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Abstract: This mini-review summarizes the most recent progress concerning the use of surface-
enhanced Raman spectroscopy (SERS) for the detection and characterization of antibiotic-resistant
bacteria. We first discussed the design and synthesis of various types of nanomaterials that can be
used as the SERS-active substrates for biosensing trace levels of antibiotic-resistant bacteria. We then
reviewed the tandem-SERS strategy of integrating a separation element/platform with SERS sensing
to achieve the detection of antibiotic-resistant bacteria in the environmental, agri-food, and clinical
samples. Finally, we demonstrated the application of using SERS to investigate bacterial antibiotic
resistance and susceptibility as well as the working mechanism of antibiotics based on spectral
fingerprinting of the whole cells.
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1. Introduction

Detection of pathogenic and spoilage bacteria is still a major concern to clinical, agri-food,
and environmental agencies and laboratories [1]. The leading challenge is the detection speed [1]. Since
the contamination level of bacteria may be relatively low and the sample matrices can significantly
influence accurate and reproducible detection, extensive sample preparation steps are always required
to separate the targeted bacteria from the sample matrices along with pre-enrichment [2,3]. Because
the detection includes all the times starting from obtaining the samples to the signal readout, both
separation and bacterial enrichment account for most of the times for bacterial detection rather than
the final real detection using an instrument or a sensor [4]. For example, the conventional plating
assay will take several days to confirm the growth of the targeted bacterial colony [5]. In comparison,
molecular-based detection methods, such as polymerase chain reaction (PCR), requires relatively less
time than the plating assay but still cannot fully avoid separation and bacterial pre-enrichment [6].
Recently, matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) spectrometry has
attracted considerable interest for the rapid identification of pathogens by profiling bacterial proteins
from the whole cells [7]. However, this method is not suitable for characterizing a mixed sample [8]
and still requires the priori cultivation and sample preparation procedure [9]. An alternative method
is surface-enhanced Raman spectroscopy (SERS), an advanced Raman spectroscopic technique that
enhances the vibrational modes of molecules adsorbed on or in the vicinity to the surface of metal
nanoparticles. SERS provides rapid, ultra-sensitive and accurate detection with minimum requirement
for sample handling and preparation.
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Antibiotic resistance of pathogenic bacteria is still a leading concern to clinics as well as agri-food
and veterinary medicine [10]. The key battle is to perform an accurate diagnosis of the pattern of
bacterial antibiotic resistance in an early manner. Otherwise, only the broad-spectrum antibiotics
can be used to treat this type of bacterial infections [11]. As aforementioned, the conventional
microbiological testing, such as the determination of minimum inhibitory concentration (MIC)
using the broth microdilution method, is highly time-consuming. Besides, PCR-based testing of
the targeted antibiotic-resistant genes requires highly trained personnel and has a potential risk
of cross contamination [12,13]. Another major limitation of this approach is that the presence of
the resistance genes may not necessarily confer to the clinically relevant phenotypic resistance of
bacteria [14]. Microarray offers the ability to detect a broad range of resistance genes present in the
bacterial isolates with high sensitivity and specificity. However, similar to the PCR-based method,
results obtained from microarrays may not always correlate to the phenotypic resistance [14]. Although
MALDI-TOF mass spectroscopy can potentially differentiate the resistant and susceptible isolates
based on the spectral features [7], it requires additional chemicals as the matrix for the performance of
MALDI [14]. Alternative technology that can detect and characterize bacterial antibiotic resistance is
therefore highly required. SERS is a powerful biochemical fingerprinting technique as it can accurately
reflect the macromolecular profiles and changes that occur within the bacterial cells due to the action
of the antibiotics [15].

In this mini-review paper, we will evaluate the use of SERS coupled with chemometrics as
a tool to detect the trace level of antibiotic-resistant bacteria and characterize the mechanism of
bacterial antibiotic resistance in an ultra-fast manner. The recent progress in this research area
will be summarized and discussed mainly focusing on the following three perspectives: (1) the
nanomaterials that can be used as the SERS substrates for sensing a low concentration of bacterial
cells; (2) tandem-SERS technology to detect antibiotic-resistant bacteria in a sample matrix; and (3)
characterizing the mechanism of bacterial antibiotic resistance and susceptibility using SERS
and chemometrics.

2. Surface-Enhanced Raman Spectroscopy (SERS) for Sensing Trace Level of Bacteria

2.1. Mechanism of SERS

SERS is a derivative of Raman spectroscopy with the aid of nanomaterials. Numerous research
studies have been conducted during the past four decades about using SERS for trace detection
of the targeted analytes [16–23]. Different from the conventional Raman spectroscopic technology,
SERS signal can be significantly enhanced due to both electromagnetic enhancement and chemical
enhancement, with the former being the dominant contributor [24]. Electromagnetic enhancement is
generated from the localized surface plasmon resonance (LSPR) in the vicinity of the nanostructured
surface of noble metals, such as silver and gold [25,26]. Highly localized regions of amplified
electromagnetic fields caused by LSPR are called “hot spots”, which usually occurs in the gaps, crevices,
or sharp vertices of supporting plasmonic materials (Figure 1a). In comparison, chemical enhancement
is due to the electron transfer between the analyte molecule and the surface of the nanostructure when
the energy of the incident light matches the electron transfer energy (Figure 1b) [27]. This will lead
to the change of molecular polarization and subsequently enhance the Raman signal approximately
100 times. Theoretically, total SERS enhancement factors may approach to ~1014 depending on the
nanomaterials used. For additional details, the authors are encouraged to refer to serial publications
from the Van Duyne research group [27–30].
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Figure 1. Two mechanisms contributed to surface-enhanced Raman spectroscopy (SERS). (a) 
Electromagnetic enhancement of SERS-active silver nanoparticles. SERS “hot-spot” is generated in 
the gap between two close nanoparticles. (b) Chemical enhancement resulting from electron transfer 
between analytes and the surface of nanoparticles. Reproduced with permission [31]. Copyright 
Royal Society of Chemistry, 2014. Reproduced with permission [32]. Copyright Elsevier B.V., 2017. 
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[33]. For example, it is extremely challenging to harvest a reproducible SERS signal for a bacterial cell 
than that of a small chemical molecule, such as antibiotics and pesticides [34]. Although successful 
discrimination of bacteria by using SERS was reported by different research groups [15,35,36], the 
real world application is still extremely challenging, such as the low concentration of the targeted 
bacteria in the sample and a relatively large amount of interference sample components. Therefore, 
researchers have been developing various types of SERS-active substrates to enhance the signal 
intensity as well as generate more reproducible SERS signals for different biological samples, such as 
bacteria and viruses. Both “top-down” and “bottom-up” methods have been used for the synthesis 
of SERS-active substrates [37]. For the “top-down” method, large multi-dimensional materials are 
reduced to ideal nanoscale structures using direct fabrication process [38]. In comparison, the 
“bottom-up” method refers to the development of complex nanoscale structures from simple 
molecules or atoms [39]. 

2.2.1. Direct SERS 

Generally, SERS-active nanostructures are composed of two types of substrates: solid surface-
based substrates and colloidal substrates. The solid surface-based substrates can accurately control 
the formation of “hot spots”. Once the bacteria cells are closed to the “hot-spot” on the surface of the 
solid substrate, a significant SERS effect will be achieved. For example, a recent study presented a 
label-free SERS-based method to detect and identify Salmonella enterica and Escherichia coli adsorbed 
on the silver dendrites [40]. Since the nanoparticles were already closely aligned on the stem and 
branches, “hot spots” could be generated without any aggregation process. This also contributed to 
producing uniform and homogenous sample spots after drying, which eliminated the spot-to-spot 
variation of the collected SERS signals. SERS spectra collected using the silver dendrites were 
consistent and robust enough for the detection and identification of bacteria with a limit of detection 
(LOD) as low as 104 colony-forming unit (CFU) per mL. Besides, porous anodic aluminum oxide 
(AAO) has been widely used as the substrate for the synthesis of functional nanostructures by coating 
a thin layer of gold or silver to develop a nanostructured noble metal substrate to enhance SERS 
signal intensity [41]. Ji and co-authors reported a three-dimensional nanostructure fabricated by 
depositing silver NPs into AAO templates using a simple electrochemical deposition method [42], 

Figure 1. Two mechanisms contributed to surface-enhanced Raman spectroscopy (SERS). (a)
Electromagnetic enhancement of SERS-active silver nanoparticles. SERS “hot-spot” is generated
in the gap between two close nanoparticles. (b) Chemical enhancement resulting from electron transfer
between analytes and the surface of nanoparticles. Reproduced with permission [31]. Copyright Royal
Society of Chemistry, 2014. Reproduced with permission [32]. Copyright Elsevier B.V., 2017.

2.2. SERS-Active Substrates for Bacterial Detection

Because SERS can reach to single molecule detection, it has been widely applied for the detection
of various analytes in an ultra-fast manner (e.g., a few seconds to less than a minute). In general, the
reproducibility of the SERS signal is getting worse along with the increase of the size of the analyte [33].
For example, it is extremely challenging to harvest a reproducible SERS signal for a bacterial cell
than that of a small chemical molecule, such as antibiotics and pesticides [34]. Although successful
discrimination of bacteria by using SERS was reported by different research groups [15,35,36], the real
world application is still extremely challenging, such as the low concentration of the targeted bacteria
in the sample and a relatively large amount of interference sample components. Therefore, researchers
have been developing various types of SERS-active substrates to enhance the signal intensity as well
as generate more reproducible SERS signals for different biological samples, such as bacteria and
viruses. Both “top-down” and “bottom-up” methods have been used for the synthesis of SERS-active
substrates [37]. For the “top-down” method, large multi-dimensional materials are reduced to ideal
nanoscale structures using direct fabrication process [38]. In comparison, the “bottom-up” method
refers to the development of complex nanoscale structures from simple molecules or atoms [39].

2.2.1. Direct SERS

Generally, SERS-active nanostructures are composed of two types of substrates: solid surface-
based substrates and colloidal substrates. The solid surface-based substrates can accurately control
the formation of “hot spots”. Once the bacteria cells are closed to the “hot-spot” on the surface of the
solid substrate, a significant SERS effect will be achieved. For example, a recent study presented a
label-free SERS-based method to detect and identify Salmonella enterica and Escherichia coli adsorbed on
the silver dendrites [40]. Since the nanoparticles were already closely aligned on the stem and branches,
“hot spots” could be generated without any aggregation process. This also contributed to producing
uniform and homogenous sample spots after drying, which eliminated the spot-to-spot variation
of the collected SERS signals. SERS spectra collected using the silver dendrites were consistent and
robust enough for the detection and identification of bacteria with a limit of detection (LOD) as low
as 104 colony-forming unit (CFU) per mL. Besides, porous anodic aluminum oxide (AAO) has been
widely used as the substrate for the synthesis of functional nanostructures by coating a thin layer of
gold or silver to develop a nanostructured noble metal substrate to enhance SERS signal intensity [41].
Ji and co-authors reported a three-dimensional nanostructure fabricated by depositing silver NPs into
AAO templates using a simple electrochemical deposition method [42], demonstrating well-ordered
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micro/nanostructures when it was characterized by field emission scanning electron microscopy.
The homogeneity of SERS substrates is the key to the reproducibility of SERS spectra and even minor
variation in the surface morphology can result in significant changes in the enhancement. Due to the
well-organized structure of decorated AAO membranes, the distribution of “hot-spots” is uniform,
which can eventually improve the SERS spectral reproducibility [43].

In addition, various colloid systems of gold or silver have been synthesized as the liquid
format of SERS substrates for the detection of bacterial cells [44]. A more uniform distribution
of noble metal nanoparticles on the surface of bacterial cells can be achieved to improve the
SERS spectral reproducibility compared to that by using the solid SERS substrates [45]. A SERS
application employing a synthesis of silver nanocolloids coating on a bacterial cell wall can detect
the live bacteria in drinking water down to 2.5 × 102 CFU/mL [46]. Another study conducted by
Chen and colleagues applied Ag colloids for the discrimination of E. coli, Pseudomonas aeruginosa,
methicillin-resistant Staphylococcus aureus (MRSA) and Listeria. In situ synthesis of Ag nanoparticles
and the addition of Triton X-100 significantly improved the sensitivity of SERS detection [47].
A simple method of preparing SERS substrates was described by filtering Ag or Au colloidal particles
onto a ceramic filter, onto which the bacterial suspensions were then filtered [48]. This method
allowed the homogeneous distribution of bacteria on the surface of the substrate, which increased
the sensitivity of SERS detection. A microfluidic “lab-on-a-chip” platform can be used to further
improve the reproducibility of SERS signal by mixing the silver/gold nanocolloids with bacterial
cells in a controlled fluidic manner with limited precipitation of individual nanoparticles on the
substrate, in which case the channel in the microfluidic device could avoid spectral interference and
enhance the sensitivity of bacterial detection [49]. SERS-microfluidic systems have been used to
classify multiple foodborne pathogens using chemometrics and quantify single pathogenic bacterial
cells. For example, Mungroo and others successfully distinguished eight foodborne pathogenic
bacterial species using microfluidic-integrated SERS substrate and chemometrics, including principal
component analysis (PCA) and linear discriminant analysis (LDA) [50]. A SERS-based microfluidic
system was developed for the discrimination of E. coli strains with the spectral recording time
reduced to 1 s [51]. Ag nanoparticles were injected into the bacterial suspension to facilitate the
aggregation of nanocolloids on the bacterial cells. Besides, a SERS substrate composed of 3D Ag@ZnO
nanostructures was also integrated into a microfluidic device for SERS fingerprinting detection of a
single living cell [52]. Colloidal substrate seems to be more popular due to its simple and cost-effective
fabrication, but solid surface-based substrates are more favorable for the detection of water-insoluble
substances [53]. A variety of SERS nanomaterials used for bacterial biosensing have been summarized
in Table 1.
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Table 1. Summary of SERS-active nanomaterials used for the detection of bacteria.

SERS-Active Nanomaterial Target Bacteria LOD
(CFU/mL)

LOQ
(CFU/mL) Sample Matrix Detection

Time
Chemometric

Models COMMENTS Ref.

AgNPs E. coli 8.0 × 102 N/A N/A 3.1 h - Direct, microfluidic [51]

AgNPs methicillin-resistant S. aureus
(MRSA) N/A N/A N/A 3.3 min DFA, HCA Direct, microfluidic concentration [54]

AgNPs M. tuberculosis - N/A - 1 h PCA, LDA Direct, microfluidic concentration [55]

AuNP surface K. pneumoniae N/A N/A N/A 30 min PCA Direct, fluoroquinolone-resistant [56]

AgNPs E. coli, A. calcoaceticus,
B. megaterium, P. aeruginosa N/A N/A N/A N/A N/A Direct [57]

AgNPs E. coli, S. cohnii N/A N/A N/A 10 s N/A Direct, convective assembly [58]

AgNPs and AuNPs E. coli, S. cohnii N/A N/A N/A N/A N/A Direct, layer-by-layer deposition [45]

AgNPs E. coli, S. epidermidis 2.5 × 102 N/A N/A 10 min HCA Direct, in situ adsorption [46]

AgNPs E. coli, M. morganii, E. lactis, L. casei NA N/A N/A <5 min PCA Direct, in situ synthesis [59]

Ag nanospheres E. coli, S. typhimurium, S. aureus 10 N/A N/A N/A CVA Direct, self-assembly, Ag
nanocrystals [60]

Ag nanorods A. baumannii, E. coli, K. pneumoniae,
P. aeruginosa, S. aureus N/A N/A N/A N/A PCA, HCA,

PLS-DA Indirect, vancomycin-coated [61]

Octupolar metastructures Brucella 104 N/A N/A N/A N/A Indirect, bacteriophage, EBL
fabrication -

Au nanorods E. coli 3.5 × 101 3.5 × 102 N/A <2 h N/A Indirect, Raman reporter,
biotin-avidin, magnetic core [62]

Ag nanocubes E. coli 102 N/A N/A - N/A Indirect, Raman reporter,
polyclonal antibody [63]

AgNPs, AuNPs, and Ag/Au
core shell NP

E. coli O157:H7, S. Typhimurium,
S. aureus 102–103 N/A N/A <30 min N/A Indirect, Raman reporter,

aptamers, multiplex detection [64]

Au “nanopopcorn” @ single
wall carbon nanotubes E. coli 102 102 N/A - N/A Indirect, antibody, photothermal

inactivation [65]

AuNP @ graphene oxide MRSA 5 N/A N/A - N/A Indirect, Raman reporter,
photothermal inactivation [66]

Au “nanoovals” E. coli 2.1×102 N/A Chicken broth, apple
juice, soil solution 50 s N/A Indirect, Raman reporter, antibody,

DEP concentration [67]

AuNPs Mycobacterium avium subsp.
Paratuberculosis 5.0 × 102 N/A Milk <24 h N/A Indirect, Raman reporter, antibody [68]
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Table 1. Cont.

SERS-Active Nanomaterial Target Bacteria LOD
(CFU/mL)

LOQ
(CFU/mL) Sample Matrix Detection

Time
Chemometric

Models COMMENTS Ref.

Au “nanopopcorn” @
graphene oxide MRSA 10 N/A N/A - N/A Indirect, Raman reporter, aptamer -

Ag nanorod arrays S. Enteritidis, S. enterica 102 N/A Mung bean sprouts
samples - PCA, PLS-DA Indirect, vancomycin-coated

surface [69]

C S. Typhimurium, S. aureus 103 N/A Spinach N/A N/A Indirect, antibody, Fe3O4/SiO2
secondary NPs [70]

Ag/SiO2 core/shell NPs S. Typhimurium 108 N/A N/A N/A N/A Indirect, Raman reporter, antibody [71]

Au “nanopopcorn” S. Typhimurium DT 104 10 N/A Romaine lettuce 5 min N/A Indirect, Raman reporter,
monoclonal antibody [72]

SiO2/Au and Au/Ag
core/shell NPs S. Typhimurium 15 15 Milk N/A N/A Indirect, Raman reporters,

aptamers [73]

Au/Ag core–shell
nanoparticles V. parahaemolyticus 10 10 N/A N/A N/A Indirect, Raman reporters,

aptamers [74]

Au nanopopcorn S. Typhimurium DT 104 10 N/A N/A N/A N/A Indirect, Raman reporter, antibody,
photothermal inactivation [75]

Fe3O4/Au core/shell NPs S. Typhimurium, S. aureus 15 102 Pork sample N/A N/A Indirect, aptamer, magnetic
separation [76]

MnFe2O4/Au core/shell S. aureus 10 N/A Apple, pear, and grapes
peels N/A N/A Indirect, Raman reporter, aptamer,

magnetic separation [77]

Au nanoaggregate-
embedded beads S. aureus N/A N/A N/A N/A N/A Indirect, Raman reporter, antibody [78]

AgNPs S. aureus 15 15 Urine, blood, or pleural
and ascites fluids N/A N/A Direct, antibody, aptamer, Raman

reporter [79]

Fe3O4/Au core/shell NP S. aureus 1 N/A N/A N/A N/A Indirect, antibody, magnetic
concentration/separation [80]

Au/Ag core/shell nanorod
arrays

S. xylosus, L. monocytogenes,
E. faecium 50 N/A N/A PCA N/A Indirect, Raman reporter [81]
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SERS has been widely applied for the differentiation of antibiotic-resistant strain and antibiotic-
sensitive strains possibly due to the variation in the biochemical compositions of bacterial cell
membrane and cell wall. In a recent study, Li and others reported that surface-enhanced resonance
Raman spectroscopy (SERRS) could achieve almost a 100% accuracy for the differentiation between
carbapenem-resistant E. coli and carbapenem-sensitive E. coli [82]. Lu and coauthors developed a
microfluidic SERS platform for a successful high-throughput screening and differentiation between
MRSA and methicillin-sensitive Staphylococcus aureus (MSSA). In addition, the SERS characterization
of bacterial phenotypic profiles had a good correlation to the multilocus sequence typing as well as
antibiotic characterization using PCR, demonstrating the possibility of applying SERS as the alternative
to detect antibiotic resistance and track the outbreak of pathogenic bacteria [54]. In another study,
Mühlig and coauthors applied a similar SERS microfluidic chip for the differentiation of various
species of mycobacteria, including both nontuberculous mycobacteria and Mycobacterium tuberculosis
complex [55].

2.2.2. Indirect SERS

The aforementioned SERS substrates are related to “direct sensing” of the analyte (e.g.,
a bacterium) by using a laser with the wavenumbers of mainly 532, 633, and 785 nm [53]. In other
words, the collected SERS spectral features are directly associated with the chemical compositions of
the targeted bacteria (Figure 2a). In comparison, SERS tags have been designed and used for “indirect
sensing” of the analyte(s) (Figure 2b).
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Figure 2. Representative “direct” (a) and “indirect” (b) SERS detection of bacteria. (a) Schematic
diagram showing the SERS signal was directly collected from the bacterium on a vancomycin-coated
Ag/AAO SERS-active substrate (left). Scanning electron microscope (SEM) image of bacteria on the
substrate (scale bar, 500 nm) (right). (b) Schematic illustration of a sandwich-like indirect antibody-SERS
detection. Key steps including: immobilization of antibody on the surface of metal substrate; capture
of target bacteria by modified surface and labeling the target bacteria with SERS tag for detection.
Reproduced with permission [83]. Copyright Springer Nature, 2011. Reproduced with permission [72].
Copyright Royal Society of Chemistry, 2011.
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The schematic illustration of the SERS tag is shown in Figure 3. Specifically, a SERS-active
molecule, such as rhodamine 6G, will be used as the tag molecule for the synthesis of a gold/silver
nanostructure [72]. By conjugating with a separation element, such as an antibody, aptamer, or a
molecularly-imprinted polymer, a functional SERS tag will be developed. This SERS tag can specifically
recognize and capture the targeted analyte (e.g., a bacterium) from a complicated sample matrix to
achieve separation and possibly enrichment as well [32].
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Figure 3. Schematic illustration of SERS tags.

Most indirect approaches use a sandwich-like immunosorbent assay format, which is similar
to enzyme-linked immunosorbent assay (ELISA) [68]. The schematic illustration in Figure 2b shows
the basic steps for developing a representative sandwich-structured indirect antibody-SERS method.
Firstly, capturing antibodies are immobilized on the surface of a metal substrate. The second step is to
capture the targeted pathogen from the sample matrix using these immobilized antibodies. Finally,
the SERS tag will be introduced to label the targeted pathogen for Raman signal collection. The
availability of the collected SERS signal is derived from the SERS tag molecule, but can indirectly
indicate the availability and the concentration of the targeted bacteria in the sample matrix. This
indirect SERS-tag technology is extremely useful for the detection of bacteria in a complicated sample
matrix, such as a food, because the aforementioned direct SERS detection can be significantly affected
by the food sample matrix if the sample pre-treatment is not fully complete [37]. For example, Duan and
co-authors reported an indirect SERS-based method for the quantification of S. Typhimurium in milk
(Figure 4a) [73]. S. Typhimurium interacted with Fe3O4/Au core/shell nanoparticles functionalized
with specific aptamers and Raman reporters in conjugation to the same aptamer to form a sandwich-like
complex. A linear correlation for bacteria concentration of ~10–106 CFU/mL and a low LOD
of 15 CFU/mL were obtained in this study. Vibrio parahaemolyticus was successfully detected in
shrimp and water samples using a similar approach [74]. The specific aptamer immobilized on
the SiO2-core-Au-shell nanoparticles was used to selectively capture V. parahaemolyticus, leading to
a LOD of 10 CFU/mL. In another study, silver nanoparticles functionalized with antibodies and
Raman reporter to serve as the SERS tags were successfully applied for rapid detection of E. coli
to a concentration as low as 102 CFU/mL [63]. Although several publications demonstrated a
good separation capability and spectral reproducibility by integrating silver/gold nanoparticles
with magnetic materials [84–86], we still believe a functional SERS tag with separation element is more
effective at the current stage. More precise control of the numbers and orientations of the molecules on
the surfaces of the magnetic nanoparticles have to be achieved [84]. In addition, a few studies reported
the development of functional SERS tags by integrating both separation elements and magnetic beads
to achieve an even better separation, enrichment, and signal enhancement capability [62,70,80,87].
For example, an LOD of 35 CFU/mL and LOQ of 3.5 × 102 CFU/mL for E. coli was reported using a
combination of antibody-modified magnetic nanoparticles and gold nanorods labeled with the same
antibodies in a sandwich-format detection strategy [62]. Besides, a recent study conducted by Kearns
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and colleagues reported a novel assay of using lectin-functionalized magnetic nanoparticles along
with SERS-active nano-substrates functionalized with various antibodies to successfully capture and
detect multiple antibiotic-resistant pathogens, including Salmonella, E. coli and MRSA at the single cell
level in a simultaneous manner [88].
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Figure 4. (a) Schematic illustration of aptamer-based SERS approach for the detection of Salmonella
Typhimurium. Ag/Au core/shell nanoparticle was conjugated with a specific aptamer. The Raman
reporter, X-rhodamine (ROX), was labeled on the same aptamer sequence. Nanoparticle-aptamer-
target-aptamer-Raman reporter complexes enabled SERS detection. (b) Schematic illustration of
the antibody-based sandwich-type SERS immunoassay for Escherichia coli enumeration. SERS tags
were constructed by gold nanoparticles first coated with a Raman reporter molecule, 5,5′-dithiobis
(2-nitrobenzoic acid) (DTNB), and subsequently with a corresponding antibody. (c) Multiplex detection
of Salmonella Typhimurium and Staphylococcus aureus using aptamer-SERS immunoassay. Fe3O4

magnetic gold nanoparticles were labeled with unique Raman reporters and aptamers against S. aureus
and S. Typhimurium and then employed into a sandwich-like assay. Reproduced with permission [73].
Copyright Elsevier B.V., 2015. Reproduced with permission [89]. Copyright Springer-Verlag, 2010.
Reproduced with permission [76]. Copyright Elsevier B.V., 2015.

3. Tandem-SERS for Sensing Bacteria in a Sample Matrix

3.1. Tandem-SERS Methods

Tandem-SERS refers to conjugating the separation element to the SERS system that can achieve
separation and detection simultaneously [90]. The aforementioned functional SERS tag with a
separation element (e.g., antibody, aptamer, molecularly-imprinted polymer) is a classical tandem-SERS
system. Due to the size of bacterial cells, a sandwich tandem-SERS structure is always developed [15,68]
and the detailed illustration is shown in Figure 2b. Antibody is widely used as the recognition
element due to its specificity to bacteria via a covalently-bound effect. An antibody conjugated
with different SERS nanoprobes such as Ag@silica core-shell nanoparticles [71], popcorn-shaped Au
nanoparticles [72], and single walled carbon nanotubes-Au nanoparticles [91] was used to detect
normal Salmonella or multi-drug-resistant Salmonella. High correlation coefficients and LOD of 4 and
5 CFU mL−1 were obtained using an antibody-SERS employing AuNPs via a sandwich immunoassay
for detecting and enumerating E. coli (Figure 4b) [89]. The results of testing bacteria in lake and tap
water samples were highly consistent with that of the classical plating assay.

Aptamer is another element that can be used and conjugated in tandem-SERS for the recognition,
separation, and enrichment of specific bacterial pathogens. Aptamer-based SERS assay was able to
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monitor photothermal activity response of MRSA and multi-drug-resistant Salmonella DT104 through
the change of Raman signal intensity of R6G [32]. Zhang and coauthors reported a simultaneous
detection of S. Typhimurium and S. aureus using Au NPs-aptamer based SERS biosensor (Figure 4c).
A high sensitivity with LOD of 35 and 15 CFU/mL for S. aureus and S. Typhimurium was achieved,
respectively [76]. Another format of tandem-SERS was to include SERS sensing in a microfluidic device.
A complicated design of the microfluidic device can realize the function of separation of bacterial
cells from the sample matrix mainly [49]. Dielectrophoresis is an effective method for concentrating
and trapping various types of nanoscale/microscale particles in a microfluidic device, including
microorganisms [92]. It is also feasible to conjugate the aforementioned separation elements, such as
aptamer, onto the microchannels to form a more comprehensive and effective tandem-SERS platform
for simultaneous separation and detection [67]. Lin and co-authors developed a fast single-step SERS
detection of E. coli O157:H7 at single cell level with speciation capability to sub-species. This was
achieved by a multiplexing dual recognition SERS platform that combined specific antibody conjugated
SERS tags with a microfluidic dielectrophoresis (Figure 5) [93].
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Figure 5. The integration of SERS nanoprobes and a microfluidic dielectrophoresis (DEP) device
for rapid detection of single bacterium. (a) Schematic presentation of using antibody-conjugated
nanoaggregate-embedded beads (NAEBs) as SERS nanoprobes for specific detection of bacteria.
(b) Photograph of the microfluidic DEP device and close-up view of central capturing area with four the
quadrupole electrodes. (c) The distribution of electric field of four microelectrodes in the microchannel.
(d) Schematic illustration of the DEP-SERS configuration. Reproduced with permission [93]. Copyright
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014.

3.2. Tandem-SERS Integrated with Multiple Capabilities

Another major application advantage of such a tandem-SERS platform is to enrich the bacterial
cells and subsequently improve the detection sensitivity. Although SERS can theoretically detect a
single molecule/cell, its real world application can only detect ~103 CFU/mL of bacteria, mainly due
to the interference from the sample matrix components [94]. Therefore, a relatively large amount of
samples therefore is required for the production of a meaningful SERS signal readout. In a recent
study reported by Zhang and others, the SERS-active substrate composed of gold nanoparticles was
integrated into the microfluidic device for rapid concentration and detection of S. aureus in liquid
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samples [95]. The SERS signal intensity of S. aureus after concentration in this device was over
100-fold compared to the signal obtained from the raw sample, leading to a LOD of 2 × 102–2 ×
104 CFU/mL. Hou and colleagues demonstrated a microfluidic system based on a discharge driven
vortex technique to concentrate a bacterial suspension of E. coli F-amp and Bacillus subtilis for SERS
detection. The combination of SERS and microfluidic with immunoassay techniques was able to
selectively capture the targeted bacterial cells [96]. A SERS-based sandwich immunoassay employing
antibody-coated magnetic nanoparticles for E. coli enumeration was also reported [97]. The authors
accomplished a LOD of 8 CFU/mL by combining bacterial separation with SERS detection using
specific SERS labels.

Combination of SERS platform and a filter (e.g., polymer fiber) has been recently used for
the identification and detection of bacteria from clinical and environmental samples. For instance,
Lin and others demonstrated a filter-like SERS substrate prepared with AuNPs embedded in
mesoporous silica for the detection of Staphylococcus aureus from the aqueous samples [98]. The
targeted cells could be concentrated on the filter-like substrates within a few seconds. Strong SERS
signals with good bacterial discrimination were obtained without any need for pre-labeling, and the
reproducibility was also significantly improved. More recently, Kamińska and colleagues presented a
new label-free tandem-SERS platform for rapid detection of Neisseria meningitidis [99]. This bacterium
is a Gram-negative diplococcus and one of the three major bacteria that cause acute bacterial meningitis.
The applied SERS substrate was based on Si/ZnO layers and electrospun polymer mats covered with a
thin layer of sputtered gold. A wide range of pore sizes makes the polymer mat an excellent material to
filter bacteria from fluids and then immobilize them onto the SERS nanostructures for the collection of
Raman signals, enabling the detection of single bacterial cells of N. meningitidis present in cerebrospinal
fluid samples. A similar approach was developed to detect bacteria from blood plasma [100]. Covering
the forcespun polymer mat with Au/Ag alloy turns it into a SERS-active platform, which can be
used as a filter to separate the microorganisms from fluids and immobilize them on the surface of
the mat during the measurement. S. aureus, Pseudomonas aeruginosa, and S. Typhimurium were
successfully detected and identified from blood plasma using the developed platforms. These
SERS-active nanostructures based on polymer mats provide the possibility for simultaneous filtration,
immobilization, and enhancement of Raman signals in a few seconds, demonstrating a simple and
low-cost method to analyze bacterial suspensions in biological fluids with SERS.

In addition, the tandem-SERS platform can achieve multiplex detection of bacteria by integrating
several different elements into a single system. By using a systematic evolution of ligands by
exponential enrichment (SELEX), different aptamers can be synthesized and each one targets one
species of bacteria. By conjugating the aptamers onto a substrate, such as the microchannel in a
microfluidic device, the mixture of bacterial cocktails can be individually captured by each aptamer
that eventually achieve multiplex detection in a simultaneous manner. For example, S. Typhimurium
and S. aureus were simultaneously identified using different aptamers in a sandwich-type tandem-SERS
detection within 3 h [76]. Sandeep and co-workers proposed another simple and robust cross-platform
approach using different nanoparticles functionalized with specific capturing ligands and Raman
reporter molecules. This multiplex detection platform was applied for simultaneous detection of three
different pathogens and offered an LOD ranging between 102 and 103 CFU/mL with a total detection
time less than 45 min [64].

3.3. “Two-Step” and “One-Step” SERS

In comparison to the aforementioned concepts of “direct sensing” and “indirect sensing”,
“two-step sensing” and “one-step sensing” is another pair of the terminologies that are related to
tandem-SERS platform. Once the separation and SERS detection are separate, it refers to “two-step”
sensing. An intriguing “two-step” SERS approach based on a sandwich assay for the separation and
detection of multiple pathogens in food samples was demonstrated by Wang and co-authors [70].
Figure 6a depicted the key steps of the process. The targeted pathogens in a food matrix were
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first captured and separated using silica-coated magnetic nanoparticles functionalized with the
corresponding antibodies. Then, AuNPs integrated with a Raman reporter and surface-modified
antibodies specific to the pathogen were used to complete the SERS detection. This platform achieved
a LOD of 103 CFU/mL for multiplex detection of S. Typhimurium and S. aureus in spinach wash
water and peanut butter. “One step” sensing indicates that the separation and detection can occur
simultaneously. Once “one-step” sensing is applied, a critical parameter is to ensure that the distance
of the separation element is within 10 nm from the SERS-active substrate [90]; otherwise, the SERS
effect will be tremendously reduced [101]. Naja and coauthors presented a “one-step” sensing of
bacteria using silver nanoparticles functionalized with antibodies (Figure 6b). When the model bacteria
attached to the corresponding antibodies absorbed on the protein-A-modified silver nanoparticles,
the distance between the bacterium and the nanoparticle surface was 8 nm, thus the SERS signal
of the bacterial cell wall would be generated and detected [102]. Further, “one-step” tandem-SERS
sensing requires a relatively more complete clean-up of the sample matrices than that of the “two-step”
tandem-SERS sensing method [90].
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Figure 6. Representative “two-step” (a) and “one-step” (b) tandem-SERS sensing methods. (a)
Tandem-SERS platform composed of the magnetic-based separation and SERS detection for multiple
pathogens in food matrices. Pathogens were first captured with silica-coated magnetic probes,
and then pathogen specific SERS probes (gold nanoparticles integrated with a Raman reporter and
corresponding antibodies) were deployed to complete the following detection. (b) Schematic diagram
for SERS-based detection of E. coli using silver nanoparticles conjugated with antibodies. Reproduced
with permission [70]. Copyright Springer-Verlag, 2010. Reproduced with permission [102]. Copyright
Royal Society of Chemistry, 2007.

4. Elucidating Antibiotic Resistant Mechanism of Bacteria Using SERS and Chemometrics

Besides the detection of antibiotic resistant bacteria either in a simple matrix or a complicated
environmental, agri-food or clinical sample matrix, another major research direction of using SERS
is to study the working mode and mechanism of antibiotics to inactivate bacteria. Bacterial cells can
develop various strategies to resist to the antibiotic treatment as the pinnacle of evolution. Although
new antibiotic resistance has been continuously emerging and spreading globally, bacteria use is
one of two leading genetic strategies to deal with antibiotic treatment, namely mutation in genes
associated with the action of antibiotic compounds and the acquisition of external DNA for the
resistance determinants through horizontal gene transfer [103]. These genetic variations will lead to
the change in biochemical composition of the bacterial cells. For example, three different biochemical
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routes can arise, fluoroquinolone resistance, including over-expression of efflux pumps to extrude the
antibiotics from the bacterial cells, mutations in genes encoding DNA gyrase and topoisomerase, and
generating specific proteins to protect the targeted site of fluoroquinolone [104,105].

4.1. Characterization of Antibiotic Resistance of Bacteria Using SERS

As a three-dimensional complex surrounding the bacterial cells, peptidoglycan is the major
component of the bacterial cell wall [106]. Since a relatively large amount of antibiotics is designed to
target the bacterial cell wall, the biochemical compositions of the bacterial cell wall are expected to
change along with the treatment of these antibiotics. Because SERS can record the macromolecular
fingerprints of the bacterial cell membrane and cell wall, it can be applied to determine the effectiveness
of antibiotic treatment as well as the antibiotic resistance patterns of the bacterial cells [15]. Although
conventional Raman spectroscopy has been widely applied to profile the phenotypic response of
bacteria to the antibiotic treatment, it requires a high concentration of bacterial culture for the collection
of Raman signal [107]. Therefore, a relatively long time for bacterial cultivation and enrichment is
necessary. By applying SERS for characterization, the antibiotic-resistant pattern of a single bacterial
cell can be achieved. In addition, it will be critical to study the variations in responses among individual
cells to the antibiotic treatment.

Antibiotic susceptibility testing (AST) is used to evaluate the effectiveness of antibiotic treatment
against the pathogen infections. SERS-based AST could reduce the time by avoiding the need for
overnight culture in MIC determination through the conventional AST methods. Liu and coauthors
used an SERS-active substrate made of AgNPs imbedded in AAO to determine the antibiotic sensitivity
of E. coli and S. aureus at the single-bacterium level [108]. Antibiotic-sensitive bacteria could be
differentiated from antibiotic-resistant ones within 1 h after antibiotic exposure by monitoring the
characteristic changes in SERS spectral profile. This approach demonstrated that SERS has the potential
for direct detection and characterization of antibiotic resistance in real world samples instead of pure
bacterial culture. Another study employed SERS-active AuNPs to study the antibiotic susceptibility
of 12 urinary tract infection-causing bacteria [109]. Strain-specific identification was achieved with
analytical sensitivity >95% and specificity >99%. The time for positive identification and AST was
reduced to less than one hour.

In addition, SERS-active substrate can be employed as a means to establish MICs for various
bacteria. Liu and colleagues demonstrated that SERS could monitor the reduction of specific bacterial
biomarkers along with the treatment of antibiotics within two hours [110]. Clinical isolates of
MRSA were exposed to vancomycin, while E. coli, A. baumannii, and K. pneumoniae were exposed to
imipenem at the incremental concentrations. The isolates were determined as susceptible, intermediate,
and resistant based on the change of the characteristic bands in SERS signals at a very early stage of
antibiotic treatment, and the SERS MIC results were in excellent agreement with the standardized
plate dilution methods that took upward of 24 h to complete. In a recent study, Cui and coauthors
developed a homogeneous vacuum filtration-based method to improve SERS signal reproducibility and
illustrated that the existence of heavy metal arsenic could increase the MIC of bacteria to the treatment
of tetracycline. The authors claimed that SERS has the potential for culture-free characterization of
resistome in a real microbiota system at the single cell sensitivity level [111].

Furthermore, monitoring the characteristic bacteria cell wall bands in the SERS spectra allowed
for a further understanding of the antibiotic degradation mechanisms. The antibiotic response of
Lactococcus latis was investigated using SERS-active AuNPs [112]. Antibiotic-induced spectral changes
from ampicillin and ciprofloxacin were observed at 60 min after exposure to both antibiotics. However,
ciprofloxacin induced only minor changes while ampicillin induced large SERS spectral changes. This
was possibly because the inactivation mechanism of ciprofloxacin is to disrupt DNA synthesis, therefore
the cell wall integrity was maintained for extended time periods and the cell wall signatures remained
stable in the SERS spectra. While ampicillin interrupts the cell wall synthesis, which was directly
detected by the SERS-active AuNPs. In another study, the SERS signals of E. coli were tracked upon
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antibiotic exposure to chloramphenicol, trimethoprim, polymyxin B, ampicillin, and formalin [113].
No spectral changes were observed after exposure to formalin although in vitro tests, which confirmed
the cells were not viable. The authors noted that it was most likely due to the mechanism of formalin
to crosslink membrane proteins but not degrade the cell wall. Similar results were observed with
chloramphenicol and trimethoprim, which inactivate bacteria by inhibiting protein and DNA synthesis,
respectively. The SERS signals remained unchanged after 2h exposure, which is possibly attributable
to the sustained cell wall integrity. In contrast, SERS spectra changed within 5 min after antibiotic
exposure to polymyxin B and ampicillin. They both aggressively degraded the bacterial cell wall,
which released the SERS-active AgNPs and drastically reduced the SERS intensities. The technique
could be used to further understand the fundamental mechanisms of microbial inactivation.

4.2. Chemometrics Used with SERS

Chemometric statistical analyses are usually required to decipher Raman spectral patterns so
that minor variations in the spectral features of different biological samples can be distinguished.
Multidimensional information of SERS spectra can be reduced into a few independent latent
variables (called principal components) that account for the most variability of the original dataset by
multivariate statistical analyses [114]. These principal components can then be used to segregate and
quantify analytes based upon specific calibration models [115]. Chemometric methods include both
unsupervised and supervised algorithms [116]. Among the spectroscopic-based pattern recognition
methods, unsupervised principal component analysis (PCA) and hierarchical cluster analysis (HCA)
are commonly used to provide either cluster plots or dendrogram structures for segregation and
discrimination based upon the minor differences in Raman spectra [117]. Supervised chemometric
models are generally used with some known answer from existing knowledge of the sample.
Discriminant function analysis (DFA), partial least squares regression (PLSR), and soft independent
modeling of class analog (SIMCA) are some of the most widely used models for the interpretation
of SERS results [114]. For instance, a discriminant analysis is divided into two steps: to build a
model using Raman spectra of bacterial cultures exposed to antibiotics of known class assignments,
and to classify a new Raman spectrum of an antibiotic-exposed culture based on the distance to the
multivariate mean of the closest class [118].

Different bacterial species or strains can be segregated into distinct groups based upon different
biochemical compositions reflected by the major latent variables. For example, E. coli, S. epidermidis
and four Salmonella strains exhibiting antibiotic resistance to the common therapeutics were detected
and differentiated using SERS coupled with PCA [69]. In another work, SERS spectra of P. mirabillis
and Enterococcus were quite similar despite having different cell wall structures. DFA was employed to
analyze the subtle differences of SERS spectra from 6 strains of clinical urinary tract infection isolates
for identification at genus-level [35]. Chemometric analysis play an important role in the determination
of antibiotic resistance by SERS-based methods. Spectral differentiation of antibiotic resistant and
sensitive strains can be demonstrated by chemometric models. For instance, Tien and others applied
PCA for Raman spectra from MSSA and MRSA. MRSA cluster and MSSA cluster were segregated that
can be used to differentiate MRSA from MSSA [119]. A SERS-based PLSR model was used to accurately
determine the concentration of an MRSA strain in a mixture containing MSSA [54]. One recent study
applied a three level chemometric model based on PLSR in combination with linear discriminant
analysis (LDA) to extract those molecular changes and distinguish vancomycin-resistant and sensitive
Enterococci. In addition, antibiotic-induced spectral changes from ampicillin and ciprofloxacin were
monitored and statistically analyzed using PCA to understand the different working mechanisms of
these antibiotics [112].

5. Conclusions and Future Direction

Raman spectroscopy and SERS have been validated for their potential in bacterial detection,
typing, and characterization for almost three decades. Compared to the application of MALDI-TOF
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mass spectrometry for bacterial characterization, the use of Raman spectroscopy and SERS by industry
is still in its infancy. This is mainly due to the relatively poor spectral reproducibility by using
different types of the manufactured SERS substrates. As indicated in numerous review papers related
to SERS bacterial study, to develop a stable SERS-active substrate for consistent and global use
in a commercial manner is highly critical to promote this versatile technology to environmental,
agri-food and clinical applications. Another major challenge is the relatively high cost of the confocal
micro-Raman spectroscopic system. Although very little cost is required for purchasing consumables
and instrumental maintenance compared to MALDI-TOF mass spectrometry, industries are still
reluctant to purchase a bench-top Raman spectroscopic system. Therefore, a portable/handheld
Raman instrument might be more affordable even though the resolution of the collected SERS spectra is
relatively low. A more user-friendly software is also required for the convenient spectral interpretation
as well as chemometric analyses. Several vendors have developed their own software for spectral
processing and chemometrics, but a major doubt is how reliable such software for spectral analysis can
be. By only clicking each “black-box” in the software, the researchers may not fully understand how
each algorithm will affect the performance of the chemometric models. A standardized protocol for
SERS spectral analyses and chemometric analyses therefore is critical to achieve inter-laboratory
validation of the results for bacterial characterization, such as the characterization of bacterial
antibiotic resistance.

Albeit these aforementioned challenges and potential limitations, SERS is definitely a very
promising candidate for the determination of bacterial antibiotic resistance in a high-throughput,
multiplex, and ultrafast manner. We suggest that industries use SERS for the detection and
characterization of bacterial antibiotic resistance as an innovative fast screening alternative that can
couple with the conventional methods for a further confirmation. Along with the further advancement
in optical instrumentation and machine learning, the new version of the Raman spectroscopic system
will be more user-friendly and cost-effective. We also envision that SERS can be used to further
illustrate the modes of antibiotic and antimicrobial resistance of bacteria. This may contribute to
the design of more effective antimicrobial treatment. Although SERS itself can be regarded as the
core technology for an individual project, such as the detection of antibiotic resistance bacteria in a
clinical specimen, we also believe it can be integrated as part of a more complicated study to drive
very fundamental scientific research questions related to bacterial antibiotic resistance.
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