® were dried on glass slides and rinsed 3× with 1× phosphate buffered saline (PBS). 0.1% triton 

Figure 1.  Workflow for trophoblast enrichment. Step 1 is the collection of trophoblast cells from the cervical 
canal using a cervical swab test method. Step 2 is the sample preparation by either using the sample as received 
from the clinic, washing with fresh PreservCyt®, or washing with 1× PBS. Step 3 is the enrichment of the cells 
using the workflow developed in this study. Step 4 is acquiring the fetal information by single cell picking and 
whole genome amplification.
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X-100 in 1× PBS was incubated for 3–5 min and subsequently rinsed 3× with 1× PBS. 10% normal goat serum 
was incubated for 30 min at room temperature for blocking. 2.5% Alexa Fluor 532 phalloidin (Life Technologies, 
Carlsbad, CA) in 1% normal goat serum was incubated on the slides for 20 min at room temperature. A final 
wash with 1× PBS was performed and the slides were mounted with Vectashield antifade mounting media with 
4′, 6-diamidino-2-phenylindole (DAPI) (Vector laboratories, Burlingame, CA). Images were processed using 
National Institutes of Health Image J software (version 2.0.0-rc-65/1.52b).

Epifluorescence microscopy.  Adhered cells and the supernatant of cells were imaged using a Nikon Ti-E inverted 
fluorescent microscope with NIS Elements software. At least 25 images of the adhered cells were obtained to 
quantify an average number of adhered trophoblast and cervical cells. Trophoblast amounts less than 250 cells 
were counted while imaging.

Optimization of in vitro trophoblast cell line enrichment from cervical sample.  The cell enrich-
ment process was carried out using a polystyrene 24 well plate (non-tissue culture treated, surface area of 1.9 cm2/
well) as the capture well surface. Cells and controls were introduced to these capture wells and allowed to settle for 
differing times to determine the timescale allowing optimal separation of cervical and fetal cells. JEG-3 cells were 
used to optimize this process. Prior to introducing cells to the capture wells, JEG-3 cells stored in PreservCyt® at 
a stock concentration of 100,000 cells/mL were centrifuged using a Labnet Prism microcentrifuge at 10,000 × g 
for 5 min. The supernatant was removed, and the cells were incubated with DAPI for 5 min. Controls containing 
1,000 DAPI stained JEG-3 cells in 600 μL PreservCyt® were examined for cell settling for 0, 4, 20, and 60 min. 
To determine the capture well incubation time allowing optimal cell separation, DAPI stained JEG-3 cells were 
mixed with cervical samples and incubated in the capture wells for 0, 0.5, 1, 2, 4, 8, 16, or 60 min at a constant 
JEG-3 density of 1,000 cells per well. The JEG-3 cells (10 μL in PreservCyt®) were added to either 600 μL of cer-
vical sample or 600 μL of cervical sample diluted with 2.4 mL of PreservCyt® (yielding a final volume of ~3 mL). 
The different volumes lead to different liquid heights; at 600 μL the well is filled to a 5 mm height, while at 3 mL the 
well is filled to a 20 mm height. After the capture time was completed, the supernatant was immediately removed 
and placed into a new well for imaging. Once the optimized separation time and height of settling were deter-
mined, JEG-3 densities of 15, 100, 250, 500, and 1,000 cells per well were studied.

The effect of washing the cells with fresh PreservCyt® or 1× PBS was also examined, as it was hypothesized 
that these washes would remove mucus content. Cervical and JEG-3 cells were centrifuged at 2,000 rpm for 5 min, 
the supernatant was removed, and the cell pellet was re-suspended in fresh PreservCyt®. This wash procedure was 
performed a total of 3 times. JEG-3 cells were then incubated with DAPI prior to enrichment with the capture 
surface. The optimized settling time and 1,000 cells per well seeding density was used. The effect of solution den-
sity was investigated with JEG-3 cell settling at the optimized time point in Ficoll Type 400, 20% in H2O solution. 
The JEG-3 cells (10 μL in PreservCyt®) were added to 600 μL of Ficoll and allowed to settle.

HTR-8 and TCL-1 cells stored in PreservCyt® at a stock concentration of 100,000 cells/mL were centrifuged 
and DAPI stained as previously performed with JEG-3 cells. The optimized time determined for JEG-3 separation 
from the cervical cells was used with an HTR-8 or TCL-1 density of 1,000 cells per well (10 μL in PreservCyt®) in 
600 μL of cervical sample. After the capture time was completed, the supernatant was removed and placed into a 
new well for imaging.

CyteFinder for trophoblast enrichment analysis.  RareCyte CyteFinder (RareCyte, Seattle WA) was 
used to analyze JEG-3 capture and pick individual cells. A density of 100 JEG-3 cells per well with a cervical 
sample concentration of ~100,000 cells/mL was used for performing cell settling at the optimized time condition 
identified for JEG-3 cell separation as described above in Optimization of in vitro trophoblast cell line enrichment 
from cervical sample. 600 μL of sample was allowed to settle. Additionally, conditions with cervical cell washes 
and incubations were performed. The cervical sample was centrifuged at 2,000 rpm and washed 3× in fresh 
PreservCyt® before spiking with JEG-3 cells for settling. The cervical sample and JEG-3 cells were also allowed to 
incubate for at least 1 h at room temperature prior to settling.

In order to perform imaging and picking on the CyteFinder, the captured cells required transfer from the 24 
well polystyrene plate to a slide surface compatible with the instrument. After settling, the capture surface cells 
were immediately rehydrated with 600 μL of fresh PreservCyt® and vigorously pipetted to remove cells from 
the bottom of the polystyrene well plate. Cells were transferred to a Shandon™ coated cytoslide (ThermoFisher 
Scientific, Waltham, MA) and dried at 50 °C. Purified mouse anti-human HLA-G denatured (BD Biosciences, 
San Jose, CA) at 1:100 in antibody diluent (Dako, Agilent Technologies, Inc., Santa Clara, CA) was incubated on 
the slides for 30 min at room temperature. The slides were rinsed with 1× PBS and Alexa Fluor 488-conjugated 
AffiniPure Goat Anti-Mouse IgG (H + L) (Jackson ImmunoResearch, West Grove, PA) at 1:250 in antibody dil-
uent was incubated for 15 min at room temperature. The slides were then rinsed with 1× PBS and DAPI was 
incubated for 5 min. A final rinse was performed with 1× PBS and then the slides were mounted with CyteMount 
Mounting Media (RareCyte, Seattle, WA).

CytePicker for individual trophoblast cell picking.  RareCyte CytePicker (RareCyte, Seattle, WA) was used to pick 
JEG-3 and potential real trophoblasts found during the CyteFinder process. Coverslips were soaked off of the 
slides in warmed PBS at 37 °C. A CytePicker needle was used to remove the trophoblast cells of interest. The cell 
was then removed from the slide surface and dispensed into 5 μL of PCR grade water.

Whole genome amplification and gender polymerase chain reaction.  Whole genome amplifica-
tion (WGA) (SMARTer PicoPLEX WGA kit, Takara Bio Inc., Kusatsu, Shiga Prefecture, Japan) was performed 
by adding 5 μL of freshly-prepared extraction cocktail to the 5 μL single cell picked sample. The sample was 
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incubated in a thermal cycler at 75 °C for 10 min, then 95 °C for 4 min, and 12 °C on hold. The pre-amplification 
cocktail components were then combined and mixed well with 24 μL of pre-amplification buffer and 1 μL of 
pre-amplification enzyme. 5 μL of this cocktail was added to each cell and incubated in a thermal cycler with one 
2 min cycle at 95 °C, 12 cycles with 15 s at 95 °C, 50 s at 15 °C, 50 s at 25 °C, 30 s at 35 °C, 40 s at 65 °C, and 40 s at 
75 °C. A final cycle at 4 °C was put on hold. The amplification cocktail was then mixed. 60 μL of the amplification 
cocktail was added to 15 μL of pre-amplification product and mixed. The sample was then amplified with one 
2 min cycle at 95 °C, and 14–16 cycles with 15 s at 95 °C, 1 min at 65 °C, and 1 min at 75 °C. The WGA product was 
stored at −20 °C.

Gender quantitative real-time polymerase chain reaction (PCR) was performed with TaqMan Fast Universal 
PCR Mix (ABI-4401631), Vic labeled ribonuclease P (RNAseP) 20X Control Primers (ABI-4401631), FAM labeled 
SRY 20X Primer Mix (ABI-4400291), and DYS14 primers and probe with F: GAGCAGGCGTGGGTACTATTG, 
R: GTCTGCTGCTCGGCATCAC, P: /ROX/CCTGCATGCGGCAGAGAAACCC/IBRQ/. The DYS14 primer 
mix was made with 2 μM of each primer and probe. The PCR mix was made with 10 μL of SRY primers, 10 μL 
RNAse primers, 5 μL DYS14 primers and 65 μL deionized water. BioRad CFX96 real time PCR was run with 
cycling at 95 °C for 5 min, 95 °C for 15 s, 60 °C for 1 min. 50 cycles were performed for each run.

Statistical analysis.  All studies were performed in triplicate at minimum. Results are shown as aver-
age ± standard deviation. All results are from at least n = 3. Where applicable, a two-tailed t-test or two-way 
analysis of variance (ANOVA) with Tukey’s post-hoc analysis and 95% confidence interval was performed where 
*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

Results and Discussion
JEG-3 and cervical cell geometry.  In this work, we developed a label-free technique for trophoblast cell 
enrichment. Prior to investigating cell separation, we examined physical differences with cervical and trophoblast 
cells. To characterize the geometry of each cell type, the actin cytoskeleton and nuclei of JEG-3 and cervical cells 
were stained with phalloidin and DAPI, respectively. We observed that JEG-3 cells (Fig. 2a) exhibited a spherical 
shape while individual cervical cells and cervical cell aggregates (Fig. 2b) exhibited a more pancake-like morphol-
ogy. The JEG-3 cells were significantly smaller (dimensions of 13 ± 1 × 11 ± 1 × 8 ± 1.5 μm) than single cervical 
cells (dimension of 66 ± 2 × 58 ± 1.5 × 6 ± 1 μm).

The size of the JEG-3 cell nuclei relative to the cell body was considerably larger than the cervical cells. The 
diameter of the JEG-3 cell nucleus was found to be 10.8 ± 1 μm while the diameter of the cervical cell nucleus was 
8.7 ± 1.5 μm. The percentage of the cell nuclei was then taken relative to the X dimension of the cell body, result-
ing in approximately 82% for JEG-3 and 13% for the cervical cells. Previous investigations demonstrate cell type 
affects settling velocity20–22. Based on the cell differences observed we hypothesize that the physical properties of 
cervical and JEG-3 cells may influence their gravitational settling in solution.

Optimization of JEG-3 cell enrichment using cell settling.  Cervical samples can have a variable num-
ber of trophoblast cells, resulting in patient to patient variability. To optimize workflow parameters, cervical 
samples were first spiked with JEG-3 cells. By doing this, the JEG-3 cells experienced the mucus content present 
in the cervical sample from women during pregnancy.

Effect of time in capture well on cell settling.  Our workflow, described in Fig. 1 Step 3, requires a set amount of 
time in a capture well before the supernatant is removed. First, a control study was performed with 1,000 JEG-3 
cells settling in only PreservCyt® (Fig. 3a). We observed that on average 80% of JEG-3 cells settled in 4 min 
with an average velocity of 1.25 mm/min. As the cell suspension was very dilute, we assumed no hydrodynamic 

Figure 2.  Confocal images of (a) JEG-3 and (b) cervical cells. Cells were stained with phalloidin (red) and 
DAPI (blue). Orthogonal views are shown with X-Y, Y-Z, and X-Z planes. The lines represent the view point. 
Scale bar = 50 μm.
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interactions between cells. The observed 10–20% unsettled cell population can be attributed to cell adsorption 
onto the walls of the wells utilized during capture. It appears that the cell interaction with the polystyrene surface 
plays a significant role in the JEG-3 surface capture. After 4 min there was no significant change in JEG-3 settling 
at longer time points. Next, cell settling was performed with 1,000 JEG-3 cells in 600 μL of cervical sample. To 
determine the optimal settling time, cervical samples with 1,000 JEG-3 cells were incubated for 0, 0.5, 1, 2, 4, 8, 16, 
and 60 min in the capture well before removing the supernatant (Fig. 3b). At 4 min we observed the largest num-
ber of JEG-3 cells remaining on the surface, an average of 713 ± 103 cells from the original 1,000 cells incubated.

We also observed after 4 min, the number of JEG-3 cells captured at the well surface was significantly 
decreased at 16 and 60 min. At these time points no significant difference was observed between the percentage of 
cervical cells and the percentage of JEG-3 cells adhered to the capture surface. Our control experiment with JEG-3 
cells showed a plateau after 4 min of cell settling, so the observed decrease was due to partial recovery of JEG-3 
cells in the presence of the cervical sample content. We hypothesize the decrease in JEG-3 capture following 4 min 
is due to the highly viscous and “sticky” nature of the mucus in the cervical sample, which itself continues to settle 
over time, as depicted in Fig. 3c. Once a critical amount of mucus accumulates on the surface of the capture well, 
it obscures further settling or detection of cells on the surface. As the JEG-3 cells and cervical squamous cells 
exhibited different geometries, their settling behavior is expected to differ. The ability for JEG-3 cells to settle 
before the cervical cells may be due to a combination of Stoke-dependent settling22,23, capture well polystyrene 
surface, and the trophoblast cell invasive nature24–27.

Overall, we observed an optimized separation time of 4 min. The workflow was able to remove an average of 
91 ± 3% of the cervical squamous cells from the sample, while capturing an average of 71 ± 10% of the JEG-3 cells. 
For this time point, the initial JEG-3 cell population was 1,000 cells while the initial cervical cell population was 
~72,000 cells. After settling, 713 ± 103 JEG-3 cells were recovered with 6,320 ± 2,390 cervical cells, resulting in an 
unprecedented JEG-3 enrichment of 707 ± 330%.

Effect of volume on cell settling.  Having established JEG-3 separation behavior at a volume of 600 μL (~5 mm 
height), we next studied how JEG-3 settling changes with an increased volume of 3 mL (~20 mm height). We 
performed settling of 1,000 JEG-3 cells in cervical samples for 0, 4, 20, and 60 min (Fig. 4a). Our results again 
indicated an optimal settling time of 4 min with 70 ± 25% JEG-3 settling and 8.4 ± 3.6% cervical cells remaining 
on the capture surface. These results are similar to the optimal capture observed with 600 μL, where the volume of 
settling did not result in significant differences in JEG-3 capture at 4 min (Fig. 4b). Once again, settled mucus con-
centrates after 4 min, which disallowed or obscured further settling or detection of cells. With the 3 mL volume we 
still observed a trend of decreased JEG-3 cell settling after 4 min, but less pronounced compared to the 600 μL vol-
ume. With the 3 mL volume, 20 and 60 min settling resulted in a significant difference between the JEG-3 and cer-
vical cell settling, which was not observed for the 600 μL volume. Therefore, if it is necessary to extend the time for 
optimal settling increasing the volume was shown to help. For the current study, because there was no significant 
difference in JEG-3 capture and cervical cell elimination at 4 min, we continued our optimization with 600 μL.

Figure 3.  JEG-3 cell settling. (a) 1,000 JEG-3 cells settling in PreservCyt® for 0, 4, 20, and 60 min. (b) 
1,000 JEG-3 cells in 600 μL cervical sample for 0, 0.5, 1, 2, 4, 8, 16, and 60 min. (c) Schematic of the 
hypothesized settling of JEG-3 cells, cervical cells, and mucus over time. Two-way ANOVA with Tukey 
post-hoc analysis and a 95% confidence interval was performed. n ≥ 3; *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001.
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Effect of cell number on cell settling.  Next, it was important to test if there was a dependence on the initial num-
ber of JEG-3 cells in the cervical sample. We studied 15, 100, 250, 500, and 1,000 JEG-3 cells in a cervical sample 
with 4 min settling. Figure 5a,b show a representative image for the study performed with 1,000 JEG-3 cells per 
well. The JEG-3 cells remaining on the capture surface (Fig. 5a) are observed with the blue DAPI stain. While 
cervical cells still remain on the capture surface, a large number of cervical cells are removed in the supernatant 
(Fig. 5b). Figure 5c shows no significant difference in the percentage of JEG-3 cells settled to the capture surface 
at the tested cell numbers.

Figure 4.  (a) JEG-3 and cervical cell settling over time with a total volume of 3 mL and height of 20 mm in 
the well. (b) 4 min time of settling for 600 μL and 3 mL of settling volume. Two-way ANOVA with Tukey post-
hoc analysis and a 95% confidence interval was performed. n ≥ 3; *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001.

Figure 5.  (a) Capture well JEG-3 cells are DAPI stained and can be easily distinguished from cervical cells. (b) 
Population of cervical squamous cells removed with the supernatant. Scale bar = 200 μm. (c) Effect of number 
of JEG-3 cells with cervical sample settling for 4 min. Two-way ANOVA with Tukey post-hoc analysis and a 95% 
confidence interval was performed. n ≥ 3; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

Figure 6.  Cervical sample rinsed with PreservCyt® or PBS before 4 min cell capture study. Two-way ANOVA 
with Tukey post-hoc analysis and a 95% confidence interval was performed. n ≥ 3; *p < 0.05; **p < 0.01; 
***p < 0.001; ****p < 0.0001.
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Effect of washing cells on cell settling.  Previous studies have first removed mucus from cervical samples by PBS 
washing before performing isolation techniques6. Next, we washed the cervical sample with fresh PreservCyt® or 
1× PBS before cell settling to determine the role of mucus (as depicted in Fig. 1 Step 2).

When washed with PreservCyt®, only 34 ± 4% of JEG-3 cells settled (Fig. 6) compared to the 71 ± 10% of 
JEG-3 settled when not washed (Fig. 3b). With the PreservCyt® wash no significance was observed between 
JEG-3 and cervical cell settling. The percentage of cervical cells on the capture surface was not significant between 
the washed (13 ± 3%, Fig. 6) and unwashed (9 ± 3%, Fig. 3b) conditions. When washed with PBS, the difference in 
the percentage of settling for JEG-3 cells and cervical cells was not statistically significant. The 13 ± 12% of JEG-3 
settling after PBS washing was significantly lower than the 34 ± 4% of JEG-3 settling after PreservCyt® washing.

These results point to the presence of mucus having a significant effect during the enrichment workflow. 
Previous work has indicated that cervical mucus impacts the diffusion of macromolecules and particles28,29. These 
studies have focused on delivery across the cervical mucus barrier. It was noted that while some particles, such as 
the human papilloma virus and globular proteins diffuse as rapidly in the mucus as in saline, other particles such 
as the herpes simplex virus can colocalize with the mucus28. Differences in surface modification of particles, such 
as polymer molecular weight, has also been shown to influence their interaction with cervical mucus29. While 
the cervical and JEG-3 cells are significantly larger than these previously studied particles, differences in the cell 
structure (e.g. geometry, surface proteins) can influence cervical mucus interactions. Based on our results we 
suggest that the mucus content either aids in the JEG-3 cell settling and/or restricts cervical cell settling. For our 
workflow, it is optimal to use the sample as received and not perform any washes or solution change in order to 
obtain maximal JEG-3 capture and enrichment.

Effect of solution density on cell settling.  JEG-3 settling was then studied for 4 min in a Ficoll solution. Ficoll has 
a density of 1.055–1.075 g/mL compared to methanol with a density of 0.791 g/mL, which comprises 30–60% of 
PreservCyt®. Compared to the JEG-3 control with 4 min of settling in PreservCyt®, which captures 78 ± 18% 
JEG-3 cells, 4 min of settling in Ficoll resulted in 7.8 ± 1.5% of JEG-3 cell capture (Fig. 7). Thus, the solution den-
sity of settling plays a role in the percentage of JEG-3 capture on the surface.

Ficoll is a highly branched polymer formed by copolymerization of sucrose and pichlorohydrin30. It is possible 
Ficoll may act similarly to mucus content in solution as both Ficoll and mucin are gel-like substances30,31. An 
amount of Ficoll is adsorbed to the capture surface from the start of JEG-3 settling. This is dissimilar to the cer-
vical sample where mucus is suspended in the PreservCyt® solution. Due to the concentrated Ficoll solution, we 

Figure 7.  Percentage of JEG-3 cells settled after 4 min in PreservCyt® and Ficoll. Two-tailed t-test with 95% 
confidence interval was performed. n ≥ 3; *p < 0.05.

Figure 8.  Comparison of trophoblast cell lines settling for 4 min. Two-way ANOVA with Tukey post-
hoc analysis and a 95% confidence interval was performed. n ≥ 3; *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001.
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expected JEG-3 capture with Ficoll to be similar to JEG-3 capture after mucus settling. From our previous experi-
ments, this occurs after 8 min (Fig. 3b). The resulting JEG-3 cell capture in Ficoll is similar to the 8.2 ± 4.2% JEG-3 
settling at 60 min in the cervical sample (Fig. 3b), when mucus content at the capture surface is greatest. This 
further suggests presence of gel-like substances (Ficoll or mucus) at the capture surface restricts JEG-3 retrieval.

Effect of trophoblast cell line on cell settling.  Using 4 min capture time, HTR-8 and TCL-1 trophoblast cell lines 
were used to investigate cell separation dependence on cell line (Fig. 8). HTR-8 and TCL-1 trophoblast cell lines 
are representative of first and third trimester trophoblasts, respectively32,33. Compared to the 71 ± 10% settling of 
the JEG-3 cells to the capture surface, the HTR-8 and TCL-1 resulted in 16 ± 2% and 27 ± 4%, respectively. The 
JEG-3 capture was significantly different from the HTR-8 and TCL-1 cells. As was observed with the JEG-3 cells, 
a significant number of cervical cells was still removed from the population with the HTR-8 and TCL-1 spiked 
samples. It is possible that the ideal 4 min capture time may change for these additional cell lines.

JEG-3 cells have commonly been used as a model EVT cell line34. Previous investigations have studied the 
villous versus extravillous nature of HTR-8 and TCL-1 cells. HTR-8 cells originated from first trimester villous 
explants33 while TCL-1 cells were established from term placenta32. Investigations have looked at the EVT signa-
ture of these cell lines, and have found TCL-1 cells to have stronger EVT expression compared to HTR-8 cells35. 
This previous literature and our results suggest that the degree of EVT features on the cells may influence their 
settling in solution.

Enrichment of JEG-3 and trophoblasts for single cell picking and whole genome amplifica-
tion.  A hundred JEG-3 cells were spiked into a cervical sample with a concentration of ~100,000 cells/mL in 
order to more closely represent trophoblast concentration in cervical samples. First, we investigated settling of 
the JEG-3 cells at 4 min. After settling, the captured cells were transferred onto a coated slide. HLA-G staining 
was performed and analyzed by the CyteFinder (Fig. 9a,b). Images from the CyteFinder showed HLA-G labelled 
JEG-3 cells with single JEG-3 cells and cell clumps observed. Cervical cells that lack HLA-G are also observed in 
Fig. 9b as DAPI stained nuclei only. We observed a JEG-3 capture of 73 ± 36% (Fig. 9c), which is comparable to 
our previous optimization results. The role of incubating the JEG-3 and cervical cells together for a maximum 
of 1 h was also investigated for detection of captured JEG-3 cells using the CyteFinder (Supplementary Fig. S1).

The cervical sample was then washed 3 times with fresh PreservCyt® before settling with JEG-3 cells. We 
expected that these rinses would result in a reduced amount of cervical mucus present in the sample, similar to 
results from section Effect of washing cells on cell settling. After the wash, the CyteFinder instrument could not 
detect (N.D.) enough cells on the slide surface to produce a report. This result corresponds with our previous 
results and discussion on the role of mucus.

Figure 9.  CyteFinder. (a) Representative JEG-3 cell. (b) Representative JEG-3 cells. (c) Percentage of JEG-3 
captured with and without PreservCyt® wash. The wash condition had no detectable (N.D.) cells found by the 
CyteFinder instrument. n = 3; Scale bar = 20 μm.

Figure 10.  Three cells of interest isolated using CytePicker (a) JEG-3 cell control. (b) Potential real trophoblast. 
(c) Potential real trophoblast. Scale bar = 20 μm.
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Cell picking.  JEG-3 and potential real trophoblast cells of interest found during the CyteFinder were then picked 
from the slide surface (as depicted in Fig. 1 Step 4). A control JEG-3 cell (Fig. 10a) and two trophoblast cells 
(Fig. 10b,c) were chosen for this proof-of-concept. Observed in each of these images was the ability to pick only 
these single cells with no cervical contamination in the surrounding area. Figures presented here were magnified 
using Image J software. Original images from the CyteFinder are presented in Supplementary Fig. S2, which fur-
ther demonstrate the boundary area free of cervical cells.

Whole genome amplification and gender polymerase chain reaction.  For proof-of-concept testing, WGA with 
PicoPLEX was performed for a trophoblast cell and a JEG-3 cell picked using the CyteFinder (as depicted in 
Fig. 1 Step 4). Following genome amplification, gender PCR was performed. RNAse P signal demonstrated DNA 
presence in both the trophoblast and JEG-3 cell (Table 1). In this particular test case, the DYS14 and SRY Y chro-
mosome markers, were not present for the putative native trophoblast cell as observed for the JEG-3 control. 
Although this test cannot confirm the picked trophoblast as fetal in origin due to the lack of Y chromosome 
markers as this suggests a female fetus, this proof-of-concept shows the ability of our enrichment method to be 
applied to obtaining the genetic material from a single cell obtained from the cervical sample. Further, the strong 
Y chromosome signal observed for the JEG-3 cell demonstrates that cervical content is not masking the detection.

Conclusions
In this study we provide an optimized workflow for enriching trophoblast cells from a heterogeneous cervical cell 
population. Our enrichment method is inexpensive and label-free. Using JEG-3 cells, we conclude that enrich-
ment is possible with removing at least 90% of squamous cervical cells while capturing at least 70% of JEG-3 cells 
at an optimal 4 min settling time. This results in a 707 ± 330% enrichment of trophoblast cells from the heteroge-
nous population. This method is not dependent on initial trophoblast cell number and this process can be further 
scaled to larger volumes. We found that using the cervical sample as collected and sent to the lab was the most 
advantageous for enriching JEG-3 cells using our method, which makes this a streamlined process. As the cervical 
cell settling was observed to be similar in different solutions tested, we hypothesize that the polystyrene surface 
has a significant role restricting the cervical cell settling. However, as JEG-3 cell settling changes with PreservCyt® 
and PBS washes and with Ficoll, we hypothesize the mucus content in the PreservCyt® solution is significant for 
trophoblast capture.

These results were further confirmed with our proof-of-concept studies using CyteFinder and CytePicker. We 
isolated single JEG-3 and native trophoblast cells found during the CyteFinder analysis and analyzed the DNA 
content through WGA and PCR. Ultimately, these results show that our workflow can make new isolation tech-
niques, such as cell picking, more efficient and effective.

Data Availability
Data generated during the current study are available from the corresponding author on reasonable request.
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