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Effects of diabetes mellitus complicated 
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Abstract 

Background:  Type 2 diabetes mellitus (T2DM) affects the occurrence and prognosis of acute ischemic stroke (AIS). 
However, the impact of diabetes on thrombus characteristics is unclear. The relationship between the composition 
and ultrastructure of clots and DM with admission hyperglycemia was investigated.

Methods:  Consecutive patients with AIS who underwent endovascular thrombus retrieval between June 2017 and 
May 2021 were recruited. The thrombus composition and ultrastructure were evaluated using Martius scarlet blue 
stain and scanning electron microscopy. Clot perviousness was evaluated via thrombus attenuation increase on com-
puted tomography angiography (CTA) versus non-contrast CT. Patients with admission hyperglycemia DM (ahDM) 
and those without DM (nonDM) were compared in terms of thrombus composition, ultrastructure, and perviousness.

Results:  On admission, higher NIHSS scores (17 vs. 12, respectively, p = 0.015) was evident in ahDM patients. After 
the 90-day follow-up, the rates of excellent outcomes (mRS 0–1) were lower in patients with ahDM (16.6%, p = 0.038), 
but functional independence (mRS 0–2) and handicapped (mRS 3–5) were comparable between patients with ahDM 
and nonDM. The outcome of mortality was higher in patients with ahDM (33.3%, p = 0.046) than in nonDM patients. 
Clots in patients with ahDM had more fibrin (39.4% vs. 25.0%, respectively, p = 0.007), fewer erythrocyte components 
(21.2% vs. 41.5%, respectively, p = 0.043), equivalent platelet fraction (27.7% vs. 24.6%, respectively, p = 0.587), and 
higher WBC counts (4.6% vs. 3.3%, respectively, p = 0.004) than in nonDM patients. The percentage of polyhedral 
erythrocytes in thrombi was significantly higher in ahDM patients than in nonDM patients (68.9% vs. 45.6%, respec-
tively, p = 0.007). The proportion of pervious clots was higher in patients nonDM than in patients with ahDM (82.61% 
vs. 40%, respectively, p = 0.026).
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Background
Acute ischemic stroke (AIS) is the most common cause 
of mortality and long-term disability worldwide [1]. The 
risk of AIS is more than two-fold higher and more severe 
in patients with type 2 diabetes mellitus (T2DM) [2]. It 
is associated with poorer functional outcomes and higher 
mortality risk [3]. About 40 to 60% of patients with AIS 
present with admission hyperglycemia either due to acute 
stress response or diabetes [4]. In both diabetics and 
non-diabetics AIS patients, hyperglycemia at the time of 
admission has been associated with negative outcomes 
[5]. It is related to the stress response of AIS patients as a 
result of excessive secretion of steroid hormones, adrena-
line, glucagon and free fatty acids [6]. Furthermore, dia-
betes mellitus and acute hyperglycemia could enhance 
oxidative stress and inflammation response, impair cer-
ebrovascular reactivity in the microvasculature, provoke 
a prothrombotic state, and cause cerebral injury [7].

The development of mechanical thrombectomy (MT) 
has enabled investigations of the composition and struc-
ture of human cerebral thrombi [8]. Cerebral thrombi 
consist of four major components: red blood cells (RBCs), 
fibrin, platelets, and white blood cells (WBCs) [9]. The 
evaluation of retrieved clots from patients with AIS may 
improve our knowledge of stroke pathology and predict 
treatment response. RBC-rich thrombus might be easier 
to recanalize in patients with AIS, while fibrin-rich clots 
are more refractory [10]. The detailed examination of the 
thrombi can help determine the effectiveness of various 
treatment approaches for patient selection.

Depending on the clot ultrastructure, most cerebral 
clots undergo intravital thrombus contraction (retrac-
tion), which may be clinically significant. In blood clots, 
activated platelets produce contractile forces transferred 
via the fibrin network [11], creating a platelet-fibrin 
meshwork that accumulates at the periphery of the clots 
and compresses RBCs into the center of the clot [12]. 
RBCs are one of the most abundant components of cere-
bral thrombi. Clot contraction leads to a reduction in the 
thrombus volume and deformation of the RBCs, includ-
ing polyhedrocytes and polyhedral RBCs, which com-
prise the majority of RBCs. Polyhedrocytes provide an 
impermeable seal because of minimal interstitial space, 
promoting fibrinolysis resistance [12, 13]. Much research 
has shown the hyper-reactivity of platelets from diabetic 

patients, as evidenced by increased fibrinogen bind-
ing and enhanced aggregation [14]. In addition, acute 
hyperglycemia in T2DM can promote further platelet 
activation [15]. However, the effects of ahDM on forces 
generated by clot contraction on RBCs have not been 
investigated.

Although the negative effects of T2DM on cerebro-
vascular reactivity and reperfusion damage are well 
established, the effects of DM on the composition and 
ultrastructure of thrombi in AIS remain unclear. A pre-
vious study showed that clots in patients with DM had 
more fibrin and fewer RBC components than in nonDM 
patients, while hyperglycemia on admission did not 
show an association with clot composition [16]. The pre-
sent study aimed to evaluate the association between 
ahDM and the composition and ultrastructure of clots in 
patients with AIS.

Materials and methods
Consecutive patients with AIS who underwent MT 
at Beijing Hospital between June 2017 and May 2021 
were enrolled. Inclusion criteria were as follows: (1) AIS 
caused by an occlusive intracranial clot (both anterior 
and posterior circulation); (2) availability of data about 
preoperative computed tomography (CT) (non-com-
puted CT [NCCT] and CT angiography [CTA]) evalu-
ation; and (3) suitable clots retrieved from patients who 
had undergone MT for histopathological and ultrastruc-
tural analysis. Diabetes mellitus complicated by admis-
sion hyperglycemia (ahDM) was defined as a history 
of physician-diagnosed T2DM with a plasma glucose 
level > 7.80 mmol/L in a random state when admitted to 
hospital caused by AIS [17]. Non-DM AIS patients were 
defined as patients without DM and with normal plasma 
glucose (≤ 7.80 mmol/L) on admission. All study partici-
pants provided informed consent. The Beijing Hospital 
Ethics Committee (2019BJYYEC-130-01) approved this 
study as it met national and international guidelines for 
research on humans.

Clinical data collection and assessment
Demographic features (age and sex), medical history 
(hypertension, dyslipidemia, glycemia on admission, 
smoking history, atrial fibrillation, coronary artery dis-
ease, and stroke or transient cerebral ischemia), clinical 

Conclusion:  Patients with ahDM presented with greater stroke severity on admission and poorer functional out-
comes after 3 months. Clots in patients with ahDM had more fibrin, leucocytes, and fewer erythrocyte components 
than in patients nonDM. The content of polyhedral erythrocytes and impervious clots proportion were significantly 
higher in thrombi of patients with AIS and ahDM. Further research is required to validate these findings.
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and laboratory data, anticoagulant and/or antiplatelet 
use, thrombus location (the first segment of the middle 
cerebral artery [M1], second segment of the middle cer-
ebral artery [M2], anterior cerebral artery [ACA], ter-
minal internal carotid artery [ICA], and basilar artery 
[BA]), and procedural characteristics were recorded for 
analysis. Stroke severity was assessed using the National 
Institutes of Health Stroke Scale (NIHSS) score. Causes 
of stroke were classified using the Trial of ORG 10172 
in Acute Stroke Treatment criteria [18]. Procedural and 
clinical outcomes were MT strategy (contact aspira-
tion [CA], stent retriever [SR], and combination tech-
niques), the number of maneuvers, and revascularization 
outcomes including complete reperfusion [eTICI2c-3] 
after completion of the procedure [19]. Outcomes were 
assessed 3 months post-MT using the modified Rankin 
scale (mRS) score obtained by outpatient or telephonic 
follow-up. Clinical outcomes were divided into excel-
lent outcome (mRS 0–1), functional independence (mRS 
0–2), handicapped (mRS 3–5), and mortality (mRS 6).

Histological staining
The retrieved thrombi were immediately washed with 
phosphate-buffered saline for several minutes and fixed 
in a fixation buffer. The samples were sectioned longitudi-
nally to observe the overall condition of the thrombi. The 
clots were embedded in paraffin, cut in 4 mm sections, 
and stained using Martius scarlet blue (MSB). Based on 
the MSB staining results, the proportion of each compo-
nent (fibrin, RBCs, WBCs, and platelets) was quantified 
using Orbit Imaging Analysis machine-learning software 
(www.​Orbit.​bio, Idorsia Ltd.) [20].

Scanning electron microscopy
Longitudinally sectioned clots were serially dehydrated 
in an ethanol gradient (10 min each in 50, 70, 95, and 
100% ethanol). The samples were subsequently dried in 
carbon dioxide, fixed to a colloidal carbon stubble, and 
sputtered onto the surface using a sputtering device. The 
samples collected were inspected using a scanning elec-
tron microscope (SEM; JEOL 7500) at the University of 
Peking’s medical department. At least five images were 
analyzed for each thrombus. Images were obtained in 
randomly selected areas between the edge and center of 
the thrombus. Quantitative assessment of the RBCs of 
the thrombi was performed manually using the Image J 
software (Bethesda, MD, USA), as previously described 
[21]. A grid (4 μm × 4 μm) was briefly overlaid on the 
scanning electron images. Each grid square is approxi-
mately the size of a cellular structure. A grid square usu-
ally contains either the whole structure or a part of it. 
The number of complete or partial squares (4 μm × 4 μm) 
occupied by each structural component, if there were 

multiple structural components, was computed for 
the whole sample based on all images. The number of 
squares occupied by each structural component was 
added and then divided by the total number of squares 
analyzed for all structural components within the sample 
to obtain the fraction of the area occupied by each struc-
tural component.

Measurement of imaging parameters
A 320 × 0.5 mm detector row CT scanner (Aquilion 
ONE, Canon Medical Systems) was used for imaging 
evaluation on admission. All patients underwent NCCT 
and CTA. Based on NCCT and related CTA images, 
the increase in thrombus attenuation in the regions of 
interest within each clot was evaluated to determine the 
degree of clot permeability. The mean Hounsfield unit 
(HU) values of the thrombus on NCCT and CTA were 
recorded as HUCT and HUCTA​, respectively. The absolute 
clot perviousness (δHU) was calculated as δHU = HUCTA​
-HUCT. Pervious clots were defined as δHU ≥ 10 HU, 
whereas impervious clots were defined as δHU < 10 HU.

Statistical analysis
Variations in baseline characteristics, procedural results, 
and clinical outcomes were examined between patients 
with ahDM and nonDM. The normality of continuous 
variables was assessed using the Kolmogorov-Smirnov 
test. Normally distributed variables were expressed as 
mean ± standard deviation, and differences were ana-
lyzed using the Student’s t-test. Non-normally distrib-
uted variables were expressed as median (interquartile 
range [IQR]), and differences were analyzed using the 
Mann-Whitney U test. Categorical variables were pre-
sented as counts (percentages), and differences were 
analyzed using the Fishers exact test. The significance 
threshold for all tests was set at p < 0.05. GraphPad Prism 
8 software was used for all statistical analyses.

Results
Baseline characteristics
A total of 55 patients (age, 76 (IQR 62–85) years; 38 men) 
were included, and 30 were diagnosed with DM and 
admission hyperglycemia. The clinical and laboratory 
characteristics of the patients are presented in Table  1. 
Patients diagnosed with ahDM had higher serum glu-
cose on admission (12.9 vs. 5.5%, respectively, p < 0.001) 
and more severe stroke (NIHSS score, 17 [IQR, 9–24], 
p  = 0.015) than nonDM patients. Other comorbidi-
ties were comparable between patients with and with-
out ahDM. Stroke etiology was as follows: large artery 
atherosclerosis (15, 27.2%), cardiogenic embolism (34, 
61.8%), cryptogenic stroke (3, 5.45%), and other (3, 5.45%). 
Thrombus location was in the ICA in 18 (32.7%), M1 in 
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18 (32.7%), M2 in 9 (16.3%), ACA in 2 (3.6%), and BA in 
8 (14.5%) patients respectively. No significant differences 
were observed in thrombus location between patient 
groups (p  > 0.05). Preoperative use of anticoagulants 
and antiplatelets was noted in 9 (16.4%) and 29 (52.7%) 
patients, respectively. No significant differences were 
observed in the laboratory evaluation of coagulation func-
tion (including APTT, PT, fibrinogen, INR, and D-dimer) 
on admission between patients with ahDM and nonDM.

Procedural and clinical outcomes
Table 2 illustrates the differences in procedural and clini-
cal results between patients with ahDM and nonDM. 

Treatment strategies were classified as SR (16, 29.1%), 
CA (21, 38.2%), and Solumbra (30, 54.5%). The median 
number of thrombectomy maneuvers was 2 (IQR, 1–3). 
After conclusion of the procedure, 22 (73.3%) patients 
with ahDM and 21 (84.0%) patients with nonDM under-
went eTICI2c-3 recanalization. At the 90-day follow-up, 
16 (29.1%) patients achieved excellent outcomes (mRS 
0–1). The proportion of excellent outcomes was lower 
in patients with ahDM than in nonDM patients (16.6% 
vs. 44%, respectively, p  = 0.038). Although 23 (41.8%) 
achieved functional independence (mRS 0–2) and 20 
(36.4%) achieved handicapped outcomes, no signifi-
cant difference was observed in the rates of functional 

Table 1  Baseline characteristics of ahDM and nonDM patients

Notes: Results are presented as median (IQR), number (percentage), or mean ± SD

Abbreviations: TIA transient ischemic attack, NIHSS National Institutes of Health Stroke Scale, APTT activated partial thromboplastin time, PT prothrombin time, INR 
international normalized ratio, CE cardiogenic embolism, LAA large artery atherosclerosis

All patients
N = 55

ahDM
n = 30

non-DM
n = 25

p

Demographics
  Age, y 76 (62–85) 76 (60–84) 72 (61.5–82.5) 0.818

  Sex, male 38 (64.4%) 19 (63.3) 18 (72) 0.571

Comorbidities
  Atrial fibrillation 30 (54.5%) 16 (53.3) 14 (56) 0.99

  Hypertension 40 (72.7%) 21 (70) 19 (76) 0.763

  Dyslipidemia 31 (56.4%) 20 (66.6) 11 (44) 0.11

  Stroke or TIA history 24 (43.6%) 13 (43.3) 11 (44) 0.99

  Smoking history 30 (54.5%) 15 (50) 15 (60) 0.588

  Coronary artery disease 25 (45.5%) 16 (53.3) 9 (36) 0.278

  NIHSS 15 (9–20) 17 (9–24) 12 (6.5–16) 0.015

  Serum glucose 8.2 (5.6–13.3) 12.9 (9.6–16.15) 5.5 (5.2–6.6) < 0.001

Medication
  Anticoagulant use 9 (16.4%) 5 (16.7) 4 (16) 0.99

  Antiplatelet use 29 (52.7%) 16 (53.3) 13 (52) 0.99

Laboratory evaluation
  APTT (s) 33.01 ± 4.54 32.64 ± 4.63 33.4 ± 4.41 0.541

  PT (s) 11.2 (10.68–12) 11.1 (10.48–11.38) 11.4 (10.8–12.2) 0.209

  Fibrinogen (g/L) 3.13 (2.58–3.49) 3.08 (2.57–3.55) 3.15 (2.71–3.45) 0.615

  INR 0.97 (0.93–1.04) 0.97 (0.91–1.0) 0.99 (0.94–1.06) 0.234

  D-dimer (ng/mL) 239.5 (153.8–621.5) 231 (161.8–519.8) 369 (137.0–653.5) 0.227

Stroke etiology 0.94

  CE 34 (61.8) 18 (60) 16 (64)

  LAA 15 (27.2) 8 (26.6) 7 (28)

  Other determined 3 (5.45) 2 (6.7) 1 (4)

  Cryptogenic 3 (5.45) 2 (6.7) 1 (4)

Thrombus location 0.623

  ICA 18 (32.7) 10 (33.3) 8 (26.6)

  M1 18 (32.7) 8 (26.2) 10 (33.3)

  M2 9 (16.3) 5 (16.7) 4 (16)

  ACA​ 2 (3.6) 2 (6.6) 0 (0)

  BA 8 (14.5) 5 (16.6) 3 (12)
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independence and handicapped outcomes between the 
two groups. The mortality outcomes were significantly 
different between patients with ahDM and nonDM (33.3 
and 8%, respectively; p = 0.046).

Histological composition
Based on RBC contents, the gross pathology of the 
retrieved thrombi was divided into three categories: 
pinkish, red, and dark red (Fig. 1A-C). MSB staining was 
used to characterize clot composition. Representative 
clot images in Fig.  1D and E illustrate a fibrin-rich clot 
in a patient with ahDM and an RBC-rich clot in a patient 
with nonDM. Analyses were performed on 48 of the 55 
thrombi collected. Seven thrombi were not analyzed 
because of failed MSB staining. Assessment of the clot 
using MSB staining revealed heterogeneous composition 
of major clot components in the patient cohort (Fig. 1F). 
Compared with those in patients with nonDM, thrombi 
in patients with ahDM had more fibrin (25.0% vs. 39.4%, 
respectively, p  = 0.007), fewer RBCs (41.5% vs. 21.2%, 
respectively, p = 0.043), and equivalent platelet content 
(24.6% vs. 27.7%, respectively, p = 0.587). Although the 
WBC content of clots was minimal, significant differ-
ences were observed between patients with ahDM and 

with nonDM (4.6% vs. 3.3%, respectively, p  = 0.004) 
(Fig. 1G).

SEM of RBCs
RBC surfaces were examined using SEM. Biconcave cells 
either had a distinct concave structure or a side view of 
the circular portion of the biconcave cells. Contracted 
blood clots developed a notable structure, polyhedro-
cytes exhibited clearly defined polygonal faces, and the 
type of polygon was distinguishable (Fig. 2A). Thrombi in 
nonDM patients exhibited normal biconcave RBC mor-
phologies, and RBCs were scattered in a disordered man-
ner among the fibrin (Fig. 2B, C). In thrombi of patients 
with ahDM, RBC morphologies lacked double concave 
discs and adopted compressed polyhedral morphologies 
(Fig. 2D, E). The proportion of polyhedrocytes was higher 
in patients with ahDM than in nonDM patients (Fig. 2F, 
68.9% vs. 45.6%, respectively, p = 0.007).

Clot permeability
Clot perviousness (or permeability) is a key imaging 
marker that is typically evaluated as an increase in HU 
values on CTA relative to those on NCCT. We com-
pared clot permeability-based CT and CTA (Fig.  3a-d) 
between patients with AIS, ahDM and nonDM. Further, 
we determined the pervious nature of the clots by cal-
culating the thrombus attenuation increase (δHU). δHU 
was significantly lower in clots of patients with ahDM 
than in nonDM patients (Fig. 3e, 8 (IQR, 6–2), p = 0.037). 
About dichotomous variables, patients with ahDM had a 
lower proportion of pervious clots (δHU ≥ 10 HU) than 
nonDM patients (40% vs. 82.61%, respectively, p = 0.026).

Discussion
Analysis of the clinical characteristics and thrombi of 55 
patients with AIS revealed that ahDM affected ischemic 
stroke severity and was associated with poorer functional 
outcomes. Clots of patients with ahDM had more fibrin, 
fewer RBCs, higher WBC counts, and an equivalent frac-
tion of platelets compared to nonDM patients. Addition-
ally, the proportion of polyhedrocytes in clots was higher, 
and that of pervious clots was lower in patients with 
ahDM than in patients without DM.

In the study, patients with ahDM presented with 
severe ischemic stroke. Patients with ahDM had poorer 

Table 2  Procedural and clinical outcomes of ahDM and nonDM 
patients

Notes: Results are presented as number (percentage) or median (IQR)

Abbreviations: CA contact aspiration, SR stent retriever, Solumbra, combination 
of stent retriever and aspiration

All patients
(N = 55)

ahDM
(n = 30)

nonDM
(n = 25)

p

Strategy 0.603

  Stent retriever 16 (29.1) 11 (36.7) 5 (20)

  Contact aspiration 21 (38.2) 11 (36.7) 10 (40)

  Solumbra 30 (54.5) 18 (60) 12 (48)

  Number of maneuvers 2 (1–3) 2 (1–2.25) 2 (1.25–3) 0.422

  eTICI2c-3 43 (78.2) 22 (73.3) 21 (84) 0.514

Clinical outcomes
  Excellent outcome 16 (29.1) 5 (16.6) 11 (44) 0.038

  Functional independ-
ence

23 (41.8) 9 (30) 14 (56) 0.061

  Handicapped 20 (36.4) 11 (36.7) 9 (36) 0.99

  Mortality 12 (21.8) 10 (33.3) 2 (8) 0.046

Fig. 1  The appearance and composition of clots. Macroscopic images of typical retrieved clots classified into pinkish (A), red (B), and dark red (C). 
Representative clots from patients with ahDM (D) and nonDM (E) were stained using MSB to visualize the RBCs (yellow), fibrin (dark pink to red), 
WBCs (blue), and platelets (gray). Scale bar (MSB) = 200 μm. F Representation of the histological clot composition of each patient in the cohort as 
determined by MSB staining. G Violin plots display the differences in clot composition (RBCs, fibrin, platelets, and WBCs) according to ahDM history 
of DM or absence of DM on admission. ahDM, admission hyperglycemia diabetes mellitus; MSB, Martius scarlet blue; RBC, red blood cell; WBC, white 
blood cell

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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functional outcomes and higher 90-day mortality rates 
than nonDM patients. Previous studies have compared 
stroke severity between patients with T2DM and with-
out T2DM, but conflicting results have been reported 
[22–25]. One study reported that stroke was more severe 

in patients with T2DM, which is consistent with our 
findings [22]. Furthermore, T2DM has been reported to 
independently predict more unfavorable functional out-
comes at hospital discharge, whereby AIS patients with 
diabetes exhibit a three-fold higher mortality rate than 

Fig. 2  Analyses of structures of thrombi. A Selected colored portions of SEM images of thrombi illustrating the types of blood cells analyzed 
in this study: biconcave RBCs or predominantly biconcave intermediate-shaped RBCs (red); predominantly polyhedral intermediate-shaped 
RBCs or polyhedral compressed RBCs (polyhedrocytes) (purple); platelets (yellow); fibrin (green). Representative SEM visualization of thrombi 
ultrastructure in patients without DM (B, C) and patients with ahDM (D, E). Scale bar (SEM) = 10 μm (B, D); 1 μm (C, E). F Comparison of polyhedral 
RBC (polyhedrocytes) content in patients with ahDM and without DM. ahDM, admission hyperglycemia diabetes mellitus; SEM, scanning electron 
microscopy; RBC, red blood cell

Fig. 3  Clot perviousness measurement. Clot permeability was assessed using CT and CTA. Acquired non-contrast CT (A) and CTA (B) images of a 
representative patient without DM, and digitally zoomed (C, D) representative images of a patient with ahDM depict an occlusive clot in the M1 
segment. Regions of interest of the clot assessed on non-contrast CT (A, C) and CTA (B, D). E δHU was significantly lower in patients with ahDM 
than in patients without DM. CT, computed tomography; CTA, computed tomography angiography; ahDM, admission hyperglycemia diabetes 
mellitus; δHU, Absolute thrombus perviousness; M1, first segment of the middle cerebral artery
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patients without diabetes [26]. However, other studies 
have reported no association between T2DM and stroke 
severity or that patients with T2DM have a mild stroke 
on hospital admission [23–25]. Similarly, a previous study 
did not identify a significant difference in stroke severity 
between patients with T2DM and without T2DM [16]. 
Additionally, admission hyperglycemia of acute ischemic 
stroke causes increased ischemic injury via endothelial 
dysfunction, oxidative stress, and impaired fibrinoly-
sis [27]. The patients with T2DM included in this study 
had admission hyperglycemia, partly explaining the 
discrepancy.

This study demonstrated that clots in patients with 
AIS and ahDM had fewer RBCs, more fibrin, equivalent 
platelets, and higher WBC counts than those with AIS 
and nonDM. Diabetes is characterized by hyperglycemia 
and insulin resistance, enhanced oxidative stress, inflam-
matory responses, activation of coagulation and plate-
lets, and endothelial cell dysfunction. Hyperglycemia and 
insulin resistance can lead to elevated expression and 
secretion of plasminogen activator inhibitor-1 (PAI-1) 
[28]. PAI-1 inhibits fibrinolysis in thrombi predominantly 
by inhibiting plasminogen activator, which promotes 
fibrin degradation in thrombi. Moreover, glycosylated 
plasminogen in diabetes directly affects fibrinolysis by 
reducing plasmin generation and impairing functional 
protein activity, resulting in impaired fibrinolysis [29]. 
Increased plasma PAI-1 and glycation of plasminogen 
may be a potential mechanism underlying elevated fibrin 
content in the thrombi of patients with ahDM.

This study showed that platelet fraction was compa-
rable between patients with and without DM and may 
be related to the effect of diabetes on platelets, which is 
centered on platelet activity [30]. P-selectin and GPIb/
CD41 levels are elevated in patients with DM, indicative 
of platelet activation [31]. Patients with DM who expe-
rience myocardial infarction exhibit increased thrombin 
production and platelet activation [32]. Further, patients 
with diabetes are characterized by accelerated plate-
let consumption/production and a resultant increase 
in immature platelets [33]. Results demonstrated that 
WBC counts were higher in patients with ahDM than in 
nonDM patients. It is associated with stimulating oxida-
tive stress and inflammation caused by ahDM. WBCs 
and platelets from patients with diabetes have been 
reported to be hyperreactive and express more adhesion 
molecules [34]. Additionally, activated platelets induce 
increased formation of circulating platelet-leukocyte 
aggregates [35].

The history of ahDM may provide clues regarding 
thrombus composition and facilitate decision-making 
to develop strategies for MT. A previous study reported 
that thrombolysis was less effective in thrombi with a 

high fibrin content than RBC-rich thrombi. In contrast, 
thrombi with a high RBC count were associated with 
successful reperfusion [36]. RBC-rich clots are easier to 
recanalize, whereas fibrin-rich clots are more difficult to 
recanalize in patients with AIS [10]. Thrombi have higher 
fibrin content, which increases friction with the vessel 
wall and makes it more difficult to remove the clot [37]. 
Therefore, recanalization of thrombi may be more diffi-
cult in patients with ahDM. However, we did not observe 
differences in revascularization outcomes between 
patients with ahDM and nonDM due to limited sample 
size and the need for MT equipment and techniques 
improvements.

Polyhedrocytes cells result from the tightening of 
blood clots driven by platelet contraction accompanied 
by compaction of RBCs, gradually changing their shape 
from biconcave to polyhedral [12]. Platelet activation is 
necessary for clot contraction [38]. It requires platelet 
cytoskeletal motility proteins and fibrin as the substrate 
for the contraction of bridging platelets to generate the 
necessary forces to segregate platelets/fibrin from RBCs 
and compress these cells into a tightly packed array [12]. 
Activated platelets may underpin the higher polyhedro-
cyte content in clots among patients with AIS with a his-
tory of ahDM.

Clot permeability (also referred to as perviousness) is 
the degree to which blood can flow through clot struc-
tures. Clot perviousness is considered a key predictor of 
treatment responsiveness. When treated with intrave-
nous thrombolysis [39] and mechanical thrombectomy 
[40], pervious clots are correlated with better recanali-
zation outcomes. Further, thrombus perviousness cor-
relates with histologic composition. A recent study by 
Benson et al. using MSB staining to differentiate platelets 
from fibrin revealed a higher RBC component and lower 
fibrin fraction in pervious thrombi than in impervious 
clots [41]. This study demonstrated that clots in patients 
with AIS and ahDM were less permeable and had more 
fibrin and fewer RBC components, consistent with Ben-
son et  al. The characteristics of activated platelets and 
polyhedrocytes in patients with ahDM permit minimiza-
tion of the space between cells, resulting in more com-
pact and stable clots, and less deformable and permeable. 
A previous study demonstrated that the objective of clot 
contraction was to produce a good hemostatic seal and 
restore blood flow [42]. In contrast, this thrombus char-
acteristic can negatively affect patients with AIS. Rela-
tively porous clots may allow residual arterial flow and 
retain a degree of oxygenation to downstream tissues 
[43]. Here, clot contraction may have adverse effects, 
such as affecting local blood flow and thrombotic per-
meability of fibrinolytic enzymes, thereby reducing the 
internal fibrinolysis rate.
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This study has several limitations. Laboratory evalu-
ations of hemoglobin A1c and oral glucose tests were 
not performed. The absence of HbA1c could put some 
patients in another group. Further, information on 
medications used by patients with diabetes for blood 
glucose control was not collected in detail. In this 
regard, insulin sensitizers (such as pioglitazone and 
metformin) may help to reduce PAI-1 levels or plate-
let activity by improving insulin sensitivity. In addition, 
patients with undiagnosed T2DM may have been classi-
fied as non-DM patients, resulting in selection bias. The 
patients already spontaneously (or through thromboly-
sis) recanalized were excluded from the study, limiting 
the patient’s collective and strength of conclusions.

Conclusion
In conclusion, we demonstrated the effects of ahDM on 
thrombus composition and contraction-induced RBC 
deformation. Ischemic stroke severity was affected by ahDM 
and was associated with poorer functional outcomes. Fur-
ther, ahDM affected the composition and ultrastructure of 
clots, and clots from patients with AIS and ahDM exhibited 
impervious characteristics. Knowledge of the composition 
and contraction of cerebral thrombi may help improve and 
predict the effectiveness of thrombectomy or thrombolytic 
recanalization of occluded vessels and facilitate the develop-
ment of novel treatment approaches.
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