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A B S T R A C T

COVID-19 cases are putting pressure on healthcare systems all around the world. Due to the lack of available
testing kits, it is impractical for screening every patient with a respiratory ailment using traditional methods
(RT-PCR). In addition, the tests have a high turn-around time and low sensitivity. Detecting suspected
COVID-19 infections from the chest X-ray might help isolate high-risk people before the RT-PCR test. Most
healthcare systems already have X-ray equipment, and because most current X-ray systems have already been
computerized, there is no need to transfer the samples. The use of a chest X-ray to prioritize the selection of
patients for subsequent RT-PCR testing is the motivation of this work. Transfer learning (TL) with fine-tuning
on deep convolutional neural network-based ResNet50 model has been proposed in this work to classify COVID-
19 patients from the COVID-19 Radiography Database. Ten distinct pre-trained weights, trained on varieties
of large-scale datasets using various approaches such as supervised learning, self-supervised learning, and
others, have been utilized in this work. Our proposed 𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘 model, pre-trained on the
iNat2021 Mini dataset using the SwAV algorithm, outperforms the other ResNet50 TL models. For COVID
instances in the two-class (Covid and Normal) classification, our work achieved 99.17% validation accuracy,
99.95% train accuracy, 99.31% precision, 99.03% sensitivity, and 99.17% F1-score. Some domain-adapted
(𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡_𝐶ℎ𝑒𝑠𝑡𝑋−𝑟𝑎𝑦14) and in-domain (ChexPert, ChestX-ray14) models looked promising in medical image
classification by scoring significantly higher than other models.
1. Introduction

In December 2019, Wuhan, China, was the first person to develop
a novel corona viral disease (called COVID-19). So far, millions and
thousands of deaths have been confirmed worldwide [1]. A 2019 coro-
navirus disease (COVID-19) due to serious coronavirus acute syndrome
2 (SARS-CoV-2) has become a pandemic and widely spread around
the world. The COVID-19 outbreak has affected many aspects, such as
everyday life, public health, and the world economy. The World Health
Organization announced on 28 June 2020 that more than 10 million
confirmed COVID-19 cases have been reported in the world and over
499,000 persons have died. Furthermore, in China, approx. 6.47 (range
1.66–10) [2], in South Korea 2.6 [3], and in Iran 4.7 [4] in the basic re-
productive (R0), are defined as the average number of secondary cases
born by an infected individual, which indicates that there is a serious
spread of COVID-19. Due to the non-availability of specific therapeutic
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drugs or COVID-19 vaccines [5], the main priority is to stop the spread
of COVID-19 through the testing of many suspicious cases and isolation
from the community of the infected. As per Chinese government’s most
recent guidelines, the diagnosis of COVID-19 should be validated by a
reverse transcription-polymerase chain reaction (RT-PCR). In terms of
sensitivity, however, RT-PCR may not be high enough. False negatives
can also occur when there is a lack of virus quantities in the sample;
therefore, several times before the test is finally confirmed, it may be
necessary [6–8]. As a result, rapid and precise diagnostic procedures or
instruments are required to battle SARS-CoV-2 as soon as possible.

Chest CT is a routine pneumonia imagery tool that provides an ad-
vantage for COVID-19 diagnosis. Most COVID-19 patients show similar
characteristics on CT images, such as opacity of the ground glass, pul-
monary consolidation, and/or peripheral-lung changes [9,10]. Whilst
chest CT may be an early screening method for COVID-19, this and
vailable online 19 March 2022
352-9148/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.imu.2022.100916
Received 30 January 2022; Received in revised form 7 March 2022; Accepted 9 M
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

arch 2022

http://www.elsevier.com/locate/imu
http://www.elsevier.com/locate/imu
mailto:iqbal@cuet.ac.bd
https://doi.org/10.1016/j.imu.2022.100916
https://doi.org/10.1016/j.imu.2022.100916
http://crossmark.crossref.org/dialog/?doi=10.1016/j.imu.2022.100916&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Informatics in Medicine Unlocked 30 (2022) 100916M.B. Hossain et al.

w
s
T
s

2

c
i
a
m
e
m
f
t
a
t
m
t
3
t
a
n
A
t
u

r
i
R

C
a
c
b

t
i
r
u
S
i

other kinds of infectious and inflammatory lung illness have significant
imaging similarities. It is therefore not easy to distinguish between
COVID-19 and other viral pneumonia. Radiologists can also take a long
time to identify the characteristics. In addition, manual reading of CT
images is a long and tiring task, leading to human error in turn. Thus,
technology using automated analysis based on artificial intelligence
(AI) can assist radiologists in the analysis of COVID-19 from CT images.

The important achievement in AI is deep learning (DL) [11]. The
convolutional neural network (CNN) is one of the typical DL archi-
tectures [12]. Because of its strong characteristics [13–17], CNN has
been widely applied in the health sector. CNN techniques can help
in the accurate detection and classification of COVID-19 along with
the implementation of radiological imaging [18]. Recent CNN im-
ages of COVID-19 and Non-COVID-19 have been classified using a
CT-Classification approach [19–22].

Our experiment utilized the transfer learning (TL) [12] method on
a well-known CNN model named ResNet50 to build our COVID-19
detection model. We used 10 different pre-trained weights and all of
those ResNet50 model’s weights trained on different image datasets.
We utilized those pre-trained weights and applied the transfer learning
approach on a different chest X-ray images dataset for classifying Covid
or Normal patients. Some pre-trained models performed very well and
we found some insights on the TL approach for medical images classifi-
cation system especially on chest X-ray images. We applied to fine-tune
on ResNet50 model for better performance. This work achieves over
99% accuracy for classifying Covid and Normal patients on chest X-ray
images. The contribution of our work is as follows:

• We propose a fine-tuned ResNet50 model applying transfer learn-
ing technique with ten different pre-trained weights for classify-
ing COVID-19 from chest X-ray images.

• We have modified ResNet50 model by adding extra two fully
connected layers than the default ResNet50 model for applying
fine tuning in our task.

• We conduct experiments on the COVID-19 Radiography dataset
utilizing pre-trained weights trained on varieties of large-scale
datasets and comparison with existing models to show the effec-
tiveness of the proposed model.

The remainder of the paper is structured as follows. In Section 2,
e presented a quick literature review. The proposed methodology is

tated in Section 3, which also explains experimental Setup, Model
raining, and Evaluation. The result analysis and discussions are pre-
ented in Section 4. Finally, Section 5 concludes the paper.

. Literature review

Recently, many researchers did the research in medical sector espe-
ially medical image processing techniques. They used machine learn-
ng (ML) techniques and DL techniques and so on. ML tools are widely
ccepted as a prominent tool to improve the prediction and diagnosis of
any diseases [23,24]. However, to obtain better ML models, efficient

xtraction techniques are needed. In medical imaging systems, DL
odels are therefore widely accepted as they can automatically extract

eatures or use some pre-trained networks like ResNet [25]. In [26],
he VGG16 model is proposed for classifying COVID-19 pneumonia
nd non-COVID-19 pneumonia on the chest X-ray images. In [27],
he authors used the pulmonary nodules in CT images through a
ultifaceted convolution network. The deep networks [28] are used

o segment abdominal CT images by deep opponents. The authors used
-D CNN in Chest CT for the detection of chest nodules [29]. In order
o classify the coronary artery plaque and stenosis in the Coronary CT,
uthors applied a classification procedure using recurrent CNN [30]. A
ew CNN model was proposed for chest X-ray image classification [31].
s pre-trained CNN models are known to present practical problems,

he authors developed a shallow CNN architecture. The authors have
sed a 12-class chest X-ray image dataset with a measured accuracy
2

Table 1
COVID-19 radiography database.

Covid Lung opacity Viral pneumonia Normal Total

3616 6012 1345 10 192 21 165

of 86%. Nardelli et al. [32] used CNN 3-D to categorize chest CT
pulmonary artery-vein. To classify CT-images of interstitial lung disease
a deep CNN was applied [33]. A TL approach was applied on VGG16
and ResNet50 models for classifying COVID-19, pneumonia infection
and, no infection [34]. The study showed 97.67% accuracy using the
VGG16 TL model on the Covid-19 radiography dataset. A deep CNN
CoroNet [35] was proposed and showed 89% accuracy on chest X-ray
images for 4-class classification including COVID-19 class. DarkCovid-
Net [18], a deep model was proposed on chest X-ray images. A deep
CNN DeTraC [36] model was proposed to classify COVID-19 chest X-ray
images and showed 93.1% accuracy.

Unlike the above studies, in this work, we propose a fine-tuned
ResNet50 model applying transfer learning technique for effectively
classifying COVID-19 from chest X-ray images, where we have modified
ResNet50 model by adding extra two fully connected layers than the
default ResNet50 model.

3. Proposed methodology

In this work, we proposed a transfer learning method to classify
Covid vs Normal patients from chest X-ray images by utilizing various
pre-trained ResNet50 TL models weights. A diagram of the proposed
method is depicted in Fig. 1.

Chest X-ray images dataset is used and we split the dataset randomly
into train and test (validation) sets. Data transformation is applied
without data augmentation. Ten different pre-trained ResNet50 model
weights are used which are trained on different types of natural and
medical images dataset. ResNet50 [37] model has loaded with these
pre-trained weights with fine-tuning the model for better performance.
Then training and evaluation are applied on these ResNet50 fine-tuned
TL models. After training and evaluation are performed, we compare
these TL models and propose the best ResNet50 fine-tuned TL model.
Finally, chest X-ray images are input into the proposed model and, it
provides the predicted output as either Covid or Normal using binary
classification.

3.1. Dataset description

The researchers used the COVID-19 Radiography Database to carry
out experiments [38,39]. A team of researchers and collaborators
with medical doctors created this database from multiple international
sources at different timescales [14,40–42]. There are four categories
(Covid, Lung Opacity, Viral Pneumonia, and Normal) of chest X-ray
(CXR) images in this database. All images are of 299 × 299 pixel
esolution and in Portable Network Graphics (PNG) file format. The
mages are in gray-scale having three channels that contain repeated
GB values.

Table 1 presents the number of images of different classes in the
OVID-19 Radiography Database. The numbers of images are not bal-
nced for all four concept classes. Two classes out of four classes
omprising Covid and Normal are used in our work. To create a
alanced dataset, we select a subset of the Normal class.

Table 2 presents the number of images used for the train and
est (validation) set of two different classes. We divided the datasets
nto two sets train set and test or validation set by selecting images
andomly with proportions 80% and 20%, respectively. The train set is
sed for model training and the test set is used for validating the model.
ome Covid and Normal patients CXR images of this dataset are shown
n Figs. 2 and 3.
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Fig. 1. A block diagram of the proposed methodology.
Fig. 2. Example of Covid CXR images of COVID-19 Radiography Database.
Fig. 3. Example of Normal CXR images of COVID-19 Radiography Database.
Table 2
Dataset splitting of Covid and Normal images into train and test set.

Set Covid Normal Total

Train 2892 2917 5809
Test 723 730 1453
Total 3615 3647 7262

Data preprocessing, augmentation, and transformation are impor-
tant parts of some computer vision models. In our experiment, no data
augmentation techniques are applied. We only applied a transformation
to resize the images to 224 × 224 pixel resolution from 299 × 299 pixel
resolution for the ResNet50 model.

3.2. ResNet50 TL model and pre-trained weights

One of the well-known models which perform very well in dif-
ferent computer vision problems is ResNet [37]. Some of the others
are VGG [43], DenseNet [44], Inception v3 [45], AlexNet [46], Mo-
bileNet [47], GoogLeNet [48] etc. These models are trained on a
vast amount of datasets with various categories of images. Transfer
3

learning techniques can utilize these pre-trained models weights on
different computer vision problems with limited resources (dataset and
computing resources). In this work, we utilized 10 different pre-trained
weights of the ResNet50 model to carry out transfer learning on the
limited medical images dataset (COVID-19 Radiography Database). In
the following parts, we have described the architecture of the ResNet50
TL model and 10 different pre-trained weights. ResNet50 model is a
CNN model consisting of 50 layers. The architecture of the ResNet50
model including fine-tuning configuration for ResNet50 TL is depicted
in Fig. 4.

Also the architecture for proposed fine-tuned ResNet50 TL presented
in Table 3.

There are a series of convolutional (conv) layers in ResNet50 archi-
tecture. First conv layer is made of 7 × 7 kernel size and 64 different
kernels with a stride size of 2. Then 3 × 3 max pooling with the stride
of size 2 is applied. In the next convolution, there are three conv layers
(1 × 1, 64 kernels), (3 × 3, 64 kernels) and (1 × 1, 256 kernels)
respectively and these three layers are repeated in total 3 times. In
the same process, three conv layers (1 × 1, 128 kernels), (3 × 3, 128
kernels) and (1 × 1, 512 kernels) respectively are repeated four times;
three conv layers (1 × 1, 256 kernels), (3 × 3, 256 kernels) and (1 × 1,
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Fig. 4. Fine tuned ResNet50 TL architecture.
Fig. 5. Train and validation loss of different ResNet50 TL models.
1024 kernels) respectively are repeated six times and another three
conv layers (1 × 1, 512 kernels), (3 × 3, 512 kernels) and (1 × 1, 2048
kernels) respectively are repeated 3 times. Then average polling (avg
pool) is applied. Most of the hidden layers use Batch Normalization,
and ReLU followed by a conv layer. The final layer of the original
ResNet50 model is a fully connected (fc) layer with 1000 out-features
(for 1000 class). We fine-tune the ResNet50 model by replacing this fc
layer with a set of fc layers. The first fc layer has 2048 out-features, then
dropout with a probability of 0.5 is applied. The second fc layer is the
same as the first fc layer. After the second fc layer, ReLU and dropout
4

with probability 0.5 are applied. The final fc layer consists of 2048 in-
features and only 2 out-features for two-class classification (Covid vs
Normal).

In this work, we experimented with transfer learning of 10 different
pre-trained weights of the ResNet50 model. These pre-trained weights
are generated from different datasets. These datasets have many varia-
tions. As we are experimenting with medical images datasets. Medical
images (chest X-rays) are very different than other real-world images.
Researchers are experimenting on various aspects of transfer learning
for medical images like chest X-rays and CT scan images. Supervised
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Fig. 6. Train and validation accuracy of different ResNet50 TL models.
Table 3
Architecture for proposed fine-tuned ResNet50 TL. Building blocks are shown in
brackets, with the numbers of blocks stacked. Downsampling is performed by conv3_1,
conv4_1, and conv5_1 with a stride of 2.

Layer name Output size Layer

conv1 112 × 112 7 × 7, 64, stride 2

conv2_x 56 × 56 3 × 3 max pool, stride 2

[1 × 1, 64
3 × 3, 64
1 × 1, 256] × 3

conv3_x 28 × 28 [1 × 1, 128
3 × 3, 128
1 × 1, 512] × 4

conv4_x 14 × 14 [1 × 1, 256
3 × 3, 256
1 × 1, 1024] × 6

conv5_x 7 × 7 [1 × 1, 512
3 × 3, 512
1 × 1, 2048] × 3

fc1 1 × 1 Average pool
in_features = 2048, out_features = 2048

fc2 1 × 1 Dropout 0.5
in_features = 2048, out_features = 2048

fc3 1 × 1 relu, dropout 0.5
in_features = 2048, out_features=2

transfer learning model trained on ImageNet dataset has been fre-
quently used in medical image analysis. The recent study [49] proposed
5

that pre-trained models on fine-grained data are suitable for medical
analysis and continual pre-training can reduce the domain gap between
natural and medical images. The iNat and NeWT are two large-scale
fine-grained natural image data collections. Researchers explored dif-
ferent questions and carried out various analyses on iNat2021, NeWT,
and ImageNet datasets as well as showed the strengths and weaknesses
of various methods for transferability of supervised and self-supervised
learning [50]. A brief description of pre-trained weights used in our
experiments are listed below:

3.2.1. ChestX-ray14
This pre-trained weight is an in-domain ResNet50 model trained on

the ChestX-ray14 dataset [51] consists of 112K frontal-view chest X-
ray images of 30K unique patients. The detailed information on this
pre-trained weight can be found in Taher et al. [49].

3.2.2. ChexPert
This pre-trained weight is an in-domain ResNet50 model trained

on a large-scale publicly available ChexPert dataset [52] consisting
of 224K chest X-ray images of 65K patients. The detail about this
pre-trained weight can be found in Taher et al. [49].

3.2.3. ImageNet
This pre-trained weight is the ResNet50 model trained on a well-

known ImageNet dataset [53]. These pre-trained weights are loaded
from the PyTorch framework’s pre-trained models collection
(𝑡𝑜𝑟𝑐ℎ.𝑢𝑡𝑖𝑙𝑠.𝑚𝑜𝑑𝑒𝑙_𝑧𝑜𝑜).
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Fig. 7. Train and validation losses and accuracies of all ResNet50 TL models.
3.2.4. 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡_𝐶ℎ𝑒𝑠𝑡𝑋 − 𝑟𝑎𝑦14
A domain-adapted pre-trained ResNet50 model’s weight. This model

was trained on two different datasets. Firstly, the model was initial-
ized with pre-trained ImageNet weight and then again trained on the
ChestX-ray14 dataset [49].

3.2.5. 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡_𝐶ℎ𝑒𝑥𝑃𝑒𝑟𝑡
This is also a domain-adapted pre-trained ResNet50 model’s weight

trained on two different datasets. The model was initialized with pre-
trained ImageNet weight and then again trained on the ChexPert
dataset [49].

3.2.6. 𝑖𝑁𝑎𝑡2021_𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑
The iNat2021 [50] is a large-scale natural world dataset consisting

of 2.7M images of 10K different species. This pre-trained supervised
ResNet50 model’s weight was collected. This pre-trained weight was
downloaded manually from the given source on that paper and the
wight file name was 𝑖𝑛𝑎𝑡2021_𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑_𝑙𝑎𝑟𝑔𝑒.𝑝𝑡ℎ.𝑡𝑎𝑟. The model was
initialized with pre-trained ImageNet weight and then trained on the
iNat2021 dataset.

3.2.7. 𝑖𝑁𝑎𝑡2021_𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑_𝐹𝑟𝑜𝑚_𝑆𝑐𝑟𝑎𝑡𝑐ℎ
This pre-trained supervised ResNet50 model’s weight was also col-

lected from the same source [50] as 𝑖𝑁𝑎𝑡2021_𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑. But this
model only trained on the iNat2021 dataset instead of
initializing with pre-trainedImageNet
weight.𝑖𝑛𝑎𝑡2021_𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑_𝑙𝑎𝑟𝑔𝑒_𝑓𝑟𝑜𝑚_𝑠𝑐𝑟𝑎𝑡𝑐ℎ.𝑝𝑡ℎ.𝑡𝑎𝑟 was the name of
the pre-trained weight file.
6

3.2.8. 𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘
The iNat2021 Mini [50] is a smaller (500K images) version of the

iNat2021 dataset that contains 50 training images per species. This pre-
trained ResNet50 model utilized a self-supervised SwAV algorithm [54]
while training on the iNat2021 Mini dataset. The pre-trained weight
is collected from the same source paper as 𝑖𝑁𝑎𝑡2021_𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 and
𝑖𝑁𝑎𝑡2021_𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑_𝐹𝑟𝑜𝑚_𝑆𝑐𝑟𝑎𝑡𝑐ℎ. The file name of the pre-trained
weight was 𝑖𝑛𝑎𝑡2021_𝑠𝑤𝑎𝑣_𝑚𝑖𝑛𝑖_1000_𝑒𝑝.𝑝𝑡ℎ.

3.2.9. 𝑀𝑜𝐶𝑜_𝑣1
One of the self-supervised learning (SSL) methods is MoCo (Momen-

tum Contrast) v1. This is a contrastive learning method. The pre-trained
ResNet50 model’s weight which is trained on the ImageNet dataset
utilizing MoCo v1 was collected [55]. This weight was trained over 200
epochs.

3.2.10. 𝑀𝑜𝐶𝑜_𝑣2
The SSL method 𝑀𝑜𝐶𝑜_𝑣2 is the improved version of 𝑀𝑜𝐶𝑜_𝑣1.

The pre-trained ResNet50 TL model’s weight which is trained on the
ImageNet dataset utilizing 𝑀𝑜𝐶𝑜_𝑣2 was collected from these [55,56]
research paper. This weight was trained over 800 epochs.

All these pre-trained ResNet50 model weights are used to initialize
our ResNet50 TL models. After initializing these pre-trained weights,
we trained our models on the COVID-19 Radiography dataset.

3.3. Experimental setup, training, and evaluation

Model training and evaluation tasks are performed on Google Colab-
oratory with GPU runtime. We make use of PyTorch, an open-source
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Fig. 8. Confusion Matrix of ResNet50 TL models.
machine learning package created largely by Facebook’s AI Research
department. PyTorch data loader is used to load the data with a
batch size of 32. We use the same configuration and same dataset
for all models. Datasets are downloaded from Kaggle datasets (COVID-
19 Radiography Database) using Kaggle API. Google drive is used for
storing the dataset’s file names as well as trained models checkpoints.

The repeated training technique is taken for several epochs. We
trained all models 50 epochs. The training dataset is used for model
training, and the test dataset is used for model evaluation. In each
epoch, we calculate the cross-entropy loss on the train and test set.
We use Adam [57] optimizer with a learning rate of 0.001, betas
of (0.9, 0.999), eps of 1e−08, weight decay of 0. Table 4 presents
hyperparameters of our experimental setup.

The train and validation loss depicted in Fig. 5 gives us an overview
of how the model trained over a series of epochs. We see the train and
validation loss of most of the models are very close to and overlap each
7

Table 4
Hyperparameters of ResNet50 TL model.

Parameters Parameters value

Batch size 32
Optimizer Adam
Learning rate 0.001
Betas (0.9, 0.999)
Eps 1e−08
Weight decay 0
Criterion Cross Eentropy Loss

other. But 𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘 model shows a different picture.
The validation loss is increased over epochs while the training loss
decreased slightly. Although the initial loss is very little compared
to other models. On the other hand, 𝑀𝑜𝐶𝑜_𝑣2 and ImageNet do not
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show improvement over a higher number of epochs. Another thing
we noticed is that decreasing rate of loss was very high in the initial
stages (fewer epochs) and this rate becomes almost constant on higher
epochs. This could be because of the transfer learning technique with
pre-trained weights.

Train and validation accuracy of different models are depicted in
Fig. 6. It shows that most of the models reaches their highest accuracy
very quickly because of transfer learning with pre-trained weights. No
overfitting is shown up in any models. 𝑀𝑜𝐶𝑜_𝑣1 shows a fluctuation of
validation accuracy at the 29th epoch where it sharply decreases the
validation accuracy. We can also see a similar pattern in 𝐶ℎ𝑒𝑠𝑡_𝑋−𝑟𝑎𝑦14
ut the accuracy difference is smaller than 𝑀𝑜𝐶𝑜_𝑣1. On the other

hand, we see an interesting pattern on ImageNet and 𝑀𝑜𝐶𝑜_𝑣2 models
that validation accuracy is higher than train accuracy but does not over-
lap like 𝑖𝑁𝑎𝑡2021_𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 and 𝑖𝑁𝑎𝑡2021_𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑_𝐹𝑟𝑜𝑚_𝑆𝑐𝑟𝑎𝑡𝑐ℎ.
The opposite picture we can see in ChexPert, 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡_𝐶ℎ𝑒𝑠𝑡𝑋−𝑟𝑎𝑦14,
and 𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘 models where train accuracy is higher
than validation accuracy but the difference of those accuracies are little.

Fig. 7, shows a comparative summary of train and validation losses
as well as train and validation accuracies of all models. If we compare
train loss of different models, it shows that 𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘
comes first in terms of lowest loss and 𝑀𝑜𝐶𝑜_𝑣2 and ImageNet come
last over 50 epochs of training. In terms of validation loss, we can see
𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘 achieves the lowest loss in the fewer number
of epochs but the loss increases gradually in higher epochs. ChexPert
and 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡_𝐶ℎ𝑒𝑠𝑡𝑋 − 𝑟𝑎𝑦14 compete with each other for the lowest
loss and 𝑀𝑜𝐶𝑜_𝑣2 and ImageNet competes for the highest loss. In terms
of training and validation accuracy, 𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘 comes
first with the highest accuracy, and 𝑀𝑜𝐶𝑜_𝑣2 and, ImageNet come last
with lower accuracies. Hence, it shows that 𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘,
𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡_𝐶ℎ𝑒𝑠𝑡𝑋−𝑟𝑎𝑦14, and ChexPert models perform very well with
higher training and validation accuracy.

4. Result analysis and discussion

Confusion Matrix, Precision, Recall, F1 Score, and Accuracy are the
standard evaluation method for the classification model. As the name
suggests, the Confusion Matrix gives us a matrix as output and describes
the complete performance of the model [58]. It has four terminologies
including True Positive (TP), False Positive (FP), False Negative (FN),
and True Negative (TN).

Precision is the number of correctly identified cases among all the
identified cases.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑃 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃 ) (1)

Recall is the number of correctly identified cases from all the
positive representations.

𝑅𝑒𝑐𝑎𝑙𝑙, 𝑅 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁) (2)

F1 Score is the harmonic average of precision and recall.

𝐹1𝑆𝑐𝑜𝑟𝑒, 𝐹1 = 2 × (𝑃 × 𝑅)∕(𝑃 + 𝑅) (3)

Accuracy, on the other hand, can be define as the ratio of corrected
predictions to the total input samples.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠)

∕(𝑇 𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑚𝑎𝑑𝑒) (4)

The confusion matrix of the evaluation of all models is shown
in Fig. 8. It shows that 𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘 correctly identified
Covid and Normal (without COVID-19) with 99% samples. ChexPert
classified Covid with 99% and Normal with 98% samples correctly.
𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡_𝐶ℎ𝑒𝑠𝑡𝑋 − 𝑟𝑎𝑦14 classified Covid with 99% and Normal with
97% samples correctly. And ChestX-ray14 classified Covid with 98%
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and Normal with 97% samples correctly. On the other hand, 𝑀𝑜𝐶𝑜_𝑣2
Table 5
Various scores calculated in test dataset for different ResNet50 TL model where Pre
= Precision, Re = Recall, F1 = F1-score, Sup = Support, Acc = Accuracy, INCXR14 =
𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡_𝐶ℎ𝑒𝑠𝑡𝑋−𝑟𝑎𝑦14, INCxP = 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡_𝐶ℎ𝑒𝑥𝑃𝑒𝑟𝑡, iNSup = 𝑖𝑁𝑎𝑡2021_𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑,
iNSupFS = 𝑖𝑁𝑎𝑡2021_𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑_𝐹𝑟𝑜𝑚_𝑆𝑐𝑟𝑎𝑡𝑐ℎ, iNMSwAV = 𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘.

Model Class Pre Re F1 Sup Acc

ChestX-ray14 Covid 0.9791 0.9737 0.9764 723 0.9766Normal 0.9741 0.9795 0.9768 730

ChexPert Covid 0.9861 0.9834 0.9848 723 0.9849Normal 0.9836 0.9863 0.9850 730

ImageNet Covid 0.8394 0.7953 0.8168 723 0.8224Normal 0.8073 0.8493 0.8278 730

INCXR14 Covid 0.9902 0.9737 0.9819 723 0.9821Normal 0.9744 0.9904 0.9823 730

INCxP Covid 0.9650 0.9544 0.9597 723 0.9601Normal 0.9553 0.9658 0.9605 730

iNSup Covid 0.9635 0.9488 0.9561 723 0.9566Normal 0.9501 0.9644 0.9572 730

iNSupFS Covid 0.9696 0.9710 0.9703 723 0.9704Normal 0.9712 0.9699 0.9705 730

iNMSwAV Covid 0.9931 0.9903 0.9917 723 0.9917Normal 0.9904 0.9932 0.9918 730

𝑀𝑜𝐶𝑜_𝑣1 Covid 0.9411 0.9281 0.9345 723 0.9353Normal 0.9297 0.9425 0.9361 730

𝑀𝑜𝐶𝑜_𝑣2 Covid 0.7974 0.8382 0.8173 723 0.8135Normal 0.8312 0.7891 0.8096 730

and ImageNet scores are very low compared to other models. We can
conclude that the 𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘 achieves the highest score
among all other models.

Various standard evaluation scores are shown in Table 5, where
column Support represents the number of samples is used during evalu-
ation. The evaluation has been done on the test dataset which contains
1453 chest X-ray images where 723 Covid class and 730 Normal class.
The precision, recall, and f1-score are calculated both for the Covid
class and Normal class.

Table 5 shows that the 𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘 model achieves the
highest precision, recall, f1-score, and accuracy score among all models.
Also, the scores are very promising. The precision, recall and f1-score
are 99.31%, 99.03% and 99.17% respectively for Covid class and
99.04%, 99.32% and 99.18% respectively for Normal class including
99.17% validation accuracy. That means all the evaluation scores are
above 99%. On the other hand, ImageNet and 𝑀𝑜𝐶𝑜_𝑣2 have gotten
minimum scores amongst other models. Although 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡_𝐶ℎ𝑒𝑠𝑡𝑋-
𝑎𝑦14, ChexPert and ChestX-ray14 have achieved above 97% f1-score,
he 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡_𝐶ℎ𝑒𝑠𝑡𝑋 − 𝑟𝑎𝑦14 identified covid class over complete
amples 99% correctly.

Table 6 shows the maximum, minimum, and average accuracy as
summary of all TL models during training and validation. From the

able, we can summarize that the 𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘 model has
reached the highest position by achieving maximum train (99.95%) and
validation (99.52%) accuracy among other models.

4.1. Comparison result

Several numbers of research have been done for the identification
and classification of COVID-19 in recent years. Researchers are trying to
find out a better way to solve this problem. We examined and compared
our suggested model with an existing similar work in this part shown
in Table 7.

The above-related studies proposed different approaches to carry
out the solution for classifying COVID-19 from medical images. Our
work has achieved 99.17% validation accuracy on the COVID-19 Ra-
diography dataset. Ten different pre-trained ResNet50 are used in
this work. Among them, the 𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘 model shows

excellent performance.
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Table 6
Accuracy summary of different ResNet50 TL models during 50 epochs of training where
Acmx = Maximum Accuracy, Acmn = Minimum Accuracy, Avacy = Average Accuracy,
E = epoch, INCXR14 = 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡_𝐶ℎ𝑒𝑠𝑡𝑋− 𝑟𝑎𝑦14, INCxP = 𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡_𝐶ℎ𝑒𝑥𝑃𝑒𝑟𝑡, iNSup
= 𝑖𝑁𝑎𝑡2021_𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑, iNSupFS = 𝑖𝑁𝑎𝑡2021_𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑_𝐹𝑟𝑜𝑚_𝑆𝑐𝑟𝑎𝑡𝑐ℎ, iNMSwAV =
𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘.

Model Set Acmx Acmx
at E

Acmn Acmn
at E

Avacy
of 50E

ChestX-ray14 Train 0.9764 47 0.8988 1 0.9688
Test 0.9780 36 0.9456 3 0.9696

ChexPert Train 0.9886 30 0.9107 1 0.9810
Test 0.9862 41 0.5038 1 0.9701

ImageNet Train 0.8024 44 0.6729 1 0.7925
Test 0.8259 31 0.7688 1 0.8123

INCXR14 Train 0.9904 34 0.9206 1 0.9823
Test 0.9828 46 0.5561 2 0.9644

INCxP Train 0.9583 18 0.8879 1 0.9519
Test 0.9621 43 0.6965 1 0.9514

iNSup Train 0.9494 42 0.8666 1 0.9419
Test 0.9566 24 0.7770 1 0.9467

iNSupFS Train 0.9594 31 0.8816 1 0.9506
Test 0.9711 42 0.9284 6 0.9611

iNMSwAV Train 0.9995 39 0.9363 1 0.9951
Test 0.9952 23 0.9140 1 0.9892

𝑀𝑜𝐶𝑜_𝑣1 Train 0.9379 44 0.8179 1 0.9289
Test 0.9353 45 0.8665 29 0.9256

𝑀𝑜𝐶𝑜_𝑣2 Train 0.8027 42 0.7447 1 0.7917
Test 0.8135 47 0.5045 1 0.7961

Table 7
Comparison of the proposed model using similar existing studies.

SN Reference Method Accuracy (%)

01 [59] COVIDX-Net 90
02 [60] MADE-based CNN 94.65 ± 2.1
03 [61] VGG16 80
04 [62] Deep CNN 93
05 [63] UNet3D Deep Network 90.80
06 [21] ResNet + Location Attention 86.70
07 [36] DeTraC Deep CNN 93.1
08 [34] VGG16 97.67
09 Proposed 𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘 (Fine-tuned ResNet50) 99.17

5. Conclusion and future work

In this paper, we have presented a fine-tuned ResNet50 model
applying transfer learning technique for effectively classifying COVID-
19 from chest X-ray images. For this, we have modified the ResNet50
model by adding extra two fully connected layers than the default
ResNet50 model. We have utilized ten different pre-trained weights,
trained on varieties of large-scale datasets applying various methods
such as supervised learning, self-supervised learning, etc. Among these
ResNet50 TL models, the 𝑖𝑁𝑎𝑡2021_𝑀𝑖𝑛𝑖_𝑆𝑤𝐴𝑉 _1𝑘 model performs
excellent that was pre-trained on the iNat2021 Mini dataset with
the SwAV algorithm. Our work achieved 99.17% validation accuracy,
99.95% train accuracy, the precision of 99.31%, recall of 99.03%, and
an F1-score of 99.17% for covid cases in the two-class classification
(Covid and Normal). Some domain-adapted (𝐼𝑚𝑎𝑔𝑒𝑁𝑒𝑡_𝐶ℎ𝑒𝑠𝑡𝑋−𝑟𝑎𝑦14)
nd in-domain (ChexPert, ChestX-ray14) models showed promising im-
ortance in medical image classification by achieving relatively better
cores than models only trained on ImageNet dataset. As future work,
e can conduct further studies to present a qualitative representation
f transfer knowledge to our model and detect the region of interest of
9

OVID-19 in medical images.
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