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Mycobacteria spontaneously form surface-associated multicellular communities, called
biofilms, which display resistance to a wide range of exogenous stresses. A causal
relationship between biofilm formation and emergence of stress resistance is not known.
Here, we report that activation of a nitrogen starvation response regulator, GlnR, during
the development of Mycobacterium smegmatis biofilms leads to peroxide resistance.
The resistance arises from induction of a GlnR-dependent peroxide resistance (gpr)
gene cluster comprising of 8 ORFs (MSMEG_0565-0572). Expression of gpr increases
the NADPH to NADP ratio, suggesting that a reduced cytosolic environment of nitrogen-
starved cells in biofilms contributes to peroxide resistance. Increased NADPH levels
from gpr activity likely support the activity of enzymes involved in nitrogen assimilation,
as suggested by a higher threshold of nitrogen supplement required by a gpr mutant
to form biofilms. Together, our study uniquely interlinks a nutrient sensing mechanism
with emergence of stress resistance during mycobacterial biofilm development. The gpr
gene cluster is conserved in several mycobacteria that can cause nosocomial infections,
offering a possible explanation for their resistance to peroxide-based sterilization of
medical equipment.
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INTRODUCTION

Under most detergent-free in vitro conditions, mycobacterial species grow as surface-associated,
three-dimensionally organized multicellular communities, called biofilms, which develop through
dedicated genetic programs (Ojha et al., 2005, 2008; Weiss and Stallings, 2013; Gupta et al.,
2015; Chuang et al., 2016; Yang et al., 2017; Clary et al., 2018). Biofilm-like multicellular
aggregates of non-tuberculous mycobacteria (NTMs) have also been reported from clinical and
environmental specimens (Feazel et al., 2009; Bosio et al., 2012; Mullis and Falkinham, 2013;
Fennelly et al., 2016). Biofilms of Mycobacterium avium, a prominent member of NTMs, have
been implicated in pathogenesis (Rose and Bermudez, 2014), although biofilms of other pathogenic
mycobacterial species including M. tuberculosis in the context of their host environments remain
to be evaluated. Further clinical significance of mycobacterial biofilms is highlighted by at least
two unique phenotypes, which are not associated with their single-cell planktonic counterparts.
First, mycobacterial biofilms harbor a sizable subpopulation of bacilli that can survive extreme
conditions including exposure to antibiotics and antiseptics (Falkinham, 2007; Ojha et al.,
2008; Rose et al., 2015; Yang et al., 2017; Clary et al., 2018). Second, biofilm growth of some
mycobacterial species, including the pathogenic species M. canettii, fosters horizontal gene transfer
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(Nguyen et al., 2010; Boritsch et al., 2016), which possibly
accelerates the propagation of drug resistance mutations in these
species. Although mycobacterial biofilms are increasingly being
recognized as potential targets for effective anti-mycobacterial
strategies, mechanisms underlying the emergence of stress
tolerance in biofilms remain unknown.

Biofilm development in the model mycobacterial species,
M. smegmatis, is a genetically programmed process that appears
to occur in distinct stages, each demarcated by its specific genetic
requirements (Ojha et al., 2005; Ojha and Hatfull, 2007; Yang
et al., 2017). While the cell surface glycopeptidolipid (GPL)
is necessary for optimum substratum attachment, a nucleoid-
associated protein, Lsr2, is required for cell–cell aggregation
(Yang et al., 2017). Moreover, gene expression analysis of an
extragenic suppressor of an lsr2 mutant revealed that cell–cell
aggregation is a critical checkpoint in the developmental process
(Yang et al., 2017). Expression levels of 83 genes are dependent
on intercellular aggregation and aggregated growth (Yang
et al., 2017), suggesting that the physicochemical interactions
among cells induce transcriptional reprogramming for further
maturation of architecture and physiological adaptation of
resident cells.

A large number of 83 aggregation-dependent genes are under
the control of GlnR, a conserved OmpR-like transcription
factor that regulates nitrogen assimilation in response to its
limited availability (Amon et al., 2008; Jenkins et al., 2013; Yang
et al., 2017). GlnR-dependent upregulation of three ammonium
transporters (Amt), glutamine/glutamate synthases (GlnA) and
nitrite/nitrate reductases facilitate efficient assimilation of
environmental nitrogen in a cell (Amon et al., 2008; Yang
et al., 2017). In addition, GlnR also induces urecase, amidase,
xanthin permeases, which likely maximize the total intracellular
nitrogen pool (Jenkins et al., 2013). However, the fact that
GlnR induces over 100 genes in mycobacteria opens up
questions about its wider influence in mycobacterial growth and
adaptation. Studies in other species support a global role of GlnR,
extending beyond nitrogen assimilation. In Saccharopolyspora
erythraea, GlnR controls the expression of carbohydrate ATP-
binding cassette (ABC) transporters, thereby facilitating carbon
uptake in response to nitrogen starvation (Liao et al., 2015).
Similarly, GlnR also appears to control the expression of a key
phosphate-sensing regulator, PhoP, in S. erythraea, implying a
possible role of GlnR in phosphorous homeostasis (Yao and Ye,
2016). In addition to controlling nutrient balance in bacteria,
GlnR also influences secondary metabolism in actinomycetes.
In Streptomyces coelicolor and Streptomyces avermitilis, GlnR
modulates the synthesis of antibiotics by directly regulating
the transcription of pathway-specific genes (He et al., 2016;
Urem et al., 2016). Lastly, GlnR also controls osmolyte levels
in S. coelicolor (Shao et al., 2015), and pH homeostasis in
Streptococcus salivarius (Huang and Chen, 2016).

Given a global role of GlnR in other species, we asked whether
its activation during biofilm development in M. smegmatis has
any significance beyond nitrogen assimilation. We report here
that GlnR activation for nitrogen assimilation during biofilm
growth also increases resistance to peroxide. The phenotype is
caused by induction of a GlnR-dependent peroxide resistance

(gpr) cluster of genes. The gpr cluster is comprised of 8 open
reading frames (ORFs) – MSMEG_0565-0572– encoding genes
of diverse functions. The upstream region of this uncharacterized
operon has binding sites for both GlnR and SoxR, which is a
MarR-family transcription factor that responds to oxidative stress
to maintain redox homeostasis (Dietrich et al., 2008; Jenkins
et al., 2013). However, gpr induction responds differently to GlnR
and SoxR activities. While GlnR is a strong positive regulator
of gpr, inducing it by ∼100-fold under limiting nitrogen, SoxR
is a modest negative regulator causing twofold de-repression
under peroxide stress. Emergence of peroxide resistance through
a nutrient sensing mechanism provides a direct link between
form and function of mycobacterial biofilms.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
All plasmids and strains used in this study are listed in
Supplementary Tables S1 and S2, respectively. Unless indicated,
M. smegmatis, mc2155 (wild-type), was maintained at 37◦C in
7H9ADC (Becton Dickinson) with 0.05% (v/v) Tween-80 for
planktonic cultures. 7H10ADC agar (Becton Dickinson) was
used for plate cultures. When necessary, hygromycin, kanamycin,
and zeocin were added at 150, 20, or 25 µg/mL, respectively,
to culture recombinant strains. Escherichia coli (DH5α) was
grown at 37◦C in LB broth or LB agar. Pellicle biofilms of
M. smegmatis strains were grown as described earlier (Yang
et al., 2017). Briefly, 10 µL of saturated planktonic cultures
were inoculated into 10 mL of detergent-free Sauton’s medium
or modified M63 medium in either 60 mm polystyrene dishes
or 12-well polystyrene plates, and incubated stationary at 30◦C
untill indicated time. The N0 version of Sauton’s medium was
prepared by omitting asparagine, and by replacing the ferric
ammonium citrate with ferric citrate. The N1/2 version was
prepared by reducing the initial concentrations of the above
mentioned nitrogen sources by half.

Construction of Mutants and Plasmids
Mutations in M. smegmatis mc2155 were constructed using
recombineering as described previously (Yang et al., 2017).
Briefly, allelic exchange substrates for a given target gene
were generated by SOEing-PCR on either side of a loxP
flanked zeocin-resistant cassette using the respective primers
listed in Supplementary Table S3. The purified PCR-products
were electroporated into an electrocompetent recombineering
strain, mc2155-pJV53-SacB, and plated on 7H10ADC with
25 µg/mL zeocin. Mutant genotypes of zeor colonies were
confirmed by PCR. The recombineering plasmid, pJV53-SacB,
was rescued from mutants by plating them on 7H10ADC
with 15% sucrose, and screening sucrose resistant colonies
for kanamycin sensitivity. The zeor marker was removed by
excision using a Cre recombinase expressed from pCre-SacB,
which was electroporated into the rescued mutant cells and
transformants were screened for loss of zeor . The zeos colonies
were screened on 7H10ADC with 15% sucrose to obtain clones
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FIGURE 1 | GlnR-dependent growth of M. smegmatis in planktonic and biofilm cultures in Sauton’s medium. (A) Planktonic growth of wild-type, 1glnR and
1glnR-complemented strains in Sauton’s medium with 0.05% (v/v) Tween80. Growth of 1glnR is also rescued by supplementation of Sauton’s medium with 0.5%
(w/v) casamino acid and 0.2% (w/v) ammonium sulfate. (B) A top-down view of pellicle biofilms of wild-type, 1glnR and 1glnR complemented strains in
detergent-free Sauton’s medium at the indicated time point. (C) Expression of a GlnR-dependent ammonium transporter (Amt1) in planktonic (plnk) and biofilm (bf)
cultures of wild-type M. smegmatis at indicated stages of growth. Logarithmic, early- and late-stationary phases of planktonic cultures correspond to OD 0.3, 1.5
and 2.5, respectively. Stages of biofilms at which cells were harvested are indicated as days after incubation. Expression was determined by real-time PCR and
normalized with the SigA transcripts. Data represent mean of two independent experiments. ∗∗∗ and ∗∗∗∗ denote p < 0.001 and 0.0001, respectively (t-test).
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without the pCre-SacB plasmid. The rescued unmarked mutants
were complemented as indicated.

RNA-seq
Mycobacterium smegmatis mc2155 and 1glnR were grown
in detergent-free Sauton’s medium to form matured pellicle
biofilms. Total RNA was extracted using a Qiagen RNeasy kit
and contaminating DNA was removed with the turbo DNA-
free kit (Thermo Fisher Scientific). For each sample, 5 µg of
total RNA was processed for rRNA removal using the Ribo Zero
kit (Illumina). Strand-specific DNA libraries were then prepared
with 100 ng of mRNA using the Scriptseq Complete Kit- Bacteria
(Illumina). Libraries were sequenced on the NextSeq500 platform
(Illumina) and analyzed by Rockhopper (McClure et al., 2013) at
default settings using the reference genome of M. smegmatis mc2

155 (NC_008596).

RT-qPCR
All oligonucleotides used for RT-qPCR are listed in
Supplementary Table S3. DNA-free RNA for RT-qPCR

was extracted as described for RNA-seq. For each sample,
200 ng of RNA was used for reverse transcription using the
Maxima First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific). RT-qPCR was performed on an Applied Biosystems
7000 fast RT-qPCR System (Applied Biosystems) with SYBR
Green Master Mix following the manufacturer’s instructions.
Relative expression of target gene is calculated either as
2−1Ct(gene−SigA) or 2−1Ct(target gene1−SigA)−1Ct(target gene2−SigA),
in which SigA transcript was the endogenous control.

Antibiotics and Peroxide Sensitivity
Assays
Exponential phase culture (OD600 = 0.3) of each strain grown in
Sauton’s medium with 0.05% (v/v) Tween80 was harvested and
washed once with phosphate buffered saline with 0.05% Tween-
80 (PBST). Approximately 2 × 107 CFU/mL of each strain was
resuspended in nitrogen-free (N0) Sauton’s medium with 0.05%
(v/v) Tween80 at 37◦C for 3 h. 400 µg/mL rifampicin, 1 µg/mL
streptomycin or 20 mM H2O2 were added and incubated at

FIGURE 2 | GlnR-dependent resistance of M. smegmatis to hydrogen peroxide under nitrogen-limiting condition. (A) Survival of wild-type, 1glnR and
1glnR-complemented strains in nitrogen-free Sauton’s (N0) medium for up to 48 h. Exponentially growing cells (OD 0.3) cultured in Sauton’s medium with 0.05%
(v/v) Tween80 were washed and resuspended in N0 medium for indicated time points prior to plating the dilutions on 7H10ADC plate. (B) Effect of streptomycin
(Str; 1 µg/mL), rifampicin (Rif; 400 µg/mL), and hydrogen peroxide (H2O2; 20 mM) on survival of wild-type, 1glnR and 1glnR -complemented strains in N0 medium.
Cells were incubated in N0 medium for 6 h prior to exposure to each condition for the indicated period of time. Data are representative of mean of three biologically
independent experiments. ∗∗∗ indicates p (t-test) < 0.001.
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FIGURE 3 | GlnR-dependent peroxide resistance in M. smegmatis results from activation of a cluster comprising of eight genes (MSMEG_0565 to 0572), called gpr.
(A) Schematic representation of gpr and the upstream GlnR and SoxR-binding regions, called GlnR-box and SoxR-box, respectively. Nucleotide sequence of the
two regions are indicated below in their corresponding color codes. (B) Expression of each of the eight genes in gpr cluster in logarithmic phase (OD 0.3) planktonic
culture and in 6-day biofilms, both cultured in Sauton’s medium. Transcripts were normalized with SigA transcripts. (C) GlnR-dependent induced expression of gpr
cluster (represented by MSMEG_0572) in N0 medium. Indicated strains were cultured in normal Sauton’s medium untill OD 0.3 and transferred to N0 medium for 3 h
prior to mRNA analysis by real-time PCR. Cells collected from Sauton’s medium before exposure to N0 medium were used as reference. Fold-change relative to
transcript level in wild-type cells in Sauton’s medium was calculated. (D) Expression of gpr (represented by MSMEG_0572) is unresponsive to SoxR and peroxide in
Sauton’s medium. Indicated strains were cultured and processed as described for (C), except that an additional set exposed to a sub-lethal concentration (1 mM) of
H2O2 for 60 min was also included. (E) Expression of gpr is sufficient to restore peroxide resistance in 1glnR mutant. Viability of the indicated strains before (0 min)
and after 30 min of exposure to 20 mM H2O2. Data in (B–E) represent mean of three biologically independent experiments. ∗∗ and ∗∗∗ indicates p (t-test) < 0.01
and <0.001, respectively.

Frontiers in Microbiology | www.frontiersin.org 5 July 2018 | Volume 9 | Article 1428

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01428 July 2, 2018 Time: 19:35 # 6

Yang et al. Peroxide Resistance in Mycobacterial Biofilms

37◦C for the indicated period; unexposed cultures were used as
control. At the indicated time point, the exposed and unexposed
cultures were diluted and plated on 7H10ADC for bacterial
viability.

Measurement of Intracellular
NADPH/NADP Ratio
Average intracellular NADPH/NADP ratios of planktonic culture
and biofilms were measured according to previous publication
with minor modifications (Vilcheze et al., 2005). Briefly,
exponential phase planktonic and biofilm cultures from normal
and N0 Sauton’s medium were harvested and washed once
with PBS and then resuspended in PBS. Large aggregates from
biofilms were broken up by 8–10 repeated passaging through
18-G needles. 1.5 mL single cell suspensions at density of 108–
109 CFU/mL of each strain were pelleted and resuspended
in 0.75 mL 0.2 M HCl (for NADP extraction) or 0.75 mL
of 0.2 M NaOH (for NADPH extraction). After 10 min at
55◦C, the suspensions were cooled to 0◦C and neutralized by
adding either 0.75 mL of 0.1 M NaOH for NADP extraction
or 0.75 mL of 0.1 M HCl for NADPH extraction, while
vortexing at high speed. After incubation for 10 min on ice, the
suspensions were centrifuged at 3000 rpm for 10 min at 4◦C.
The supernatants were filtered and transferred to a new tube and
used immediately. The concentrations of NADP and NADPH
in the suspensions were determined by spectrophotometric
measurement of the rate of 3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide (Sigma # M2128) reduction by
the glucose-6-phosphate dehydrogenase (Sigma # G6378) in the
presence of phenazine ethosulfate (Sigma # P4544) at 570 nm.
The rate of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium
bromide reduction is proportional to the concentration of
the nucleotides. Purified NADP (Sigma # 10128031001) and
NADPH (Sigma # 10107824001) were used for standard curves,
which were used for determination of the nucleotides in each
sample. Serial dilutions of samples were tested to ensure the
values were in the linear range of the NADP/NADPH standard
curve.

Peroxide Sensitivity Assay for
Microfluidic Biofilms
Biofilms as microcolonies were grown in a CellASIC ONIX (Cat
# EV262) microfluidic platform, using CellASIC microfluidic
plates (M04S-03) with headspace of 150 µm. Approximately
106 CFU/mL of bacteria in 10 µL media were perfused at a
pressure of 1.7 kPa (0.25 psi) into each culture chamber of the
plate for 6 s, followed by no perfusion for 30 min. This allowed
optimum attachment of single cells to the culture chamber
surface at a density that then grew into separate colony biofilms.
For microfluidic culturing, detergent-free Sauton’s media was
perfused across each culture chamber at the manufacturer’s
recommendation of a dual pressure of 3.4 kPa (0.5 psi)
at 37◦C for 4 days to provide adequate nourishment and
minimal stress to biofilm-like colonies. Incubation of 1glnR
was extended by an additional day to allow colony biofilms
to grow to the same size as wild type. Colony biofilms were

exposed to 20 mM H2O2 in Sauton’s media via microfluidic
perfusion for 3 h followed by overnight perfusion of Sauton’s
media with 1 µg/mL Calcein AM to stain survivors. Images
of colony biofilms were collected by confocal laser scanning
microscopy (CLSM) at 20× magnification under green channel
(excitation 488 nm). Corresponding DIC image of each colony
was also captured for overlaying the fluorescence signal. The
images were analyzed by ImageJ. To compare the numbers
of surviving cells among strains after H2O2 exposure, the
number of green CalceinAM-stained cells was calculated from
the maximum intensity projection of the z-stacks of each biofilm-
like colony, normalized to colony surface area. For each strain,
at least three biofilm-like colonies over two fields of view were
analyzed.

RESULTS

GlnR and Biofilm Formation in
M. smegmatis
In our earlier study we identified 61 genes induced during
maturation of M. smegmatis biofilms to be GlnR-dependent
(Jenkins et al., 2013; Yang et al., 2017). We therefore tested
the effect of glnR mutation on development of M. smegmatis
biofilms. Deletion of glnR produced no apparent phenotype in
modified M63 medium, which was used in our earlier study
(Yang et al., 2017) (Supplementary Figure S1). However, the
mutation caused delayed planktonic growth and retarded biofilm
development in Sauton’s medium (Figures 1A,B), which has
poorer nitrogen source relative to the modified M63 medium.
Lack of adequate nitrogen source in Sauton’s medium appeared
to be the primary cause for 1glnR phenotype, because the
mutant growth could be substantially rescued by addition of
casamino acid as supplemental nitrogen source (Figure 1A).
Moreover, similar to the observation in modified M63 medium
(Yang et al., 2017), late-stage (6-day) biofilms of wild-type
(mc2155) M. smegmatis in Sauton’s medium also exhibited > 50-
fold induction of a GlnR-dependent ammonium transporter
(MSMEG_2425; Amt1) (Figure 1C). The induction was not
observed in planktonic culture of the strain (Figure 1C),
indicating that nitrogen availability in the medium is sufficiently
high to prevent peak level of GlnR activation in planktonic cells,
but not high enough to do so in biofilms. Based on these findings,
and to maintain consistent growth conditions used in previous
studies of GlnR mutant of M. smegmatis (Jenkins et al., 2013), we
chose to use Sauton’s medium for this study.

Growth retardation of 1glnR in planktonic cultures
(Figure 1A) suggests that a basal activity of the regulator is
necessary for optimum uptake of nitrogen sources. Delayed but
matured biofilm development by 1glnR raised the possibility
of either an alternative mechanism of induction of GlnR-
dependent genes, or existence of alternative pathways for
nitrogen assimilation. To investigate these possibilities we
compared the transcriptomes of 6-day biofilms of wild-type
and 1glnR strains. Expression of GlnR-dependent genes was
significantly retarded in biofilms of 1glnR mutant, compared
to the wild-type (Supplementary Table S4), suggesting that
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FIGURE 4 | GlnR-dependent expression of gpr induces peroxide resistance in M. smegmatis biofilms. (A) Visualization of peroxide resistant survivors (green) in
4-day biofilms of the indicated strains. Biofilms, cultured in CellASIC Onix microfluidic system perfused with Sauton’s medium, were exposed with the medium
containing 20 mM H2O2 for 3 h prior to staining with Calcein AM (1 µg/mL). Distributions of live cells (green) in colony biofilms were determined from images
acquired by confocal microscopy. The micrographs represent maximum intensity projection of green signal across z-stacks analyzed by ImageJ. (B) A summary plot
of frequency of green cells in four independent biofilms of wild-type and mutants, and three for the complemented strains. Data represent mean from 3 to 4
independent biofilms of each strain formed in a microfluidic chamber. ∗denotes p (Mann–Whitney) < 0.05.
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secondary mechanisms of nitrogen assimilation are triggered in
the mutant. This was further substantiated by upregulation in
1glnR mutant biofilms of acetamidase (amiE or MSMEG_5335)
and D-amino acid dehydrogenase (Supplementary Table S4).

GlnR Activation and Peroxide Resistance
A global effect of GlnR on gene expression patterns (Jenkins et al.,
2013; Jessberger et al., 2013; Yang et al., 2017) raised a possibility
that its activation during adaptation of M. smegmatis to low
nitrogen may also impact other functions of cells. We investigated
the effect of GlnR on persistence under stress exposure by
comparing the sensitivity of nitrogen-starved cells of wild-type,
1glnR and 1glnR complemented strains to two commonly
used anti-TB antibiotics: rifampicin (Rif) and streptomycin
(Str) at 10X MIC. We also included hydrogen peroxide – a
routinely used sterilizing agent for control of biofilm-related
contaminants of surgical equipment in nosocomial settings
(Falagas et al., 2011). We excluded isoniazid (INH) due to
its selective activity on growing cells. We chose to test GlnR-
activated planktonic cells by exposing them to N0-Sauton’s
medium. GlnR was activated within 3 h of exposure to N0-
Sauton’s medium (Supplementary Figure S2). Because viability
of 1glnR remains unaltered during the first 48 h of exposure to
the N0-Sauton’s medium (Figure 2A), the exposure periods to
the stressors were kept within this time limit. All three strains
appeared equally sensitive to high concentrations of Rif and Str
(Figure 2B). Interestingly, 1glnR mutant showed significantly
greater sensitivity to peroxide exposure in a 60-min period
(Figure 2B), and the phenotype was substantially reversed in the
complemented strain (Figure 2B).

Peroxide Resistance Arises From
GlnR-Dependent Induction of gpr
To determine the basis of GlnR-dependent peroxide resistance
we analyzed the nucleotide sequence of GlnR-dependent genes.
Upstream region of one of the GlnR-dependent operons
comprising of 8 ORFs (MSMEG_0565 to MSMEG_0572)
contained binding sites for both GlnR and SoxR (Dietrich
et al., 2008; Jenkins et al., 2013) (Figure 3A). Since SoxR plays
important role in redox homeostasis in many bacterial species
(Storz and Imlay, 1999), we speculated that this locus could be
under dual regulation of SoxR and GlnR, and that its activation by
either of the two regulators possibly confers peroxide resistance.
Biofilm-specific expression of all 8 ORFs in Sauton’s medium was
verified by RT-qPCR (Figure 3B). We next tested the role of
SoxR and GlnR in activation of the operon using MSMEG_0572
as a representative member. As expected from earlier studies
(Jenkins et al., 2013; Jessberger et al., 2013; Yang et al., 2017),
expression of the operon in wild-type cells was highly (>500 fold)
induced upon 3-h exposure to N0 Sauton’s medium in a GlnR-
dependent manner (Figure 3C). However, SoxR activity appears
to have very modest (∼2-fold) negative effect on the induction of
the operon (Figure 3D). Interestingly, exposure to peroxide did
not induce the operon (Figure 3D). Together, these expression
profiles indicate that regulation of the operon exclusively depends
on GlnR under the tested conditions.

We next asked if expression of MSMEG_0565-72 operon
is necessary and sufficient to exhibit GlnR-dependent peroxide
resistance. A deletion mutant of the operon exhibited similar
level of peroxide sensitivity as 1glnR under N0-Sauton’s
medium (Figure 3E), and the phenotype was rescued by
plasmid-borne expression of the operon by a constitutive
(Phsp60) promoter. Importantly, constitutive expression of the
operon by Phsp60 promoter was also able to substantially
rescue peroxide sensitivity of 1glnR, indicating that peroxide
resistance in M. smegmatis is primarily contributed by GlnR-
dependent activation of MSMEG_0565-72 operon. We therefore
call this operon as GlnR-dependent peroxide resistance or
gpr.

To obtain a direct evidence for roles of glnR and gpr in
peroxide resistance of M. smegmatis biofilms, we employed a
microfluidic-based growth model to visualize surviving cells in
peroxide exposed biofilms by confocal microscopy. To calibrate
the growth model we first determined the timing of activation
of GlnR by using a reporter strain of M. smegmatis, which

FIGURE 5 | Role of gpr in maintenance of redox homeostasis of
M. smegmatis. (A,B) Levels of oxidized (NADP) form of nicotinamide adenine
dinucleotide phosphate in biofilms of wild-type, 1gpr and the complemented
strains cultured in normal Sauton’s medium. (C) Ratio of NADPH to NADP
calculated from (A,B). Data represent mean of three biologically independent
experiments ∗, ∗∗, and ∗∗∗ indicate p (t-test) < 0.05, 0.01, and 0.001,
respectively.
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harbored constitutively expressing mCherry and Dendra-2 fused
to the promoter of Amt1 (MSMEG_2425). Expression of Dendra-
2 in biofilms could be visualized after 4 days of growth
in Sauton’s medium (Supplementary Figure S3). Subsequent
incubation led to bacterial growth in the flow channels, leading
to increased backflow pressure. We therefore used 4-day stage
of wild type biofilms for our analysis, although biofilms of
1glnR were cultured for an additional day to allow them to
achieve similar size as wild-type. Following peroxide exposure,
live cells in biofilms were probed by calcein AM, which
remains non-fluorescent until its passive diffusion to the cytosol
and hydrolysis by intracellular hydrolases produces fluorescent
calcein (Rego et al., 2017). Compared to wild-type biofilms, the
number of viable cells in peroxide exposed 1glnR biofilms was
significantly reduced (Figures 4A,B). The mutant phenotype

could be complemented by plasmid-borne expression of either
glnR from its native promoter or a constitutive expression of
gpr from the hsp60 promoter. We thus conclude that induced
expression of gpr upon activation of GlnR during maturation
of M. smegmatis biofilms directly contributes to their peroxide
resistance.

Physiological Role of gpr in Biofilm
Development
Nitrogen assimilation in majority of bacterial species occurs
at the expense of the redox currency, NADPH (van Heeswijk
et al., 2013), which serves as a co-factor for several enzymes,
including glutamate synthase, involved in synthesis of ammonia
and amino acids. Two subunits of NADPH-dependent glutamate

FIGURE 6 | Role of gpr in biofilm formation of M. smegmatis. (A) A top-down view of pellicle biofilms of the indicated strains after days of growth in detergent-free
Sauton’s medium and modified Sauton’s medium with half the normal nitrogen source (N1/2). In contrast to the wild type, which formed thick-textured biofilms in
both medium, 1amt1 and 1gpr mutants formed untextured biofilms in N1/2 Sauton’s medium, and the phenotype was partially rescued by nitrogen restoration in
normal Sauton’s medium. (B) Biomass of the pellicles described in (A) from three independent experiments. The order of columns in the plot corresponds to the
order in which the strains are indicated in (A). Data represent mean of three biologically independent experiments. ∗∗, ∗∗∗, and ∗∗∗∗ denote p < 0.01, 0.001, and
0.0001, respectively (t-test). (C) Planktonic growth of the indicated strains in N1/2 Sauton’s medium.
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synthase, encoded by MSMEG_3225 and MSMEG_3226, are
induced in biofilms by ∼30-fold (Yang et al., 2017), and their
induction is GlnR-dependent (Supplementary Table S4). This
suggests a greater demand of NADPH for nitrogen-starved
cells in biofilms. This is consistent with ∼5-fold increase
NADPH/NADP ratio after 3 h of incubation of wild-type cells
in N0-Sauton’s medium, relative to normal Sauton’s medium
(Supplementary Figure S4). The increase in the ratio appears
to be contributed by a modest decrease (<2-fold) in NADPH,
relative to NADP (∼7-fold), suggesting that NADPH is likely
regenerated from existing NADP by reductases induced in
nitrogen-starved cells. Regeneration of NADPH, as opposed to
new synthesis, is preferred perhaps due to lack of nutrients in

N0-Sauton’s medium. We therefore hypothesized that induction
of the putative reductases encoded by genes in gpr cluster
likely regenerate NADPH pool to meet the metabolic demand
of nitrogen-starved cells. Nitrogen-starved 1gpr mutant indeed
produced a lower NADPH/NADP ratio than wild-type and
complemented cells (Supplementary Figure S4). The decreased
ratio in the mutant was due to reciprocal change in NADP
and NADPH levels, consistent with the idea that existing
NADP are reduced to regenerate NADPH (Supplementary
Figure S4).

To test gpr-dependent redox homeostasis during biofilm
development, we first compared the NADPH and NADP
levels between planktonic and wild-type cells. Interestingly,

FIGURE 7 | Presence of gpr locus in a subset (shaded pink) of rapidly growing mycobacteria (RGMs), which are depicted in relationship to the other RGMs,
slow-growing non-tuberculous mycobacteria (NTMs), and Mycobacterium tuberculosis complex (MTC), based on their similarities in 16S rRNA sequences.
A member of NTM, Mycobacterium simiae, is an outlier. The phylogenetic tree was constructed by distance method using Rhodococcus opacus as an outgroup.
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the average NADPH/NADP ratio in biofilm cells of wild-
type increased by ∼18%, relative to its planktonic counterpart,
indicating that biofilm cells have a more reduced cytosolic
environment (Figure 5C). The increase in the ratio resulted from
a disproportionate increase in NADPH (∼34%), compared to
NADP, which was maintained at a steady level (Figures 5A,B).
This suggests increase in both new synthesis of NADP and
its reduction. This was in contrast to the scenario observed
in planktonic cells in N0-Sauton’s medium (Supplementary
Figure S4). Expectedly, the average NADPH/NADP ratio in
biofilms of 1gpr mutant declined by nearly 50%, relative
to wild-type, and the phenotype was substantially restored
in the complemented strain (Figures 5A–C). Decline in the
ratio in the mutant was due to accumulation of NADP, with
concomitant decrease in NADPH (Figures 5A–C). Together, we
infer that GlnR-dependent induction of gpr in a subpopulation
of biofilm cells that experience nitrogen starvation is critical for
maintenance of higher NADPH pool to meet their metabolic
demand.

A corollary to gpr-dependent redox homeostasis is that 1gpr
mutant has impaired ability to assimilate nitrogen that impacts
its growth in biofilms. Relative to wild-type, biofilm growth of
1gpr cells in normal Sauton’s medium was moderately retarded,
but the effect was more pronounced in nitrogen-depleted (N1/2)
Sauton’s medium, which has been shown to increase GlnR-
dependency of M. smegmatis in biofilms (Yang et al., 2017)
(Figures 6A,B). A mutant lacking a GlnR-dependent operon
(MSMEG_2425-27), which was previously shown to display
nitrogen-responsive biofilm defect (Yang et al., 2017), served as
a reference in our analysis of 1gpr phenotype (Figures 6A,B).
Phenotype of 1gpr could be complemented by plasmid-borne
expression of gpr (Figures 6A,B). The defect was specific to
biofilm culture, as no difference in planktonic growth of 1gpr
mutant was observed (Figure 6C).

Our preliminary attempts to identify specific gene(s) of gpr
that could complement 1gpr phenotype were unsuccessful (data
not shown), suggesting that interaction between multiple genes
of the cluster give rise to its function.

DISCUSSION

Mycobacteria express and utilize dedicated genes to build
stress resistant biofilms (Richards and Ojha, 2014), raising
a possibility that genetic programs involved in adaptation
of resident cells within the architecture, and those in stress
resistance overlap with each other. In this study, we provide
evidence supporting this hypothesis by demonstrating a causal
relationship between nitrogen-starvation response exhibited by
biofilm cells and emergence of peroxide resistance in these
cells. Peroxide resistance is likely a result of recalibration of
NADPH/NADP ratio, skewed toward a more reduced cytosolic
environment, to meet the increasing demand of NADPH for
nitrogen assimilation in starved cells. These cells likely reside
in interiors of biofilms, as suggested by localization of GlnR-
activated cells in these regions of biofilms (Supplementary Figure
S3). It is noteworthy that E. coli also acquire greater resistance

to peroxide upon exposure to nitrogen starvation (Jenkins et al.,
1988), although underlying mechanism remains unknown in this
species.

The contribution of gpr cluster in maintenance of NADPH
pool suggests specific function of encoded reductases in
the process, although identity of these enzymes and their
mechanisms remain open to further investigation. MSMEG_0572
appears to represent DsrE-family reductases, which are conserved
in a wide range of environmental species of bacteria. Moreover,
similar to MSMEG_0572, its orthologs in these species exhibit
a syntenic arrangement with respect to the remaining seven
genes of gpr cluster, suggesting that the entire cluster has
migrated across genomes during evolution. This also raises the
possibility that the cluster could function as a unit, rendering
a possible explanation to our inability in identifying individual
genes responsible for the phenotype associated with 1gpr strain.
Interestingly, one of the genes in the cluster, MSMEG_0567,
is homologous to selenophosphate synthetase, which is directly
involved in the synthesis of selenocysteine (Sec) (Turanov et al.,
2011). Sec in prokaryotes is incorporated in polypeptide by a
set of specialized accessory factors, which facilitate Sec-tRNA
to decode the UGA codon (Krol, 2002). The UGA codon in
mRNA decoded as Sec must have a downstream Sec insertion
sequence (SECIS), which forms a unique stem-loop structure
recognized by the accessory factors that recruit Sec-tRNA during
translation (Krol, 2002). Bioinformatics search using bSECIS
program (Zhang and Gladyshev, 2005) of all gpr ORFs identified
a SECIS element comprising of 39 bp downstream of UGA
codon of MSMEG_0571, suggesting that the codon in this ORF
is decoded as Sec, thereby giving rise to a selenoprotein. The
resulting selenoprotein is extended by 518 amino acids (aa)
to terminate at the originally annotated stop codon (UAG) of
MSMEG_0569 (Supplementary Figure S5). BLAST search of thus
encoded 818aa long selenoprotein encompassing MSMEG_0567
to MSMEG_0569 reveals a conserved nitrilase-like domain in
the N-terminal region and a flavin-dependent oxidoreductase
domain in the C-terminal region (Supplementary Figure S5).
This domain architecture is consistent with the fact that majority
of the selenopoteins known so far are oxidoreductase (Hatfield
et al., 2014), supporting the function of gpr cluster in redox
homeostasis. The gpr cluster also includes a putative aliphatic
amidase (MSMEG_0566), which could directly contribute to
nitrogen assimilation.

A homology search for gpr cluster in 29 mycobacterial
species reveals its presence in only a few members, which
are evolutionarily linked based on 16S rRNA phylogeny
(Figure 7). Most of these species are classified as rapidly growing
mycobacteria (RGM) (Runyon, 1959). Interestingly, gpr is absent
in a clinically important RGM, M. abscessus, suggesting that
its transfer to RGM from a common ancestor is a relatively
recent evolutionary event. Moreover, evidence of horizontal gene
transfer is supported by the presence of gpr in the only slow-
growing non-tuberculosis mycobacteria, M. simiae (Figure 7).
Presence of gpr in M. mucogenicum, M. goodii, and M. simiae,
which are emerging pathogens in nosocomial infections (van
Ingen et al., 2008; Adekambi, 2009; Parikh and Grant, 2017; Salas
and Klein, 2017), raises clinical significance of our findings and
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possibly offers insight into resistance of these species to peroxide-
mediated sterilization of surgical and medical equipment.

Lack of gpr in a majority of mycobacteria suggests a different
mechanism of GlnR-dependent nitrogen assimilation in these
species, consistent with the differences between GlnR activities
in M. smegmatis and M. tuberculosis as described previously
(Williams et al., 2015). Further understanding of molecular
underpinnings of these differences is likely to identify a role of
GlnR in biofilm development and associated stress tolerance in
these species.
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