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Background. After a decade of microarray technology dominating the field of high-throughput gene expression profiling, the
introduction of RNAseq has revolutionized gene expression research. While RNAseq provides more abundant information than
microarray, its analysis has proved considerably more complicated. To date, no consensus has been reached on the best approach
for RNAseq-based differential expression analysis. Not surprisingly, different studies have drawn different conclusions as to the best
approach to identify differentially expressed genes based upon their own criteria and scenarios considered. Furthermore, the lack
of effective quality control may lead to misleading results interpretation and erroneous conclusions. To solve these aforementioned
problems, we propose a simple yet safe and practical rank-sum approach for RNAseq-based differential gene expression analysis
named MultiRankSeq. MultiRankSeq first performs quality control assessment. For data meeting the quality control criteria,
MultiRankSeq compares the study groups using several of the most commonly applied analytical methods and combines their
results to generate a new rank-sum interpretation. MultiRankSeq provides a unique analysis approach to RNAseq differential
expression analysis. MultiRankSeq is written in R, and it is easily applicable. Detailed graphical and tabular analysis reports can be
generated with a single command line.

1. Introduction

Gene expression refers to the appearance of a characteristic or
effect in the phenotype that can be attributed to a particular
gene.Thedevelopment ofmicroarray technologies has helped
biomedical researchers make significant advances in the
last decade by allowing high-throughput gene expression
screening on all known genes. The introduction of RNAseq
technology further revolutionized the field of gene expression
research with accurate measurements of transcripts instead
of estimating relative measures and with the detection of
structural variants such as splicing and gene fusion. RNAseq
uses next-generation sequencing (NGS) technologies to
sequence cDNA that has been reverse transcribed from
RNA. It is commonly believed to be superior to microarray
technology due to its ability to quantify gene expression at
higher resolution (exon and CDS level) and detect structural
variations. As early as 2008 [1], RNAseq has been hailed
as the eventual replacement of microarray technology, and
since then, multiple studies [2–6] have also illustrated the

advantages of RNAseq and come to similar conclusions by
analyzing real data or through thorough simulation study.

RNAseq technology introduces new and exciting oppor-
tunities to researchers in the field of biomedical research
as well as stiff analysis challenges for bioinformaticians.
The rich genomic information RNAseq technology contains
gives RNAseq the decisive advantage over microarray but
adds complication in the analysis phase. Several unique
characteristics contribute to the difficulty of RNAseq data
analysis. First, in RNAseq, the expression values are usually
directly represented by the number of reads or adjusted
number of reads aligned to a gene. For a nonexpressed gene,
zero reads are aligned to the gene’s genomic span. Because
microarray technology is based on fluorescence intensity,
there is always a nonzero background intensity, allowing
microarray data to be log-transformed. In contrast, due to
the large number of zeros for nonexpressed genes in RNAseq
data (often around 50%), log transformation results in many
invalid mathematical operations. The typical range of an
RNAseq dataset is huge, between 0 and 10,000+ compared
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to microarray’s 2 to 15 after RMA normalization (with log 2
transformation). Because RNAseq’s expression value starts
from 0, large fold change can result from two very small
expression values. For example, the fold change between 0.1
and 0.001 is 100, but both 0.1 and 0.001 should be considered
nonexpressed. In addition, there are many sequencing and
alignment artifact that can skew RNAseq data such as errors
from demultiplexing and alignment ambiguity caused by
highly homologous genomic regions.

These bioinformatic challenges create difficulty for
RNAseq data analysis. In this study, we focus on the
inconsistency of differential expression analyses and the lack
of multiperspective quality control. First and foremost, to
date the research community has yet to come to a consensus
on the best of a multitude of different approaches for
differential gene expression analysis of RNAseq data. The
pioneer of RNAseq differential expression analysis, Cufflinks,
is based on reads per kilobase per million mapped reads
(RPKM) [7] and fragments per kilobase of transcript per
million mapped reads (FPKM) [8]. A similar approach is
RNAseq by expectation-maximization (RSEM) [9]. RPKM,
FPKM, and RSEM can be classified as read normalization-
based methods.

Another type of RNAseq differential gene expression
analysis is based on read count. Many read count-based
methods have been developed includingDESeq [10], DEGseq
[11], edgeR [12], baySeq [13], TSPM [14], NBPSeq [15], SAM-
seq [16], andNOIseq [17]. Since they are dealingwith RNAseq
count data, the majority of them are based on Poisson or neg-
ative binomial distributions. But there are implementation
details that separate them. For example, edgeR moderates
dispersion estimates toward a trended mean, whereas DESeq
takes the maximum of the individual dispersion estimates
and the dispersion-mean trend, and baySeq uses an empirical
Bayes approach assuming a negative binomial distribution of
the data. Several studies [4, 18–21] have attempted to evaluate
different normalization and differential gene comparison
methods for RNAseq data. Although no final conclusion
can be reached, through simulation analysis of real data,
it has been found by multiple sources that DESeq, edgeR,
and baySeq were able to maintain a reasonable false-positive
rate without any loss of power. More recently, nonparametric
approaches, such as SAMseq and NOIseq, were proposed
aiming to overcome limitations of aforementioned paramet-
ric as they can be influenced by “outliers” in the data. In this
paper, we focus on the currently widely applied parametric
methods for RNAseq gene expression analysis, but it is
easy to incorporate other methods including nonparametric
approaches in MultiRankSeq.

In addition to the lack of consensus on the best statistical
method, another issue associated with RNAseq data analysis
is the lack of complete quality control. The majority of high-
throughput sequencing quality control tools were designed
exclusively for rawdata. Previously, we have proposed a three-
stage quality control [22] strategy for exome sequencing
analysis that emphasizes the need to implement quality
control at all stages of exome sequencing processing: rawdata,
alignment, and variant calling. The same idea can be easily
adapted to the three stages of RNAseq analysis as well: raw

data, expression quantification, and differential expression
analysis. There have been several tools designed for RNAseq
quality control such as RNA-SeQC [23] and RSeQC [24].
These tools generally target the raw data and expression
quantification steps by calculating quality control parameters
such as read coverage, and GC bias. However, quality control
on differential expression analysis is often not considered.

In this paper, we propose a multimethod rank-sum
approach for RNAseq expression analysis that combines
multiple RNAseq differential expression analysis packages.
Combining multiple methods of RNAseq data analysis
has been previously suggested. For example, Robles et al.
suggested that using a combination of multiple packages
may overcome the possible bias susceptibility of a given
package to a particular dataset of interest [20]. In another
study by Soneson et al., the authors suggested the use of
transformation-based approaches (the variance stabilizing
transformation provided in the DESeq R package and the
voom transformation from the limma R package) combined
with LIMMA [25], which performed well under many
conditions. In this study, we present a tool, MultiRankSeq,
for RNAseq differential gene expression analysis. This tool
offers rank-sum-based differential gene expression analysis,
comprehensive diagnostic quality control assessment, and
automated graphical reports. The input of MultiRankSeq is
a read-count matrix. MultiRankSeq is implemented in R,
and it is freely available for public use. MultiRankSeq can be
downloaded from https://github.com/slzhao/MultiRankSeq.

2. Materials and Methods

Differential expression analysis can only be conducted
between two phenotypes such as tumor versus normal or
treated versus untreated. The ideal assumption for conduct-
ing differential expression analysis is that gene expression
patterns are similar for samples within the same phenotype
group (i.e., relatively homogeneous). Sometimes, however,
this assumption does not hold true. A sample from one
phenotype group may be more similar to the samples from
the other phenotype groups based merely on expression
profile. Unfortunately, the homogeneity of gene expression
patterns within the same group is not always checked before
conducting differential gene expression analysis. One simple
yet effective way to check this assumption is through cluster
analysis. Clustering refers to the task of grouping together
a set of samples with similar gene expression patterns.
To determine the pairwise sample gene expression pattern
similarity, a similarity or distance measurement must be
employed. In MultiRankSeq, we chose to use Spearman’s
correlation coefficient. Because the input of MultiRankSeq
is read count, Spearman’s correlation coefficient is used as
it is more robust to handle skewness and outliers than a
parametric method. MultiRankSeq performs unsupervised
clustering using all genes to best represent the raw expression
pattern of each sample. Samples clustered outside the true
phenotype group are considered to be misclassified. This
could occur due to sample contamination or other technical
reasons. If the majority of the genes lack variation among
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samples, the cluster may be unrepresentative of the true
phenotype group. To alleviate this, MultiRankSeq performs
additional cluster analyses on read counts filtered by the top
5% and 10% coefficient of variation. In theory, the clustering
should improve as more stringent coefficient of variation
cutoffs is used.

MultiRankSeq performs a gene expression integrity check
by drawing the read count distribution and the normalized
read count distribution. Normalization is done by dividing
each gene’s read count by the total read count of all genes
in this sample. One of the unique optional features offered
by MultiRankSeq is the ability to detect batch effect. Batch
effects can be a problem with RNAseq data [26]. The most
common sequencing failures often occur nonrandomly by
lane, flow cell, run, ormachine.MultiRankSeq recognizes and
records the machine name, run ID, flow cell ID, and lane
ID of an experiment from either the FASTQ file or BAM
file. Based on this information, MultiRankSeq determines
whether batch effect exists using the nonparametric Kruskal-
Wallis [27] test and Fligner-Killeen test of homogeneity of
variances [28]. MultiRankSeq uses boxplots and correlation
matrices to demonstrate the expression variation between
samples.

The idea behindMultiRankSeq’s algorithm for integrating
the results from multiple RNAseq analysis tools is based
on the same analytic principle as the weighted flexible
compound covariate method (WFCCM) [29]. WFCCM was
designed to integrate the findings of multiple analysis meth-
ods (e.g., Kruskal-Wallis test, Fisher’s exact test, permutation
𝑡-test, SAM, WGA, and modified info score) to identify the
most significant gene expression associated with biological
status and thereby allow for class-prediction modeling based
on differential gene expression. In other words, WFCCM
extends the compound covariate method by allowing for
more than one statistical analysis method to be considered in
the covariate and reduces the dimensionality of an analytic
problem by generating a single covariate calculated as a
weighted sum of the class predictors identified as most
important.

Based on previous studies [18–21] and our own evaluation
[30], we selected three methods for MultiRankSeq—DESeq,
edgeR, and baySeq—and combined their algorithms in Mul-
tiRankSeq. The tabular report provided by MultiRankSeq
includes log 2 fold change, raw 𝑃-value, and false discovery
rate (FDR) adjusted 𝑃 value from all three methods except
for baySeq because the Bayesian-based method does not
calculate fold change. We rank the genes based on the raw
𝑃 value rather than FDR-adjusted 𝑃 value because the latter
often has a large number of tied values. The sum of the
rankings from all three methods is reported in the last
column of the tabular report to serve as an overall ranking
of genes. The sum of ranks can be used as a confidence level
of differential expression. The smallest rank sums indicate
differentially expressed genes are consistent among the three
methods.

MultiRankSeq provides concordance analysis of the
results from the three methods and detailed visualizations
using various figures such as Venn diagram, heatmap, and
scalable volcano plot to summarize and illustrate the analysis

results. Venn diagrams demonstrate the logical relations
between the three methods based on parameters such as fold
change, adjusted 𝑃 value, and top ranked genes.The heatmap
is used for visualization of gene expression patterns in a
color scale. The correlation scatter plots depict the general
consistency between the methods. The scalable volcano plot
can help the user visualize the genes based on fold change,
𝑃 value, and ranking simultaneously. The rank of the gene is
reflected by the size of the corresponding dot on the volcano
plot.

3. Result and Discussion

3.1. Results. We demonstrateMultiRankSeq using two exam-
ple datasets from the TCGA breast cancer and performed
analysis using MultiRankSeq V1.1.2. This version of Multi-
RankSeq uses edgeR 3.4.2, DESeq 1.14.0, and baySeq 1.16.0 as
the primary three differential expression analysis packages.
The first example dataset contains RNAseq data from 3
tumors and 3 adjacent normal tissues from same patients
(TCGA-A7-A0D9, TCGA-BH-A0B3, and TCGA-BH-A0BJ).
This example is used to show the MultiRankSeq’s cluster
functionality.

When using unfiltered data, an adjacent normal sample
was clustered with the tumor group (Figure 1(a)). Normally,
we may consider this sample problematic and remove it from
the analysis; however, cluster result using genes with the
top 5% coefficient of variation showed the correct grouping
(Figure 1(b)). The misclassified sample in Figure 1(a) is likely
due to noise caused by genes that lack variation among
samples.Therefore, part of its information can be used for the
analysis instead of completely removing the sample. Figure 2
shows additional quality control matrix produced based on
the example of dataset 1.

The second example dataset also contains RNAseq data
from 3 tumors and 3 adjacent normal tissues from same
patients (TCGA-BH-A0BM, TCGA-BH-A0C0, and TCGA-
BH-A0DK). Using this example, we demonstrate the com-
plete MultiRankSeq’s functionality.

The example result figure produced by MultiRankseq
using this example can be seen in Figure 3. The full HTML
reports ofMultiRankSeq from the example data can be found
at the tool’s hosting website. The complete R command used
to generate the results can be viewed as follows:

library(MultiRankSeq);
#Load the downloaded data into R, and generate
group definition;
Figure 1<read.csv(“TcgaFigure 1.csv”,header=T,row
.names=1,check.names=F);
Figure 3<read.csv(“TcgaFigure 3.csv”,header=T,row
.names=1,check.names=F);
group=c(0,0,0,1,1,1);
#Generate report;
reportF1<-MultiRankSeqReport; (output=“report
Figure 1.html”,rawCounts=TcgaFigure 1, group=
group);
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Figure 1: (a) Cluster result using all genes shows control 1 clustered together with disease group. (b) Cluster results using genes with top 5%
coefficient of variation, control group, and disease group are now clustered correctly.

reportF3<-MultiRankSeqReport; (output=“report
Figure 3.html”,rawCounts=TcgaFigure 3, group=
group).

Even though, majority of the time, DESeq, edgeR, and
baySeq agree with each other, there is still occasional dis-
agreement. This can be demonstrated through the second
example. We observed that when there is a large varia-
tion in the read counts, especially when the homogeneity
assumption seems to be violated, the 3 methods can disagree
with each other significantly. One particular example is
the gene IGHG2 (Table 1). Based on the FDR-adjusted 𝑃
value, only edgeR considered it to be significant. The FDR-
adjusted 𝑃 values were 0.047, 0.28, and 0.91, respectively, for
edgeR, DESeq, and baySeq.We then performed an additional
analysis using Cuffdiff [31]. Cuffdiff agreed with edgeR with
an FDR-adjusted 𝑃 value <0.001. The log 2 fold changes of
IGHG2 produced also spans a large range (from 2.92 to
5.83). After adjusting for the total number of reads, the
variation becomes less obvious with each of the methods
(Table 2). However, in this particular case, edgeR seems to
have performed more effective variation stabilization.

In terms of number of winner genes (adjusted 𝑃 < 0.05)
identified, the three methods differ hugely in example 2

Table 1: Analysis difference for IGHG2.

Method Adjusted 𝑃 value log 2 FC Rank
DESeq 0.278 3.00 2572
edgeR 0.047 2.92 712
baySeq 0.907 NA 24962
Cuffdiff <0.001 5.83 13

(DESeq = 1118, edgeR = 743, and baySeq = 63). We performed
network, pathway, and biological functionality analysis using
ingenuity. The results are split into seven categories: genes
identified by DESeq, edgeR, baySeq, singleton genes that
identified each of the three methods, and overlapped genes
among the three methods. Singleton gene means this gene is
only identified by one method. The top five networks, bio-
logical functionalities, and canonical pathways are reported
(see Table S1 in Supplementary Material available online
at http://dx.doi.org/10.1155/2014/248090). The functionality
results of DESeq and edgeR are similar because they have
large overlap; the results of baySeq are more unique because
of less overlap with other methods.
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Figure 2: (a) Boxplots of gene raw read count. (b) Correlation matrix of all genes between all pairs of samples using raw read count.
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Figure 3: (a) Venn diagram of differential expression analyses by DESeq, edgeR, and baySeq. The Venn diagram can be drawn based on 𝑃
value, fold change, or rank. (b) Scalable volcano plot representing fold change, 𝑃 value, and rank. Rank is presented as the size of the circle,
and larger size denotes higher ranking. (c) Heatmap of top differentially expressed genes. MultiRankSeq produces heatmap based on 𝑃 value,
fold change, and rank; only genes selected by fold change are shown here.
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Table 2: Read count of samples for IGHG2 gene.

Disease 1 Disease 2 Disease 3 Control 1 Control 2 Control 3
Read count (IGHG2) 391 2038 338 634 10282 1764
Total read count 49870084 65550902 71454121 35641084 44863975 49052840
Adjusted read Count1 78 311 47 178 2292 360
1Adjusted read count of gene A is computed as read count of a gene A divided by total read count of the sample times a constant.

3.2. Discussion. Performing traditional comparative statisti-
cal analysis methods such as 𝑡-test or Wilcoxon rank-sum
test requires at least 3 samples for variation to generate
meaningful results. Such limitations also apply to DESeq,
edgeR, and baySeq. Cuffdiff, however, can assign 𝑃 values
even for 1 sample versus 1 sample. In order to do this, it makes
the assumption that similarly expressed genes have similar
variance and the majority of the genes are not differentially
expressed. In many studies, these assumptions will hold true,
but includingmultiple samples in a groupwill always generate
more robust results. The current version of MultiRankSeq
only considers methods based on read count data. However,
it is our goal to incorporate Cuffdiff in the future research.

RNAseq data is difficult to analyze and sometimes
is methodology-dependent as previously discussed. Multi-
RankSeq tackles this problem from a different perspective by
combining ranked results from multiple well-rated RNAseq
analysis methods. This approach brings more confidence to
the selection of truly differentially expressed genes. Another
novelty that MultiRankSeq brings is the bridging of the gap
between quality control and statistical analysis. The report
generated by MultiRankSeq is comprehensive and helps the
user better appreciate the power and complexity of RNAseq
data.MultiRankSeq is based on an intuitive idea of combining
multiple methods yet very practical. Because MultiRankSeq
is designed with user friendliness and flexibility in mind,
additional RNAseq analysis programs can be easily added to
it in the future if needed. In conclusion, MultiRankSeq is a
simple framework of RNAseq data analysis which provides
tremendous convenience and an alternative perspective for
researchers who conduct routine RNAseq analysis.

We do not claim that combining the results of multiple
methods will always produce more accurate result. There are
the scenarios when the minority method is corrected. Thus
combining three methods may still produce false positive
results. However, if multiple methods agree, the probability
of generating the true positive results will most likely to
increase. The goal of MultiRankSeq is to provide the user
with higher confidence to pick a gene that is significantly
differentially expressed with high probability.
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