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Abstract

The most well-known and widely used mathematical representations of the physiology of a

diabetic individual are the Sorensen and Hovorka models as well as the UVAPadova Simu-

lator. While the Hovorka model and the UVAPadova Simulator only describe the glucose

metabolism of a subject with type 1 diabetes, the Sorensen model was formulated to simu-

late the behaviour of both normal and diabetic individuals. The UVAPadova model is the

most known model, accepted by the FDA, with a high level of complexity. The Hovorka

model is the simplest of the three models, well documented and used primarily for the devel-

opment of control algorithms. The Sorensen model is the most complete, even though some

modifications were required both to the model equations (adding useful compartments for

modelling subcutaneous insulin delivery) and to the parameter values. In the present work

several simulated experiments, such as IVGTTs and OGTTs, were used as tools to com-

pare the three formulations in order to establish to what extent increasing complexity trans-

lates into richer and more correct physiological behaviour. All the equations and parameters

used for carrying out the simulations are provided.

Introduction

Type 1 diabetes mellitus is a pathological condition in which blood glucose levels reach exces-

sively high values because of absent or insufficient insulin production [1–3]. It occurs mainly in

juveniles, due to a combination of genetic determinants and environmental factors [1–3]. The

worldwide spread of the disease has reached the 8.5% of all diabetes cases in the world, with

about 210,000 affected children in the US only [4, 5]. Type 2 diabetes mellitus (T2DM) individu-

als, instead, exhibits excessive blood glucose concentrations mainly due to the insufficient effi-

cacy of circulating insulin to stimulate tissue glucose uptake (insulin resistance) and is

correlated with obesity [6, 7]. T2DM affects more than 400 million people around the world and

it is estimated to double within the next 10 years [8, 9], with the increasing in obesity, age and

the population size of ethnic groups at higher risk [6]. While metformin, troglitazone, sulfonilur-

eas and other oral hypoglycemic drugs are, together with an improved lifestyle with increased
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exercise and weight loss, the first treatment choice for most patients with Type 2 diabetes [8],

individuals with Type 1 diabetes mellitus require exogenous insulin administrations to supply

the lack of endogenous pancreatic insulin production. Insulin cannot be administered orally

and must be delivered subcutaneously, either with discrete boli (multiple daily injections, MDI)

or through insulin pumps. Recently, much research efforts has been addressed to the develop-

ment of the so-called “artificial pancreas” (AP) [10–12], a system that includes an insulin pump

connected to a continuous glucose monitor (CGM) and to a (possibly model-based) control

algorithm: the pump delivers an insulin amount calculated on the basis of predicted glycemia.

In this case, insulin is administered via a small cannula inserted through the skin into the subcu-

taneous tissue. Insulin is released as a basal continuous infusion at pre-programmed variable

rates, which differ from individual to individual, and as insulin boli at mealtimes.

Different strategies, using different mathematical models needed to describe and predict

the dynamics of glucose and insulin, exist for the development of the control algorithms

embedded in the APs [13–16]. The accuracy of these models is important in successfully deter-

mining the optimal therapy, i.e. the appropriate insulin dose to deliver in order to avoid both

hyperglycaemic and hypoglycaemic episodes. The algorithms to be embedded in the pumps

must therefore be developed, in-silico, testing their performance over a wide variety of possible

physiological situations against a good mathematical model of the glucose-insulin system,

implemented in software. The availability of physiologically plausible mathematical models to

be used as part of the control algorithm and as a tool for simulating and testing the system in
silico is therefore critical for the development of safe and effective insulin infusion control algo-

rithms. It is mandatory that these models are able to reproduce the correct physiological

behaviour under different conditions and/or experimental procedures. It is to be noted that

many mathematical models of the glucose-insulin system exist. Some of these may be relatively

simple approximations, to be used in order to interpret specific clinical testing procedures and

identifying specific parameters of interest from relatively small data sets. Others may be rela-

tively complex representations of what is known about the different aspects of glycemic con-

trol, including meals, insulin and other hormones, several distribution compartments and so

on. We will henceforth denote the simpler models as “compact” and the more extended, hypo-

thetically complete models as “maximal”. What is needed for control algorithm development

is therefore a physiologically correct maximal model.

In the present work we analyse and compare three such maximal models of the glucose/

insulin system, all three of which have been used in the development of infusion control algo-

rithms: the Hovorka model [17–19], the Sorensen model [20, 21] and the more recent UVAPa-

dova model [22–27]. The UVAPadova implementation used in the present work refers to the

S2017 model version [24], which is the latest updated version of the model.

The implemented version of the Sorensen model derives from the equations presented in

his original PhD thesis [20], with the corrections introduced in [28] and modified to account

for both (possible) subcutaneous administration of insulin and for the reduced insulin-sensi-

tivity, which would be expected in a diabetic patient with respect to a normal individual [1].

The three models present different levels of complexity and a comparison among them gives

the opportunity to understand to which extent increasing complexity translates into richer and

more correct physiological behaviour.

Methods

Comparison among models simulations

In the present work three maximal models of the glucose/insulin system are compared based

on glucose and insulin predictions following several simulated experiments. The models
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analysed are the Hovorka model [17–19], the Sorensen model [20, 21] and the UVAPadova

model [22–27]. The Sorensen model is the most complex; it has been extensively described in

the Author’s PhD thesis and has been thoroughly analyzed in a previous work [28], correcting

some errors which were present in the original description by the Author. An extended version

of the model, including a representation of the gastrointestinal tract, was also presented in

[28], and is used in the present work to simulate experiments where glucose is orally adminis-

tered. Sorensen’s model consists of three sub-models (one for glucose, one for insulin and one

for glucagon) that describe the time-course of the variable concentrations in the brain, liver,

heart and lungs, periphery (tissue and muscles), gut and kidney. In its original version, it

includes pancreatic release of insulin, which in the present work is not considered, given our

primary attention to applications for Type 1 Diabetes Mellitus (T1DM). For completeness, all

equations are reported in the Appendix. The set of parameter values adopted by Sorensen in

his original work is compatible with the normal physiological response to any type of simu-

lated perturbation experiment. The peculiar conditions of T1DM are approximated by Soren-

sen introducing modifications to the original model. This modified version is the one adopted

in the next section. On the contrary, the Hovorka model and the UVAPadova model were

originally formulated to represent the physiological behaviour of T1DM individuals, and no

modification is necessary for the purpose of the present work. The comparison among the

three models was conducted in three steps:

• a series of in-silico experiments were set-up and the three models were compared in terms of

insulin and glucose concentrations over time;

• the three models were adapted to observations of glucose and insulin from an Oral Glucose

Tolerance Test performed on a normal individual: the procedure allowed the estimation of

the amount of insulin that would be needed to be administered as a bolus in order to obtain

the observed time courses, together with some other crucial model parameters. The estima-

tion procedure followed a weighted least squared approach, with weights ωi(i = 1, . . ., n) the

inverse of the squared expectations. The variance-covariance matrix of the estimates was

obtained with a linear approximation of the model at the optimum by computing

ŝ2ðĴ T Ŝ � 1 ĴÞ� 1
, where J is the Jacobian; σ2 × S is the variance-covariance matrix of the

observed vector; S is a diagonal matrix with elements (i, i) equal to the squared expectations;

ŝ2 is calculated as 1

n� p

P
iôi � ðyobs

i � ŷiÞ
2
, with n the number of observations and p the num-

ber of free parameters. The symbol ^ is used to indicate quantities computed at the

optimum.

• the estimates obtained in the previous step were used to simulate subsequent two other

OGTTs, with the administration of the same amount of glucose and insulin given in the first

OGTT, with the aim of simulating glucose and insulin concentrations during one day as to

mimic three meals.

The in-silico experiments. The implemented in-silico experiments are described as

follows:

• Intra Venous Glucose Tolerance Test (IVGTT): a continuous administration of basal insulin

of 6.67 mU/min, in conjunction with 0.5 g/kg of glucose administered over 3 minutes.

• IVGTT + insulin bolus: a continuous administration of basal insulin of 6.67 mU/min, in con-

junction with 0.5 g/kg of glucose administered over 3 minutes, accompanied by a bolus of

1000mU delivered in 1 minute.
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• OGTT + basal insulin administration: an oral administration of 100 g of glucose in 1 minute

was simulated together with a continuous administration of basal insulin of 6.67 mU/min.

• OGTT + basal insulin + insulin bolus: an OGTT of 100 g of glucose was administered over 1

minute with a continuous basal insulin delivery of 6.67 mU/min in combination with 1000

mU IVITT bolus in 1 minute.

All the above experiments were performed by setting the initial conditions (which also rep-

resent the steady state conditions) at a glucose concentration of 5 mmol/L with a basal insulin

delivery of 6.67 mU/min for each model considered.

The Sorensen T1DM model

The original version of the Sorensen model was adapted by the Author himself to represent a

subject with T1DM. In this process of adapting normal physiology to impaired physiology, the

model was modified by removing the pancreatic insulin secretion sub-model and fixing the

scale of absolute concentrations of the metabolic source and sink functions in such a way that

the diabetic response to any combination of circulating glucose, insulin and glucagon concen-

trations would have been the same as that of normal individuals subjected to similar condi-

tions. The model adapted in this way therefore represents what would be a “normal” response

in a subject with T1DM: for this reason it suffers from an important limitation in that it does

not take into account the physiological abnormalities typically present in association with dia-

betes. In fact, the Author stated that the objective of modelling diabetes condition in the con-

text of his work was “. . .to provide a basis for designing and assessing improved insulin

therapies, and in particular for developing an insulin infusion algorithm for closed-loop insu-

lin delivery based on blood glucose measurement.”. In this perspective, the comparison of the

efficacy of different therapeutic regimens might be considered as largely independent of the

details of the physiological model adopted: this is of course no longer true when comparing

different models with one another.

A set of normal glucose and insulin concentrations at baseline (Table 1) must be adopted to

calculate metabolic rates during diabetic model simulations. This stems from the fact that the

post-absorption steady state in the insulin-treated diabetic subjects cannot be determined by

the model parameters themselves (as is the case for simulations of normal subjects) as it is

dependent on an external forcing function (γIVI), which represents the input rate of peripheral

venous insulin administration (the therapeutic regimen).

In the case of T1DM modelling, an iterative method for variable initialization must be

adopted. Assuming that the response of diabetic subjects to circulating glucose concentrations

Table 1. Reference normal basal state glucose and insulin concentrations used to fix the concentration scales

defining normal metabolic source and sink rates.

Reference normal basal concentrations Used for calculation of

GB
L ¼ 101

mg
dl Hepatic Glucose Uptake, rHGU

Hepatic Glucose Production, rHGP

GB
PI ¼ 86:8

mg
dl Peripheral Glucose Uptake rPGU

GB
H ¼ 91:9

mg
dl Pancreatic Glucagon Release rPΓR

IBL ¼ 21:4 mU
l Hepatic Glucose Uptake rHGU

Hepatic Glucose Production rHGP

IBPI ¼ 5:30 mU
l Peripheral Glucose Uptake rPGU

IBH ¼ 15:2 mU
l Pancreatic Glucagon Release rPΓR

https://doi.org/10.1371/journal.pone.0257789.t001
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is the same as in the normal situation, and setting the steady-state values of local glucose and

insulin concentrations to values compatible with normal physiology, the glucose concentra-

tions that are at equilibrium with the basal insulin imposed by the external variable γIVI must

be calculated.

The procedure is performed by Sorensen and is reported in the Appendix in the subsection

“T1DM Sorensen Model initialization”.

The equations derived from the steady state conditions are the same as those obtained

under normal conditions (model for normal subjects) except for the equation related to IH0,

where the rPIR function is set to 0 and the γIVI is included in the numerator:

IH0 ¼
gIVI0

QI
H � QI

Lð1 � FLICÞ � QI
Kð1 � FKICÞ � QI

Pð1 � FPICÞ � QI
B

ð1Þ

IPV0 ¼ IH0ð1 � FPICÞ ð2Þ

IK0 ¼ IH0ð1 � FKICÞ ð3Þ

IL0 ¼ IH0ð1 � FLICÞ ð4Þ

IB0 ¼ IH0 ð5Þ

IJ0 ¼ IH0 ð6Þ

IPI0 ¼ IPV0 �
QI

PT
I
P

VPI
ðIH0 � IPV0Þ ð7Þ

All the equations of the Sorensen model are reported in the Appendix (subsection “The Sor-

ensen Model”). As mentioned above, the γIVI input was introduced by Sorensen into the equa-

tion for IH (insulin heart and lung compartment). This obviously represents a simplification,

because in the treatment of patients with T1DM insulin is administered subcutaneously, via

bolus or continuous infusion. To make the three models comparable, two subcutaneous com-

partments were therefore added to the revised Sorensen model (which already includes the

gastro-intestinal compartment [28]). The model of the subcutaneous compartments used is

equivalent to that present in the Hovorka model. The formulation adopted in the UVAPadova

model is marginally more complicated: if the parameter ka1 is set to zero and the parameter ka2

is set to same value as the parameter kd, then the two formulations are equivalent. All the

parameter values and descriptions are reported in Table 2.

The Hovorka model

The Hovorka model includes two equations for glucose kinetics (amount of glucose in plasma

and tissue). Input into the plasma compartment is determined by endogenous glucose produc-

tion, which depends on plasma insulin concentration, and by absorption through the gastro-

intestinal compartment. The equations and the values of the model parameters are shown in

the Appendix. The term related to Endogenous Glucose Production (EGP), which appears in

the final part of Eq [165], represents a linear inverse relationship between glucose production

and insulin. This formulation could lead to negative EGP predictions in the presence of high

levels of insulin concentrations or in correspondence with particular values of some parame-

ters: a representation that incorporates a saturated effect would be more realistic. The gastro-

intestinal tract is represented by two compartments: the absorption glucose compartment
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Table 2. Sorensen model parameters.

Parameter Units Meaning Value

QG
B L/min Vascular blood water flow rate for Brain (glucose-related) 0.59

VG
BV L Distribution Volume of Glucose in Brain Vascular space 0.35

VBI L Distribution Volume of Brain Interstitial space 0.45

TB min Trans-capillary diffusion time constant for Brain 2.1

rBGU mmol/min Brain Glucose Uptake rate 0.388889

QG
L L/min Vascular blood water flow rate for Liver (glucose-related) 1.26

QG
K L/min Vascular blood water flow rate for Kidney (glucose-related) 1.01

QG
P L/min Vascular blood water flow rate for Peripheral tissues (glucose-related) 1.51

QG
H L/min Vascular blood water flow rate for Heart/lung (glucose-related) 4.37

rRBCU mmol/min Red Blood cell Glucose Uptake rate 0.0555556

VG
H L Distribution Volume of Glucose in Heart/lung Vascular space 1.38

QG
J L/min Vascular blood water flow rate for Gut/Jejunum (glucose-related) 1.01

VG
J L Distribution Volume of Glucose in Gut/Jejunum Vascular space 1.12

rJGU mmol/min Gut/Jejunal Glucose Uptake or utilization rate 0.233394

QG
A L/min Vascular blood water flow rate in hepatic Artery (glucose-related) 0.25

VG
L L Distribution Volume of Glucose in Liver space 2.51

VG
K L Distribution Volume of Glucose in Kidney space 0.66

VG
PV L Distribution Volume of Glucose in Peripheral Vascular space 1.04

VPI L Distribution Volume of Peripheral Interstitial space 6.74

TG
P min Trans-capillary diffusion time constant for Peripheral tissues (glucose-related) 5

rBPGU mmol/min Baseline rate of Peripheral Glucose Uptake 0.194444

b
0

PGU
# PGU Insulin effect midpoint 0.703

b
1

PGU
# PGU Insulin effect half-amplitude 0.652

b
2

PGU
# PGU Insulin effect steepness 0.338

b
3

PGU
# PGU Insulin effect shift 5.82

b
0

HGP
# HGP gluCagon effect scale 2.7

b
1

HGP
# HGP gluCagon scale 0.388852

τC min Inverse of the decay rate for the glucagon-driven intensification of f2 Hepatic Glucose Uptake suppression 65

b
2

HGP
# HGP Insulin effect midpoint 1.21

b
3

HGP
# HGP Insulin effect half-amplitude 1.14

b
4

HGP
# HGP Insulin effect steepness 1.66

b
5

HGP
# HGP Insulin effect shift 0.887748

τI min Inverse of the decay rate for the insulin-driven intensification of MI
HGP and MI

HGU (same for both) 25

b
6

HGP
# HGP Glucose effect midpoint 1.0923

b
7

HGP
# HGP Glucose effect half-amplitude 1.0846

b
8

HGP
# HGP Glucose effect steepness 0.206667

b
9

HGP
# HGP Glucose effect shift 0.504543

rHGP0 mmol/min Baseline value of rHGP at initial time (t0) 0.318611

b
0

HGU
# HGU Insulin effect half-amplitude 2

b
1

HGU
# HGU Insulin effect steepness 0.549306

b
2

HGU
# HGP Glucose effect midpoint 5.66

b
3

HGU
# HGP Glucose effect half-amplitude 5.66

b
4

HGU
# HGP Glucose effect steepness 2.44

b
5

HGU
# HGP Glucose effect shift 1.4783

rHGU0 mmol/min Baseline value of rHGU at initial time (t0) 0.111111

(Continued)
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Table 2. (Continued)

Parameter Units Meaning Value

b
0

KGE
mmol/min KGE Glucose effect midpoint 0.394444

b
1

KGE
mmol/min KGE Glucose effect half-amplitude 0.394444

b
2

KGE
/mM KGE Glucose effect steepness 0.198

b
3

KGE
mM KGE Glucose effect shift, point of transition between tanh and linear regime 25.5556

b
4

KGE
mmol/min KGE Glucose linear effect intercept 1.834

b
5

KGE
mmol/min/mM KGE Glucose linear effect slope 0.0872

QI
B L/min Vascular blood water flow rate for Brain (insulin-related) 0.45

VI
B L Distribution Volume of Insulin in Brain vascular space 0.26

VI
H L Distribution Volume of Insulin in Heart/Lung vascular space 0.99

QI
L L/min Vascular blood water flow rate for Liver (insulin-related) 0.9

QI
K L/min Vascular blood water flow rate for Kidney (insulin-related) 0.72

QI
P L/min Vascular blood water flow rate for Periphery (insulin-related) 1.05

QI
H L/min Vascular blood water flow rate for Heart and Lungs (insulin-related) 3.12

VI
J L Distribution Volume of Insulin in Gut Vascular space 0.94

QI
J L/min Vascular blood water flow rate for Gut (insulin-related) 0.72

VI
L L Distribution Volume of Insulin in Liver Vascular space 1.14

QI
A L/min Vascular blood water flow rate in hepatic Artery (insulin-related) 0.18

FLIC # Fraction of insulin Liver clearance 0.459

FKIC # Fraction of insulin Kidney clearance 0.3

VI
K L Distribution Volume of Insulin in Kidney Vascular space 0.51

VI
PV L Distribution Volume of Insulin in Peripheral Vascular space 2.442

TI
P min Trans-capillary diffusion time constant for Peripheral tissues (insulin-related) 20

FPIC # Fraction of insulin Periphery clearance 0.24

Γ0 pM Starting value for glucagon 11.43

rMCC L/min Rate constant of glucagon clearance 0.91

VΓ L Glucagon distribution volume 11.31

b
0

PCR
# PCR Glucose effect midpoint 2.93

b
1

PCR
# PCR Glucose effect half-amplitude 2.1

b
2

PCR
# PCR Glucose effect steepness 4.18

b
3

PCR
# PCR Glucose effect shift 0.621325

b
4

PCR
# PCR Insulin effect midpoint 1.31

b
5

PCR
# PCR Insulin effect half-amplitude 0.61

b
5

PCR
# PCR Insulin effect steepness 1.06

b
5

PCR
# PCR Insulin effect shift 0.471419

γIVG0 mmol/min Intravenous Glucose Infusion starting value 0

γSCI0 pmol/min Subcutaneous Insulin Infusion starting value 0

γIVI0 pmol/min Intravenous Insulin Infusion starting value 46.746

S0 mmol Baseline value of the stomach compartment at initial time (t0) 0

kjs 1/min Glucose transfer rate from Stomach to Jejunum compartment 0.01

J0 mmol Baseline value of the jejunum compartment at initial time (t0) 0

kgj 1/min Glucose transfer rate from Jejunum to Gut compartment 0.03672

krj 1/min Glucose transfer rate from Jejunum to Delay compartment 0.0351517

R0 mmol Baseline value of the delay compartment at initial time (t0) 0

klr 1/min Glucose transfer rate from Delay to Ileum compartment 0.0289023

L0 mmol Baseline value of the ileum compartment at initial time (t0) 0

(Continued)
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Table 2. (Continued)

Parameter Units Meaning Value

kgl 1/min Glucose transfer rate from Ileum to Gut compartment 0.0267142

f # Fraction of absorbed glucose 1

Roga0 mmol/min Baseline value of Roga at initial time (t0) 0

rPIR0 pmol/min Baseline value of rPIR at initial time (t0) 0

GB
H # Reference normal basal state of glucose in the Heart/Lung compartment 5.105

GB
PI # Reference normal basal state of glucose in the Peripheral Interstitial fluid space 4.822

GB
L # Reference normal basal state of glucose in the Liver compartment 5.61

IBL # Reference normal basal state of insulin in the Liver compartment 150.01

IBPI # Reference normal basal state of insulin in the Peripheral Interstitial fluid space 37.128

IBH # Reference normal basal state of insulin in the Heart/Lung compartment 106.05

τS /min Time constant for insulin absorption 55

S10 mU Starting value of the amount of short-acting insulin in the compartment 1 starting value Determined

S20 mU Starting value of the amount of short-acting insulin in the compartment 2 starting value Determined

IH0 pM Starting value of IH (insulin in the Heart/Lung compartment) at initial time (t0) Determined

IPV0 pM Starting value of IPV (insulin in the Peripheral Vascular plasma space) at initial time (t0) Determined

IK0 pM Starting value of IK (insulin in the Kidney compartment) at initial time (t0) Determined

IB0 pM Starting value of IB (insulin in the Brain compartment) at initial time (t0) Determined

IG0 pM Starting value of IG (insulin in the Gut compartment) at initial time (t0) Determined

IPI0 pM Starting value of IPI (insulin in the Peripheral Interstitial fluid space) at initial time (t0) Determined

IL0 pM Starting value of IL (insulin in the Liver compartment) at initial time (t0) Determined

INL0
# Starting value of INL (normalized insulin in the Liver compartment) at initial time (t0) Determined

INPI0 # Starting value of INPI (normalized insulin in the Peripheral Interstitial fluid space) at initial time (t0) Determined

INH0
# Starting value of INH (normalized insulin in the Heart/Lung compartment) at initial time (t0) Determined

rPIC0 pmol/min Starting value of rPIC at initial time (t0) Determined

MPGU0 # Starting value of MPGU at initial time (t0) Determined

GH0 mM Starting value of GH (glucose in the Heart/Lung compartment) at initial time (t0) Determined

GK0 mM Starting value of GK (glucose in the Kidney compartment) at initial time (t0) Determined

GL0 mM Starting value of GL (glucose in the Liver compartment) at initial time (t0) Determined

GPV0 mM Starting value of GPV (glucose in the Peripheral Vascular blood water space) at initial time (t0) Determined

GBV0 mM Starting value of GBV (glucose in the Brain Vascular space) at initial time (t0) Determined

GJ0 mM Starting value of GJ (glucose in the Gut compartment) at initial time (t0) Determined

GBI0 mM Starting value of GBI (glucose in the Brain Interstitial fluid space) at initial time (t0) Determined

GPI0 mM Starting value of GPI (glucose in the Peripheral Interstitial fluid space) at initial time (t0) Determined

GN
H0

# Starting value of GNH (normalized glucose in the Heart/Lung compartment) at initial time (t0) Determined

GN
PI0 # Starting value of GNPI (normalized glucose in the Peripheral Interstitial fluid space) at initial time (t0) Determined

GN
L0

# Starting value of GNL (normalized glucose in the Liver compartment) at initial time (t0) Determined

MI
HGP0

# Starting value of MI
HGP at initial time (t0) Determined

MI
HGPinf0 # Starting value of MI

HGPinf at initial time (t0) Determined

MG
HGP0

# Starting value of MG
HGP at initial time (t0) Determined

MI
HGU0

# Starting value of MI
HGU at initial time (t0) Determined

MI
HGUinf0 # Starting value of MI

HGUinf at initial time (t0) Determined

MG
HGU0

# Starting value of MG
HGU at initial time (t0) Determined

rKGE0 mmol/min Starting value of rKGE at initial time (t0) Determined

rLIC0 pmol/min Starting value of rLIC at initial time (t0) Determined

rKIC0 pmol/min Starting value of rKIC at initial time (t0) Determined

MG
PGR0

# Starting value of MG
PGR at initial time (t0) Determined

(Continued)
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(D1), which is fed by the glucose equivalents of ingested carbohydrates, and the conversion
compartment (D2) through which uptake of glucose occurs through a linear transfer to the

plasma compartment. Insulin is released into the body by means of two subcutaneous com-

partments, S1 and S2, and then into the bloodstream which represents the plasma insulin com-

partment. All the values of parameters are shown in Table 3.

The UVAPadova model

The UVAPadova model used in the present work is the S2017 formulation presented in [24],

which is an updated version of the original 2013 model [23]. This new formulation includes

two new routes of insulin administration: inhaled insulin and intradermal insulin. Some

parameters (kp3, Vmx, kp1), which in the 2013 version were assumed to be constant, in the later

version are made to be time-varying functions. Since their formulations have not been

reported in the original work, in the present study we assumed piecewise constant functions

for kp3 and Vmx from the inspection of Fig 2 in [24], whereas kp1 was set to a constant value. In

addition, a new variable (kir) is also added, which represents a decreasing factor of insulin

dependent glucose utilization (Uid). These latest modifications were included into the model

to account for variability of metabolism over 24 hours.

The UVAPadova S2017 version makes use of two compartments for glucose (amounts of

glucose respectively in plasma and tissues) and two compartments for insulin (amounts of

insulin in plasma and liver). The glucose enters the system from the liver (EGP) and the

Table 2. (Continued)

Parameter Units Meaning Value

MI
PGR0

# Starting value of MI
PGR at initial time (t0) Determined

GN
0

# Starting value of ΓN at initial time (t0) Determined

MG0
HGP0

# Starting value of MG0
HGP at initial time (t0) Determined

f20 # Starting value of f2 at initial time (t0) Determined

MG
HGP0

# Starting value of MG
HGP at initial time (t0) Determined

rPΓC0 pmol/min Starting value of rPΓC at initial time (t0) Determined

rBPGR pM/min Baseline value of rPΓR Determined

rPGU0 mmol/min Starting value rate of the Peripheral Glucose Uptake Determined

rHGP0 mmol/min Starting value of the rate of Hepatic Glucose Production Determined

rHGU0 mmol/min Starting value of the rate of Hepatic Glucose Uptake Determined

rPΓR0 pM Starting value of the rPΓR at initial time (t0) Determined

BGU: Brain Glucose Uptake

GGU: Gut Glucose Utilization

HGP: Hepatic Glucose Production

HGU: Hepatic Glucose Uptake

KGE: Kidney Glucose Excretion

PGU: Peripheral Glucose Uptake

RBCU: Red Blood Cell Glucose Uptake

KIC: Kidney Insulin Clearance

LIC: Liver Insulin Clearance

PIC: Peripheral Insulin Clearance

PΓC: Plasma Glucagon Clearance

MΓC: Metabolic Glucagon Clearance

PΓR: Pancreatic Glucagon Release

https://doi.org/10.1371/journal.pone.0257789.t002
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gastro-intestinal tract [22]. Glucose exits the system due to renal elimination and due to glu-

cose utilization, which in turn is divided into two terms: the Uid function, insulin-dependent

utilization (whose correct formulation is reported in the 2013 version [23]) and the constant

Uii, uptake of glucose by the brain and erythrocytes.

Insulin appears in plasma via three routes of administration: subcutaneous, inhaled and

intra-dermal. The subcutaneous insulin sub-model is described in [25], while the intra-dermal

model appears in [29] and the inhaled model is presented in [26]. The action of insulin on glu-

cose is delayed by the introduction of variables that act both on EGP (decreasing as insulin

increases) and on insulin-dependent glucose utilization Uid (increasing as insulin increases).

Once again it should be noted that at high values of insulin concentration, the UVAPadova

model would predict negative EGP’s.

Table 3. Hovorka model parameters [17–19].

Parameter Units Meaning Value

G0 mmol/L The measurable blood glucose concentration starting value 5

k12 /min Rate constant for transfer of glucose from the peripheral tissue into the blood stream 0.066

BoW kg Body weight 70

Fc
010

mmol/min Insulin-indipendent glucose flux 0.679

ka1 /min Deactivation rate constant 0.006

ka2 /min Deactivation rate constant 0.06

ka3 /min Deactivation rate constant 0.03

kb1 L/(min2mU) Activation rate constant 3.072e-05

kb2 L/(min2mU) Activation rate constant 4.92e-05

kb3 L/(min�mU) Activation rate constant 0.00156

M0 mmol/min Unit of meal 5.55556

D0 mmol/min Oral CHO intake expressed as glucose equivalent starting value 0

MealRate1 g/min Rate of CHO in the meal 1 10.625

AG # Factor expressing the utilization of CHO to glucose 0.8

τD min Time constant 40

u0 mU/min Rate of subcutaneous insulin infusion into compartment 1 starting value 6.68

u1 mU/min Rate of subcutaneous insulin infusion into compartment 1 at time TimeInf11 1000

ubasal mU/min Continuous rate of subcutaneous insulin infusion into compartment 1 6.68

τS min Time constant for insulin absorption 55

ke /min The fractional elimination rate of insulin from the blood 0.138

VG L The distribution volume of the blood glucose compartment Determined

VI L The distribution volume of the blood insulin compartment Determined

EGP0 mmol/min Endogenous release of glucose from the liver at the zero insulin concentration Determined

Q10 mmol Amount of glucose starting value Determined

FR0 mmol/min Renal excretion of glucose Determined

D10 mmol Glucose equivalence of CHO in the absorption compartment starting value Determined

D20 mmol Glucose in the conversion compartment starting value Determined

S10 mU Amount of short-acting insulin in the compartment 1 starting value Determined

S20 mU Amount of short-acting insulin in the compartment 2 starting value Determined

UI0 mU/min Insulin absorption rate into the blood starting value Determined

I0 mU/L Insulin concentration starting value Determined

UG0 mmol/min The exogenous input of glucose into blood stream from food absorption (the glucose absorption rate) starting value Determined

x10 /min The effect of insulin on distribution/transport of glucose starting value Determined

x20 /min The effect of insulin on glucose disposal starting value Determined

x30 # The (remote) effect of insulin on endogenous glucose production that released from liver starting value Determined

https://doi.org/10.1371/journal.pone.0257789.t003
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The glucagon sub-model is composed of only one differential equation including:

• endogenous glucagon production (input);

• subcutaneous glucagon administration (input);

• glucagon elimination (output).

Glucagon affects glucose by enhancing its production (EGP increases with increasing gluca-

gon levels in plasma); this effect also occurs through a delayed action. All the values of parame-

ters and their sources are shown in Table 4.

Results

A first set of simulations showed that without making any change to the Sorensen model

parameter values, the model is insufficient to predict reasonable time courses of blood glucose

concentrations in diabetic subjects undergoing an OGTT: the curve reaches a maximum glyce-

mia of 10 mM, a much lower value than that observed with the other two formulations (18

mM) and presumably observed in such patients; also, the time required for plasma glucose to

return to its basal value is approximately 300 min, about half the time required for the Hovorka

and UVAPadova models. One reason for the observed divergences from the expected behav-

iour relies on the assumption that, apart from the defect in insulin production, the physiology

of a diabetic individual is otherwise the same as that of a normal individual. This assumption

represents an understandable simplification in the absence of further information, but diabetic

people are actually known to suffer from reduced insulin sensitivity as well [1], and avoiding

to consider diabetic insulin resistance could lead to misleading results. In Fig 1 it can be seen

that glucose concentrations forecasts by the Sorensen model differ substantially from those by

the other two models. This suggests the need to modify the values of those Sorensen model

parameters involved in the description of insulin-dependent glucose uptake. In order to check

whether Sorensen’s model was qualitatively different from the other two models, parameter

values were estimated for Sorensen’s model by adapting its predictions to the corresponding

Hovorka and UVAPadova predicted time-courses for an OGTT plus insulin experiment

(OGTT + basal insulin + insulin bolus in-silico experiment). In order to obtain comparable

predictions, three steps were followed:

1. The peripheral venous insulin volume (VI
PV) of the Sorensen model was increased to initial-

ize steady-state insulinemia to a value as close as possible to the initial insulin concentra-

tions observed for the Hovorka and UVAPadova models under the same basal insulin

infusion conditions. Parameters FPIC and FLIC, which represent fractional peripheral and

hepatic insulin clearance, respectively, were also increased.

2. Plasma glucose concentrations, after oral administration of 100g of glucose without insulin

delivery, were simulated with the Hovorka and Sorensen models and then compared to

determine the values of the Sorensen parameters involved in the description of insulin-

independent glucose production and elimination. The parameters and functions involved

in the two processes are rBHGP (the constant basal glucose production), rJGU (the constant rate

of intestinal glucose utilization) and MG
HGP (the hepatic glucose production) depending on

parameters β0HGP, β1HGP and β2HGP, which were all reduced to make the liver less sensitive

to circulating glucose concentrations.

3. In the final step the plasma glucose concentrations from the Sorensen model, following an

oral administration of 100g of glucose in combination with both an insulin infusion and an
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Table 4. UVAPadova model parameters.

Parameter Ref. Units Meaning Value

k1 1 /min Rate parameters 0.042

k2 1 /min Rate parameters 0.071

VG 1 dL/kg Distribution volume of glucose 1.49

Gb F mg/dL Glucose plasma starting value 90

Uii 1 mg/kg/min Glucose uptake by the brain and erythrocytes 1

m1 5 /min Rate parameters 0.356

m2 5 /min Rate parameters 0.644

m3 5 /min Liver degradation rate 0.534

m4 5 /min Rate parameters 0.258

VI 1 L/kg Distribution volume of insulin 0.044

kmax0 3 /min Maximum levels of gastric emptying rate starting value 0.03

kmaxB 3 /min Maximum levels of gastric emptying rate Breakfast 0.04

kmaxL 3 /min Maximum levels of gastric emptying rate Lunch 0.028

kmaxD 3 /min Maximum levels of gastric emptying rate Dinner 0.03

Dose F mg Initial glucose Dose 100000

kabs0 3 /min Rate constant of intestinal absorption starting value 0.147

kabsBL 3 /min Rate constant of intestinal absorption Breakfast and Lunch 0.13

kabsD 3 /min Rate constant of intestinal absorption Dinner 0.147

f F # Fraction of glucose absorbed 0.7

BW F kg Body weight 70

kmin0 3 /min Minimum levels of gastric emptying rate starting value 0.008

kminB 3 /min Minimum levels of gastric emptying rate Breakfast 0.015

kminL 3 /min Minimum levels of gastric emptying rate Lunch 0.01

kminD 3 /min Minimum levels of gastric emptying rate Dinner 0.008

b 1 # Fraction of dose corresponding to the flexes of gastric emptying curve 0.68

c 1 # Fraction of dose corresponding to the flexes of gastric emptying curve 0.09

Qsto0 3 mg Glucose into the Stomach starting value 0

Qsto10 3 mg Glucose into the Solid Stomach compartment starting value 0

Qsto20 3 mg Glucose into the Liquid Stomach compartment starting value 0

Qgut0 3 mg Glucose into the Gut compartment starting value 0

Rameal0 3 mg/kg/min Rate of appearance of the meal starting value 0

EGP0 F mg/kg/min Endogenous Glucose Production starting value 2.4

kp2 1 /min Hepatic glucose effetiveness 0.0007

kp30 3 mg/kg/min/pmol/L Hepatic insulin sensitivity starting value 0.014

kp3B 3 mg/kg/min/pmol/L Hepatic insulin sensitivity Breakfast 0.015

kp3LD 3 mg/kg/min/pmol/L Hepatic insulin sensitivity Lunch and Dinner 0.014

ξ C mg/kg/min/ng/L Hepatic responsivity to glucagon 0.013

ki 1 /min Rate parameter accounting for delay between insulin signal and insulin action 0.0066

kH C /min Inverse of time delay between glucagon concentration and action 0.009

XH
0

3 ng/L Delayed glucagon action on EGP starting value 0

X0 3 pmol/L Insulin action on the glucose utilization starting value 0

Gth C mg/dL Hypoglycemic threshold 60

Vm0 1 mg/kg/min Rate parameter 4.65

Vmx0 3 mg/kg/min/pmol/L Insulin sensitivity 0.058

VmxB 3 mg/kg/min/pmol/L Insulin sensitivity Breakfast 0.051

VmxLD 3 mg/kg/min/pmol/L Insulin sensitivity Lunch and Dinner 0.058

risk0 F # Blood glucose risk function starting value 0

(Continued)
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Table 4. (Continued)

Parameter Ref. Units Meaning Value

r1 C # Risk parameter 1 1.5

r2 C # Risk parameter 2 0.8

Km0 1 mg/kg Glucose mass appearing in Michaelis-Menten relation 466.21

p2U 1 /min Rate constant of insulin action on the peripheral glucose utilization 0.084

ke1 1 /min Glomerular filtration rate 0.0007

ke2 1 mg/kg Renal threshold of the glucose 269

ka1 2 /min Rate constant of non-monomeric insulin absorption 0.0018

ka2 2 /min Rate constant of monomeric insulin absorption 0.0182

kd 2 /min Rate constant of insulin dissociation 0.0164

kaIih 5 /min Rate constant 0.026

FIih 5 /min Rate constant 0.14

Iihss 5 pmol/kg Inhaled insulin starting value 0

Ts F min Time constant 1

n C /min Clearance rate 0.01

Hb F ng/L Glucagon plasma concentration starting value 58

ρ C /min Rate parameter accounting for delay between static glucagon secretion and plasma glucose 0.86

σ C ng/L/min/mg/dL/pmol Responsivity of alpha cells for glucose level 0.01

δ C ng/L�mg/dL Responsivity of alpha cells for glucose rate of change 0.98

SRd
Hb 4 ng/L/min Glucagon secretion component 2 starting value 0

kh1 F /min Rate parameter describing subcutaneous glucagon kinetics 1 0

kh2 F /min Rate parameter describing subcutaneous glucagon kinetics 2 0

kh3 F /min Rate parameter describing subcutaneous glucagon kinetics 3 0

Hsc1b 4 ng/L Glucagon subcutaneous concentration 1 starting value 0

Hsc2b 4 ng/L Glucagon subcutaneous concentration 2 starting value 0

RaHb 4 ng/L/min Rate of appearance of the glucagon starting value 0

usc0 F pmol/kg/min Exogenous insulin infusion rate 0.667

uscBolo F pmol/kg/min Exogenous insulin infusion rate bolus at the breakfast time 100

uscBasal F pmol/kg/min Exogenous insulin infusion rate at the basal condition 0.667

uih F pmol/kg/min Inhaled insulin infusion rate 0

Gpb D mg/kg Glucose plasma concentration starting value Determined

E0 D mg/kg/min Renal excretion starting value Determined

Ipb D pmol/kg Insulin plasma concentration starting value Determined

Ib D pM Insulin plasma starting value Determined

XL
0

D pM Delayed insulin action in the liver starting value Determined

kp1 D mg/kg/min Extrapolated EGP at zero glucose and insulin Determined

Gtb D mg/kg Glucose tissue concentration starting value Determined

Uid0 D mg/kg/min Insulin-dependent utilization starting value Determined

kir D # Decrease factor for insulin-dependent glucose utilization Determined

Ilb D pmol/kg Insulin liver concentration starting value Determined

α D /mg Constant Determined

β D /mg Constant Determined

kempt0 D /min Emptying rate of the Stomach starting value Determined

f2 D # Function 2 Determined

I0
0

D pM Delayed insulin starting value Determined

Isc1ss D pmol/kg Amount of non-monomeric insulin in the subcutaneous space starting value Determined

Isc2ss D pmol/kg Amount of monomeric insulin in the subcutaneous space starting value Determined

Gb D mg/dL Subcutaneous glucose starting value Determined

RaIsc0 D pmol/kg/min Subcutaneous insulin kinetics starting value Determined

(Continued)
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insulin bolus, were made as close as possible to the Hovorka time courses, by modifying the

parameters involved in insulin-dependent glucose uptake (MI
PGU). The modified parameters

were β0PGU and β1PGU, both decreased in order to reflect reduced peripheral tissue sensitiv-

ity to insulin, as expected in diabetic subjects.

Table 4. (Continued)

Parameter Ref. Units Meaning Value

RaIih0 D pmol/kg/min Inhaled insulin kinetics starting value Determined

RaI D pmol/kg/min External insulin rate of appearance starting value Determined

SRb
H D ng/L/min Glucagon secretion starting value Determined

SRS
Hb D ng/L/min Glucagon secretion component 1 starting value Determined

1: Meal Simulation Model of the Glucose-Insulin System (2007) [22]

2: GIM, Simulation Software of Meal Glucose–Insulin Model (2007) [25]

3: One-Day Bayesian Cloning of Type 1 Diabetes Subjects: Towards a Single-Day UVA/Padova Type 1 Diabetes Simulator (2016) [27]

4: The UVA/Padova Type I Diabetes Simulator Goes From Single Meal to Single Day [24]

5: Improving Efficacy of Inhaled Technosphere Insulin (Afrezza) by Postmeal Dosing: In-silico Clinical Trial with the University of Virginia/Padova Type 1 Diabetes

Simulator [26]

F: Fixed

D: Determined

C: Calibrated

https://doi.org/10.1371/journal.pone.0257789.t004

Fig 1. Blood glucose concentrations from Hovorka (solid line), Sorensen (dashed line) and UVAPadova (dotted

line) models with the original Sorensen model, during an in-silico OGTT experiment in conjunction with an

insulin bolus.

https://doi.org/10.1371/journal.pone.0257789.g001
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Fig 2 shows the plasma glucose concentrations resulting from the three models following

the changes described above. The original and the modified parameter values are reported in

Table 5 (“(before)” and “(after)” columns respectively). In this figure the predictions from the

Sorensen model are comparable with those obtained under the Hovorka and UVAPadova

Fig 2. Blood glucose concentrations from the Hovorka (solid line), Sorensen (dashed line) and UVAPadova

(dotted line) models with the modified Sorensen model, during an in-silico OGTT experiment in conjunction

with an insulin bolus.

https://doi.org/10.1371/journal.pone.0257789.g002

Table 5. Results of the set up calibration (trial and error) procedure to make the simulation of the Sorensen model

comparable with the simulations of the Hovorka and UVAPadova formulations.

Before After

FPIC(#) 0.150 0.240

FLIC(#) 0.400 0.459

VI
PVðLÞ 0.740 2.442

rBHGP
mmol
min

� �
0.861 0.319

rJGU
mmol
min

� �
0.111 0.233

β0HGP(#)1 1.42 1.092

β1HGP(#)1 1.41 1.085

β2HGP(#)1 0.62 0.2067

β0PGU(#)2 7.03 0.703

β1PGU(#)2 6.52 0.652

1: MG
HGP ¼ b0HGP � b1HGPtanh½b2HGPðGN

L � b3HGPÞ�
2: MI

PGU ¼ b0PGU þ b1PGUtanh½b2PGUðINPI � b3PGUÞ�

https://doi.org/10.1371/journal.pone.0257789.t005
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model, exhibiting similar maximum concentrations despite a faster return to baseline condi-

tions. Similar time courses were obtained by slightly modifying parameters FPIC and FLIC but

by tripling VI
PV that was set to a value very close to that assumed by UVA/Padova. Large

changes were also necessary for the parameters involved in the insulin-dependent glucose utili-

zation which were decreased by about ten times. This seems however to be reasonable for a

diabetic individual.

The other planned simulations, reported in the subsection “The in-silico experiments”, are

shown in Figs 3–5. The figures show a similar behaviour of the three models with slight diver-

gences: the Hovorka time courses differ from the trends observed for the Sorensen and UVA-

Padova models in the OGTT experiment without insulin administration (Fig 3); Sorensen’s

predictions deviate from the other two in the IVGTT experiment (Fig 4). In the latter figure,

the Sorensen model shows reduced insulin sensitivity compared to the other two formulations,

exhibiting a much slower return to the basal values, more in line with the profile of a diabetic

individual.

OGTT model fitting

The three models were compared in terms of their ability to adapt to observed glucose concen-

trations from a normal individual undergoing an OGTT with the administration of 100 g glu-

cose. Data were taken from Sorensen’s PhD thesis [20]. The fitting procedure was performed

by minimizing the sum of the weighted squared residuals (weighted least-squares estimation,

WLS, with weights the inverse of the squared expectations). The choice to use real data from a

Fig 3. Blood glucose concentrations from the Hovorka (solid line), Sorensen (dashed line) and UVAPadova

(dotted line) models, during the in-silico OGTT experiment.

https://doi.org/10.1371/journal.pone.0257789.g003
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normal individual derives from the unavailability in the literature of OGTT data from diabetic

subjects, since OGTT is not a standard procedure performed on diabetic people. It should be

underscored that model parameters needed to be assessed numerically via fitting, because the

parameter values used in the simulations above (representing the response of a diabetic indi-

vidual), were inadequate to represent the physiological behaviour of normal subjects, who

show different rates of absorption and production of glucose.

For each of the three models the fitting procedure allowed the estimation, among other

things, of the amount of insulin administered as a bolus; the basal insulin was instead deter-

mined in such a way that all three models started (i.e. at time zero, before the glucose and insu-

lin bolus administrations) from the same level of glucose concentration.

The list of the estimated parameters for the three models, together with their before and

after estimation process values, are reported in Table 6. The last two columns of the table

report the Standard Deviations (SDs) and the Coefficients of Variation (CVs) of the estimated

parameters. Since the obtained estimate of the parameter kb3 was essentially zero, the parame-

ter was set to 0 and no variability for it was computed. CVs larger than 100% are not reported

and they are identified only as being>100%. This happened for all the free parameters of the

UVAPadova model. Fig 6 shows the performance of the three formulations.

For the Sorensen and Hovorka models, the parameters left free to vary are those related to

the external insulin input (γSCIin1 and u1, respectively), to the insulin sensitivity mechanism

(some parameters in the MI
PGU function for the Sorensen model and parameters kb1 and kb3 for

the Hovorka model) and to the transfer rates that appear in the subcutaneous insulin compart-

ments (leaving parameter τS in Eq [177] to vary only for the Sorensen formulation).

Fig 4. Blood glucose concentrations from the Hovorka (solid line), Sorensen (dashed line) and UVAPadova

(dotted line) models, during the in-silico IVGTT experiment in conjunction with an insulin bolus.

https://doi.org/10.1371/journal.pone.0257789.g004
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Fig 5. Blood glucose concentrations from the Hovorka (solid line), Sorensen (dashed line) and UVAPadova

(dotted line) models, during the in-silico IVGTT experiment.

https://doi.org/10.1371/journal.pone.0257789.g005

Table 6. Before vs after fitting.

Sorensen Before After SD CV

τS(min) 55 39.538 1.898 4.78%

β0PGU(#)� 7.03 3.387 0.387 11.41%

β1PGU(#)� 6.52 2.608 0.402 15.42%

Hovorka

kb1
L

min2mU

� �
3.07E-05 1.571E-04 2.875e-05 18.30%

kb3
L

minmU

� �
1.56E-03 5.341E-17 / /

UVAPadova

k1
1

min

� �
0.042 0.095 0.755 >100%

k2
1

min

� �
0.071 0.016 0.155 >100%

kp3

mg
kgmin =

pmol
kg

� �
0.014 0.015 0.257 >100%

x
mg

kgmin =
ng
L

� �
0.013 0.011 3.091 >100%

ki
1

min

� �
0.0066 0.0080 11.461 >100%

kH
1

min

� �
0.009 0.012 10.313 >100%

VmxB
mg

kgmin =
pmol
L

� �
0.051 0.040 24.735 >100%

Km0

mg
kg

� �
466.21 0.002 0.045 >100%

p2u
1

min

� �
0.084 0.050 29.79 >100%

�: MI
PGU ¼ b0PGU þ b1PGUtanh½b2PGUðINPI � b3PGUÞ�

https://doi.org/10.1371/journal.pone.0257789.t006
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The UVAPadova parameters involved in the fitting procedure are those that appear in the

external insulin input (uscBolo), in the representation of insulin sensitivity (kp3, VmxB and Km0),

in the delayed effect of the insulin (ki and p2u), in the mechanisms of glucose transport between

the plasma and tissue compartments (k1 and k2) and in the effect of glucagon on glucose pro-

duction (ξ and kH).

While for the Sorensen and Hovorka model it was necessary to optimize the values of four

and three parameters respectively, for the UVAPadova model it was necessary to leave ten

parameters free to vary to obtain a good fit of the model predictions to data. The greater num-

ber of parameters to be estimated for the UVA/Padova formulation may be due to its great

complexity. While it is true that the Sorensen model includes the largest number of equations,

it should also to be noted that all parameters are set to values compatible with normal

Fig 6. A)Blood glucose concentrations of Sorensen (dashed line), Hovorka (solid line), UVAPadova (dashed dotted line) models with data points

from Sorensen PhD thesis (asterisks); B) Hovorka (solid line) vs data points (asterisks); C) Sorensen (dashed line) vs data points (asterisks); D)

UVAPadova (dashed dotted line) vs data points (asterisks).

https://doi.org/10.1371/journal.pone.0257789.g006
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physiology. The parameters of the Hovorka and UVA/Padova models are instead indicated for

a diabetic individual, but the more compact formulation of the Hovorka model requires fewer

modifications to obtain a good fit.

The estimated boluses of insulin required by the three model formulations are: 56387.7

pmol (8886.6 SD, 15.76% CV) (approximately 8 IU), 2361 mU (402.19 SD, 17.03% CV)

(approximately 2.3 IU) and 849 pmol/kg (2.508e+05, >100% CV) (approximately 8 IU) for the

Sorensen, Hovorka and UVAPadova model respectively. While a similar amount of insulin is

necessary for the Sorensen and UVAPadova formulations, the Hovorka model estimated a

value four times lower than that estimated by the other two.

Fig 6 shows the glycemia time-course predicted by the three models after the fitting process.

As expected, the Sorensen model produces the best fit of predictions to observed concentra-

tions. The Hovorka and UVAPadova models seem to be insufficient to represent the final part

of the experiment: the Sorensen model is able to predict the rebound observed around the

minute 200, where after a decrease below the basal conditions, there is a recovery towards the

baseline.

Subsequent three OGTTs in one day. Fig 7 shows the results obtained with three subse-

quent OGTTs in one day (at 7:00, 12:00 and 19:00) with parameter values set to the estimates

obtained by adapting the models to the OGTT data in Fig 6. The Sorensen model appears to be

the only one capable of reproducing exactly the same glycemic pattern in the three sub-experi-

ments, with a return to pre-bolus conditions after each OGTT. The UVAPadova formulation

is the one for which subsequent OGTTs bring glucose concentrations to lower and lower val-

ues (until they fall below a 2mM glycaemia). This feature could be overcome by adopting

decreasing values for the parameters VmxB and kp3, expressing peripheral and central insulin

sensitivities respectively, as observed in normal individuals [30]. However, Hinshaw [30] dem-

onstrated that there was no evidence of differences between breakfast and dinner in terms of

glucose disappearance in Type 1 diabetic subjects. In the present simulated experiment the val-

ues of the two aforesaid parameters were kept constant during the day at the values obtained

in the fitting procedure. The Hovorka model predicts glucose concentrations lower than those

observed in the first sub-experiment both in the second and third OGTT, nevertheless never

producing concentrations below 3mM.

Discussion

Much work has been done within the scientific community, and is still being done, on the

study of appropriate models of the glucose/insulin system, aimed at supporting the develop-

ment of algorithms for controlled and automatic administration of insulin (the “artificial pan-

creas”). These models must be able to correctly describe the relevant physiology and need to

be identified on each single individual: the ability of a model to provide reliable predictions of

the glucose and insulin time courses allows the development of robust control algorithms for

automatic glucose control in the management of T1DM patients. Among the models present

in the literature, the Sorensen model [20], the Hovorka model [17–19] and the UVAPadova

model [22, 24–27] are most frequently used to represent virtual patients to this end. The Sor-

ensen model appears to be, among these three, the most complete and detailed in terms of

physiological description and parameter values, with its 22 nonlinear differential equations

and 135 parameters. Conversely, the UVAPadova model is the most recent and, judging from

the number of publications citing it, is the most frequently used, also because its 2013 [23] ver-

sion was approved by the FDA.

One limit in using this model, however, lies in the difficulty in deciding the values of its

many parameters (about 100). In fact, although the mathematical description of the model
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appears complete from the aggregated publications describing it, the values of several of its

parameters are not published, and this prevents the use of the model by potential users. From

a usability point of view, the Hovorka model is the simplest, with few model parameters, and

therefore easier use for simulation purposes. With the aim of making them available to the

interested scientific community, this work provides a complete description of all three models,

together with the values of all of the respective parameters.

The present work compares the three models in terms of their performance when simulat-

ing the response of a T1DM individual to different glucose stimuli under different types of

insulin administration. The comparison among the three models was performed by imple-

menting four types of in-silico experiments.

Fig 7. A)Blood glucose concentrations of Sorensen (dashed line), Hovorka (solid line), UVAPadova (dashed dotted line) models after three OGTT in

conjunction with three insulin bolus; B) Hovorka (solid line); C) Sorensen (dashed line); UVAPadova (dashed dotted line).

https://doi.org/10.1371/journal.pone.0257789.g007
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• The Sorensen [20] model can be defined as a maximal model, as it describes the relationship

and interactions between the most important actors of glucose metabolism (glucose, insulin

and glucagon) for both a normal individual and a diabetic. This means that, compared to the

other two, it provides a description of the role of the pancreas, so as to allow not only the

simulation of a Type 1 diabetic patient but also of a Type 2 diabetic subject, as well as a nor-

mal individual, for which insulin secretion is still maintained or fully guaranteed, respec-

tively. As mentioned above, the model is well documented with regards to the description of

both equations and parameters. It does not provide for a mathematical formalization of the

gastrointestinal tract and subcutaneous compartments of insulin, but these two drawbacks

can be easily overcome by recovering the missing parts from other model formulations.

• The UVAPadova 2018 [24] model is a maximal model that describes the relationship among

glucose, insulin and glucagon only for patients with Type 1 diabetes. Compared to the Soren-

sen model, the UVAPadova model includes a description of gastric emptying and glucose

absorption and offers the possibility of considering different types of insulin and glucagon

administration routes (subcutaneous, intradermal, inhaled). Most of the model equations

are well documented, but some of these are described only in qualitative terms (as for the kp1

and kir functions in Eq [119] and in Eq [123] respectively): these time-varying parameters

were therefore kept constant throughout the simulations. The most important flaw however

lies in the lack of values for some parameters. Table 4 reports the values of the parameters

used in the in-silico experiments, column Ref; some of them have been found in the litera-

ture and the sources are provided (listed with numbers), some have been determined (indi-

cated with the letter D), some have been set at known or reasonable values (denoted by the

letter F), the rest of the unknown parameters have been calibrated (and are indicated with

the letter C). Therefore, the model, on the basis of what is reported in literature, is not of

immediate implementation and use. The present work provides the scientific community

with the most complete description having appeared so far of this model’s equations and

parameters, gathering all the information available from the several sources in the literature

[22, 24–27].

• The Hovorka model [18] is the simplest among the three analysed models; it describes the

relationship between glucose and insulin in subjects with in Type 1 diabetes: therefore, like

the UVAPadova model, it does not present a description of the secretion and the release of

endogenous insulin. While simpler than the other two, this model does provide a clear for-

malization of gastro-intestinal absorption after oral administration of glucose, and it

includes subcutaneous compartments for the representation of external insulin administra-

tion. The Hovorka model appears to be easy to understand, sraightforward to implement,

and well documented [17–19].

The Sorensen model, when used for a diabetic individual, is insufficient to adequately

describe the response to any type of experiment if no adjustment is made in terms of parameter

values. This is due to the fact that, since people with Type 1 diabetes are at risk of severe hyper-

glycaemia when undergoing perturbation experiments, no perturbation data are available from

the literature, so for this Author it was not possible to derive parameter values under these

altered conditions. Sorensen therefore adopts the same formalization and quantification used

in normal individuals to approximately describe the physiological behaviour of a diabetic sub-

ject, apart from the exclusion of the representation of insulin secretion. Fig 1 highlights the

behaviour of the Sorensen model, clearly different compared with the other two. The Hovorka

and UVAPadova models instead, show similar time courses, reaching the same maximum

value with a slight difference in the return to basal conditions. After making the appropriate
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modifications to the Sorensen model, as described in the “Methods” section, the resulting pre-

dictions resemble those obtained with the other two formulations (see Fig 2), although a faster

recovery towards the basal values is observed. It is however clear that, in the absence of actual

observation data on diabetic subjects, it is not possible to state which of the three models comes

closer to describing the correct physiology. Fig 3, mimicking an OGTT without insulin bolus,

shows similar trends for Sorensen and UVAPadova, with similar maximum values reached.

The Hovorka model predicts higher glucose concentrations and a slower return to baseline

conditions. The higher concentrations could be due both to higher than expected endogenous

glucose production and to lower tissue glucose uptake in the absence of an insulin bolus.

In Fig 4, where the IVGTT experiment is simulated in conjunction with an insulin bolus,

the Hovorka and UVAPadova models show a similar time course, while the predictions of the

Sorensen model appear to be qualitatively different. Although no observations on actual

patients are available to demonstrate the plausibility of the three models, the predictions

obtained with the Sorensen model seem to be more in line with the expected response of a dia-

betic subject since exhibit a slower return towards pre-experiment values.

In the IVGTT experiment without insulin bolus administration (Fig 4) UVAPadova and

Hovorka are quite in agreement, while Sorensen shows a glucose trend more consistent with

an insulin-resistant profile. These results have been obtained by modifying some model param-

eters of the Sorensen formulation, in particular those relating to the description of both central

and peripheral insulin sensitivity (Table 5). It is likely that,by changing the values of other

parameters, a greater similarity of the predictions of the three models may be obtained. How-

ever, in the absence of clear evidence pointing to the better performance of one model with

respect to the others, introducing changes in the parameter values chosen by the Author after a

thorough literature search is not advisable unless supported by physiological justifications.

The adaptation of the three models to real OGTT data of a normal individual emphasizes

the ability of all three models to adapt to real glycemic trends. Even if the setting in which the

comparison is made is not optimal (observations are made on a normal individual and not on a

diabetic patient), this procedure allows us to investigate the ability of the models to adapt to real

data, leaving some parameters free to vary and estimating the administered insulin dose neces-

sary to reproduce the glucose observations. A “good” model should be able to elucidate the rela-

tionship between glucose and insulin and should be able to predict a recovery to baseline

conditions, with a time course as close as possible to that of a normal subject, with a reasonable

amount of insulin. This aspect is important when these models are used in model-based control

algorithms, so that the ability of a model to adapt to real observations becomes an essential fea-

ture and deviations from what is observed emphasize important physiological deficiencies.

Fig 6 shows a very good performance of all three models in adapting to the data, but we can

see that the Sorensen model is the only one able to predict the recovery phase with a rebound

after a hypo-glycaemic period produced by the administration of insulin, reaching the last

available data point. This could be due to the fact that the parameter values used for the Soren-

sen model were those originally adapted to the physiology of a normal individual. Surprisingly,

while the Hovorka model tries to predict a recovery phase, which will indeed occur at a later

time, the UVA/Padova model appears to stabilize at a lower blood glucose levels despite a

greater number of free model parameters (ten for UVa-Padova, four for Sorensen and three

for Hovorka). The estimated amount of insulin administered as a bolus, needed to obtain the

predictions of Fig 6 are 2.3 IU, 8.5 IU and 8 IU for the Hovorka, UVAPadova and Sorensen

formulations respectively. The much lower value observed for the Hovorka model could

depend on the estimated values of the other free parameters: insulin sensitivity, explicitly rep-

resented in the Hovorka model by the parameter kb1, is estimated in fact at about 1.6 × 10−4,

and if insulin sensitivity is high, then necessary amount of insulin to be delivered decreases. In
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this context however it should be noted that a lower kb3 (roughly representing central periph-

eral insulin) determines greater production of endogenous glucose, which on one hand com-

pensates for the augmented sensitivity to peripheral insulin, while on the other causes final

recovery to attain a higher blood glucose concentration. Concurrently with a large bolus of

insulin obtained for the Sorensen model, the parameters of the MI
PGU function (representing

insulin sensitivity) all decreased by about a factor of two. For the UVAPadova model an exter-

nal insulin input (uscBolo) of approximately 8 IU is required. A much lower Km0 parameter

(approximately zero) in Eq (123) is consistent with much improved insulin sensitivity, acceler-

ating the effect of insulin on glucose utilization.

Conclusion

The three models seem to reproduce all the simulated experimental situations quite well with-

out obvious divergences. The Sorensen model produces predictions similar to those of the

other two models once some parameter values are modified, suggesting that, with suitable

adaptation, this model could be used to also represent the physiology of diabetic subjects. An

updated formulation including both the gastrointestinal tract and the subcutaneous insulin

deposit compartment should be used in this case.

With the information available at the present time, the final choice about which model to

use lies in the confidence that the experimenter places on how plausibly the mathematics rep-

resents the underlying physiology, as well as on the simplicity, robustness and versatility of the

formulation. A more complex model with a large number of parameters might in principle fit

better with observations, but the complexity of a model not only makes identification statisti-

cally harder, but it suffers from possible over-fitting and consequently fragile, unreliable fore-

casts. From this point of view, the Sorensen model is the one with the greatest number of

parameters (adding the fixed, determined and free ones). However, since they are well docu-

mented and an in-depth bibliographic research has been carried out by the Author, most of

the parameters are set to known values, so as to require the estimation of a lower number of

free parameters than the UVAPadova model, which in any case is poorly documented. Con-

versely, Hovorka’s model is the simplest, and still fits sufficiently well the observed data. We

notice however that the Sorensen model is the only one capable of predicting the rebound

phase in the OGTT experiments, where the other two models fail.

From purely in silico experiments it is not possible to draw definitive conclusions on which

model is physiologically more credible. The next logical step in the evaluation of these and pos-

sibly other maximal models of the glucose-insulin system would be to compare their predic-

tions against actual observational data, obtained with different experimental set-ups in

patients with a range of normal and diabetes conditions.

Appendix

The Sorensen Model

Mass Balance—Glucose

BRAIN

VG
BV

dGBV

dt
¼ QG

BðGH � GBVÞ �
VBI

TB
ðGBV � GBIÞ ð8Þ

VBI
dGBI

dt
¼

VBI

TB
ðGBV � GBIÞ � rBGU ð9Þ
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HEART AND LUNGS

VG
H
dGH

dt
¼ QG

BGBV þ QG
LGL þ QG

KGKþ

þQG
PGPV � QG

HGH � rRBCU

ð10Þ

GUT

VG
J

dGJ

dt
¼ QG

J ðGH � GJÞ � rJGU ð11Þ

LIVER

VG
L
dGL

dt
¼ QG

AGH þ QG
J GJ � QG

LGL þ rHGP � rHGU ð12Þ

KIDNEY

VG
K
dGK

dt
¼ QG

KðGH � GKÞ � rKGE ð13Þ

PERIPHERY

VG
PV

dGPV

dt
¼ QG

P ðGH � GPVÞ �
VPI

TG
P

ðGPV � GPIÞ ð14Þ

VPI
dGPI

dt
¼

VPI

TG
P

ðGPV � GPIÞ � rPGU ð15Þ

Metabolic Source and Sinks—Glucose

rBGU ¼ 70
mg
min

½constant� ð16Þ

rRBCU ¼ 10
mg
min

½constant� ð17Þ

rJGU ¼ 20
mg
min

½constant� ð18Þ

rPGU ¼ MI
PGUM

G
PGUr

B
PGU ð19Þ

rBPGU ¼ 35
mg
min

ð20Þ

MI
PGU ¼ 7:03þ 6:52tanh½0:338ðINPI � 5:82Þ� ð21Þ
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MG
PGU ¼ GN

PI ð22Þ

rHGP ¼ MI
HGPM

G
HGPM

G
HGPr

B
HGP ð23Þ

rBHGP ¼ 155
mg
min

ð24Þ

dMI
HGP

dt
¼

1

tI
½MI1

HGP � MI
HGP� ð25Þ

tI ¼ 25min ð26Þ

MI1
HGP ¼ 1:21 � 1:14tanh½1:66ðINL � 0:89Þ� ð27Þ

MG
HGP ¼ MG0

HGP � f2 ð28Þ

MG0

HGP ¼ 2:7tanh½0:39GN � ð29Þ

df2
dt
¼

1

tG

MG0

HGP � 1

2
� f2

� �

ð30Þ

tG ¼ 65min ð31Þ

MG
HGP ¼ 1:42 � 1:41tanh½0:62ðGN

L � 0:497Þ� ð32Þ

rHGU ¼ MI
HGUM

G
HGUr

B
HGU ð33Þ

rBHGU ¼ 20
mg
min

ð34Þ

dMI
HGU

dt
¼

1

tI
½MI1

HGU � MI
HGU � ð35Þ

MI1
HGU ¼ 2tanh½0:55INL � ð36Þ

MG
HGU ¼ 5:66þ 5:66tanh½2:44ðGN

L � 1:48Þ� ð37Þ

rKGE ¼

71þ 71tanh½0:011ðGK � 460Þ� 0 < GK < 460
mg
min

� 330þ 0:872GK GK � 460
mg
min

8
>><

>>:

ð38Þ
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Mass Balance—Insulin

BRAIN

VI
B
dIB
dt
¼ QI

BðIH � IBÞ ð39Þ

HEART AND LUNGS

VI
H
dIH
dt

¼ QI
BIB þ QI

LIL þ QI
KIKþ

þQI
PIPV � QI

HIH þ gIVI

ð40Þ

GUT

VI
J

dIJ
dt
¼ QI

JðIH � IJÞ ð41Þ

LIVER

VI
L
dIL
dt
¼ QI

AIH þ QI
JIJ � QI

LIL þ rPIR � rLIC ð42Þ

KIDNEY

VI
K
dIK
dt
¼ QI

KðIH � IKÞ � rKIC ð43Þ

PERIPHERY

VI
PV

dIPV
dt
¼ QI

PðIH � IPVÞ �
VPI

TI
PI

ðIPV � IPIÞ ð44Þ

VPI
dIPI
dt
¼

VPI

TI
P

ðIPV � IPIÞ � rPIC ð45Þ

Metabolic Source and Sinks—Insulin

rLIC ¼ FLIC½QI
AIH þ QI

JIJ þ rPIR� ð46Þ

FLIC ¼ 0:40 ð47Þ

rKIC ¼ FKIC½QI
KIH� ð48Þ

FKIC ¼ 0:30 ð49Þ
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rPIC ¼
IPI

½ð
1 � FPIC

FPIC
Þð

1

QI
P

Þ �
TI

P

VPI
�

ð50Þ

FPIC ¼ 0:15 ð51Þ

rPIR ¼
SðGHÞ

SðGB
HÞ

rBPIR ð52Þ

dP
dt
¼ a½P1 � P� ð53Þ

dI
dt
¼ b½X � I� ð54Þ

dQ
dt
¼ KðQ0 � QÞ þ gP � S ð55Þ

S ¼ ½M1Y þM2ðX � IÞ0
þ

�Q ð56Þ

X ¼
ðGHÞ

3:27

ð132Þ
3:27
þ 5:93ðGHÞ

3:02
ð57Þ

P1 ¼ Y ¼ ðXÞ1:11 ð58Þ

Mass Balance—Glucagon

VG
dG
dt
¼ rPGR � rPGC ð59Þ

Metabolic Source and Sinks—Glucagon

rPGR ¼ rMGCG ð60Þ

rMGC ¼ 9:10
ml
min

ð61Þ

rPGR ¼ MG
PGRM

I
PGRr

B
PGR ð62Þ

MG
PGR ¼ 2:93 � 2:10tanh½4:18ðGN

H � 0:61Þ� ð63Þ

MI
PGR ¼ 1:31 � 0:61tanh½1:06ðINH � 0:47Þ� ð64Þ
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Parameter values1

Glucose

VG
BV ¼ 3:5dL QG

B ¼ 5:9
dL
min

TB ¼ 2:1min

VBI ¼ 4:5dL QG
H ¼ 43:7

dL
min

TG
P ¼ 5:0min

VG
H ¼ 13:8dL QG

A ¼ 2:5
dL
min

VG
L ¼ 25:1dL QG

L ¼ 12:6
dL
min

VG
J ¼ 11:2dL QG

G ¼ 10:1
dL
min

VG
K ¼ 6:6dL QG

K ¼ 10:1
dL
min

VG
PV ¼ 10:4dL QG

PV ¼ 15:1
dL
min

VPI ¼ 67:4dL
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�
�
�
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�
�

Insulin

VI
B ¼ 0:26L QI

B ¼ 0:45
L

min
TI

P ¼ 20min

VI
H ¼ 0:99L QI

H ¼ 3:12
L

min

VI
G ¼ 0:94L QI

A ¼ 0:18
L

min

VI
L ¼ 1:14L QI

K ¼ 0:72
L

min

VI
K ¼ 0:51L QI

P ¼ 1:05
L

min

VI
PV ¼ 0:74L QI

J ¼ 0:72
L

min

VI
PI ¼ 6:74L QI

L ¼ 0:90
L

min
M1 ¼ 0:00747min� 1 M2 ¼ 0:0958min� 1 Q0 ¼ 6:33U

a ¼ 0:0482min� 1 b ¼ 0:931min� 1 K ¼ 0:575
U
min

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
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�
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�
�
�
�
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�
�
�
�
�
�
�
�
�
�

Glucagon VΓ = 11310ml
1: Sorensen PhD thesis [20]

Determined parameters.

S10 ¼ gSCI0tS ð65Þ

S20 ¼ S10 ð66Þ

IH0 ¼

S20

tS
þ gIVI0

QI
H � QI

Lð1 � FLICÞ � QI
Kð1 � FKICÞ � QI

Pð1 � FPICÞ � QI
B

ð67Þ
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IPV0 ¼ IH0ð1 � FPICÞ ð68Þ

IK0 ¼ IH0ð1 � FKICÞ ð69Þ

IB0 ¼ IH0 ð70Þ

IJ0 ¼ IH0 ð71Þ

IL0 ¼ IH0ð1 � FLICÞ ð72Þ

INL0
¼

IL0

IBL
ð73Þ

INPI0 ¼
IPI0
IBPI

ð74Þ

INH0
¼

IH0

IBH
ð75Þ

rPIC0 ¼
IPI0

1 � FPIC

FPIC

1

QIP
�

TI
P

VPI

ð76Þ

MPGU0 ¼ b0PGU þ b1PGUtanh½b2PGUðINPI0 � b3PGUÞ� ð77Þ

GPV0 ¼
GH0

1þ
VPIMI

PGU0
rBPGU

QG
PVPIGB

PI þ TG
P QG

PMI
PGU0

rBPGU

ð78Þ
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GBV0 ¼ GH0 �
rBGU

QG
B

ð79Þ

GJ0 ¼ GH0 �
rJGU

QG
J

ð80Þ

GBI0 ¼ GBV0 �
rBGUTB

VBI
ð81Þ

GPI0 ¼
GPV0

1þ
MG

PGU0
rBPGUT

G
P

VPIGB
PI

ð82Þ

GN
H0
¼

GH0

GB
H

ð83Þ

GN
PI0 ¼

GPI0

GB
PI

ð84Þ

GN
L0
¼

GL0

GB
L

ð85Þ

MI
HGP0
¼ b2HGP þ b3HGPtanh½b4HGPðINL0

� b5HGPÞ� ð86Þ

MI
HGPinf ¼ MI

HGP0 ð87Þ

MG
HGP0
¼ b6HGP þ b7HGPtanh½b8HGPðGN

L0
� b9HGPÞ� ð88Þ

MI
HGU0
¼ b0HGUtanhðb1HGUINL0

Þ ð89Þ

MI
HGUinf ¼ MI

HGU0 ð90Þ

MG
HGU0
¼ b2HGU þ b3HGUtanh½b4HGUðGN

L0
� b5HGUÞ� ð91Þ

rKGE0 ¼

(
bKGE0 þ bKGE1 tanh½bKGE2 ðGK0 � bKGE3Þ� ; 0 � GK0 < bKGE3

� bKGE4 þ bKGE5 GK0 ; GK0 � bKGE3

ð92Þ
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rLIC0 ¼ FLICðQI
AIH0 þ QI

JIJ0 þ rBPIRÞ ð93Þ

rKIC0 ¼ FKICðQI
KIH0Þ ð94Þ

MG
PCR0
¼ b0PCR þ b1PCRtanh½b3PCRðGN

H0
� b3PCRÞ� ð95Þ

MI
PCR0
¼ b4PCR þ b5PCRtanh½b6PCRðINH0

� b7PCRÞ� ð96Þ

GN0 ¼ MI
PGR0

MG
PGR0 ð97Þ

MG0
HGP0
¼ b0HGPtanhðb1HGPG

N
0
Þ ð98Þ

f20 ¼
MG0

HGP0
� 1

2
ð99Þ

MG
HGP0
¼ b0HGPtanhðb1HGPG

N
0
Þ � f20

ð100Þ

rPGC0 ¼ GN
0
rMGC ð101Þ

rBPGR ¼
G0rMGC

MG
PGR0MI

PGR0

ð102Þ

rPGU0 ¼ MI
PGU0

GN
PI0rBPGU ð103Þ

rHGP0 ¼ rHGP0MI
HGP0

MG
HGP0

MG
HGP0

ð104Þ

rHGU0 ¼ rHGU0MI
HGU0

MG
HGU0 ð105Þ

rPGR0 ¼ G0rMGC ð106Þ
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The UVAPadova Model

Glucose Model

dGp

dt
¼ EGPðtÞ þ RamealðtÞ � Uii � EðtÞþ

� k1GpðtÞ þ k2GtðtÞ
ð107Þ

dGt

dt
¼ � UidðtÞ þ k1GpðtÞ � k2GtðtÞ ð108Þ

GðtÞ ¼
GpðtÞ
VG

ð109Þ

Insulin Model

dIp
dt
¼ � ðm2 þm4ÞIpðtÞ þm1IlðtÞ þ RaIðtÞ ð110Þ

dIp
dt
¼ � ðm1 þm3ÞIlðtÞ þm2IpðtÞ ð111Þ

IðtÞ ¼
IpðtÞ
VI

ð112Þ

Gastrointestinal Model

QstoðtÞ ¼ Qsto1ðtÞ þ Qsto2ðtÞ ð113Þ

dQsto1

dt
¼ � kmaxQsto1ðtÞ þ

XNp

i¼1

Dosedðt � tiÞ ð114Þ

The equation from UVAPadova S2017 [24] is changed because it is incorrect with respect

to the operating conditions.

• Np = number of meals (maximum 3)

• i = 1 (Breakfast)

• i = 2 (Lunch)
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• i = 3 (Dinner)

dQsto2

dt
¼ � kemptðQstoÞQsto2ðtÞ þ kmaxQsto1ðtÞ ð115Þ

dQgut

dt
¼ � kabsQgutðtÞ þ kemptðQstoÞQsto2ðtÞ ð116Þ

RamealðtÞ ¼
fkabsQgutðtÞ

BW
ð117Þ

kemptðQstoÞ ¼ kmin þ
kmax � kmin

2
ftanh½aðQstoþ

� bDoseÞ� � tanh½bðQsto � cDoseÞ�þ

þ2g

ð118Þ

EGP Model

EGPðtÞ ¼ kp1 � kp2GpðtÞ � kp3XLðtÞ þ xXHðtÞ ð119Þ

dXL

dt
¼ � ki½X

LðtÞ � I0 ðtÞ� ð120Þ

dI0

dt
¼ � ki½I

0

ðtÞ � IðtÞ� ð121Þ

dXH

dt
¼ � kHX

HðtÞ þ kHmax½ðHðtÞ � HbÞ; 0� ð122Þ

Glucose Utilization Model

UidðtÞ ¼
kir½Vm0 þ VmxXðtÞð1þ r1riskÞ�GtðtÞ

Km0 þ GtðtÞ
ð123Þ

The equation from UVAPadova S2017 [24] is replaced by that in UVAPadova (2014) [23],

because reported with an error.

dX
dt
¼ � p2UXðtÞ þ p2U ½IðtÞ � Ib� ð124Þ
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risk

0 G � Gb

10f 2
1

Gth � G < Gb

10f 2
2

G < Gth

8
>>><

>>>:

ð125Þ

f1 ¼ ðlogðGÞÞ
r2 � ðlogðGbÞÞ

r2 ð126Þ

Renal Elimination

EðtÞ
ðke1ðGpðtÞ � ke2ÞÞ GpðtÞ > ke2

0 GpðtÞ � ke2

8
<

:
ð127Þ

Insulin Rate of Appearance Model

RaIðtÞ ¼ RaIscðtÞ þ RaIihðtÞ ð128Þ

Subcutaneous insulin kinetics

RaIscðtÞ ¼ ka1Isc1ðtÞ þ ka2Isc2ðtÞ ð129Þ

dIsc1
dt
¼ � ðkd þ ka1ÞIsc1ðtÞ þ uscðt � tÞ ð130Þ

dIsc2
dt
¼ kdIsc1ðtÞ � ka2Isc2 ð131Þ

Inhaled insulin kinetics

RaIihðtÞ ¼ kaIihIihðtÞ ð132Þ

dIih
dt
¼ � kaIihIihðtÞ þ FIihuihðtÞ ð133Þ

Subcutaneous glucose kinetics

dGsc

dt
¼ �

1

Ts
GscðtÞ þ

1

Ts
GðtÞ ð134Þ
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Glucagon kinetics and secretion

dH
dt
¼ � nHðtÞ þ SRHðtÞ þ RaHðtÞ ð135Þ

SRHðtÞ ¼ SRS
HðtÞ þ SRd

HðtÞ ð136Þ

SRS
HðtÞ ¼

r½SRS
HðtÞ � SRb

H� GðtÞ � Gb

r½SRS
HðtÞ � maxðs

Gth � GðtÞ
IðtÞ þ 1

þ SRb
H; 0Þ� GðtÞ < Gb

8
><

>:
ð137Þ

SRd
HðtÞ ¼ dmax½�

dGðtÞ
dt

; 0� ð138Þ

Subcutaneous Glucagon kinetics

dHsc1

dt
¼ � ðkh1 þ kh2ÞHsc1ðtÞ ð139Þ

dHsc2

dt
¼ kh1Hsc1ðtÞ � kh3Hsc2ðtÞ ð140Þ

Rate of appearance of the Glucagon

RaHðtÞ ¼ kh3Hsc2ðtÞ ð141Þ

Determined parameters.

GpbðtÞ ¼ VGGb ð142Þ

E0 ¼

ðke1 � ðGpb � ke2Þ Gpb > ke2

0 Gpb � ke2

8
<

:
ð143Þ

Ipb ¼
usc0

m2 þm4 �
m1m2

m1 þm3

ð144Þ
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Ib ¼
Ipb
VI

ð145Þ

XL
0
¼ Ib ð146Þ

kp1 ¼ EGP0 þ kp2Gpb þ kp30XL
0 ð147Þ

Gtb ¼
Uii þ E0k1Gpb � EGP0

k2

ð148Þ

Uid0 ¼ k1Gpb � k2Gtb ð149Þ

kir ¼
Uid0ðKm0 þ GtbÞ

Vm0Gtb
ð150Þ

Ilb ¼
m2Ipb

m1 þm3

ð151Þ

a ¼
5

2½Dose0ð1 � bÞ� ð152Þ

b ¼
5

2ðDose0cÞ
ð153Þ

kempt0 ¼ kmin0 þ
kmax0 � kmin0

2
� ftanh½a � ð� b � Dose0Þ� � tanh½b � ð� c � Dose0Þ� þ 2g ð154Þ

f2 ¼ logðGr2
thÞ � logðGr2

b Þ ð155Þ
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I0
0
¼ Ib ð156Þ

Isc1ss ¼
usc0

kd þ ka1

ð157Þ

Isc2ss ¼

kd

ka2

Isc1ss
ð158Þ

Gsc0 ¼ Gb ð159Þ

RaIsc0 ¼ ka1Isc1ss þ ka2Isc2ss ð160Þ

RaIih0 ¼ kaIihIih0 ð161Þ

RaI0 ¼ RaIsc0 þ RaIih0 ð162Þ

SRb
H ¼ nHgon ð163Þ

SRS
Hb ¼ SRb

H ð164Þ

The Hovorka Model

Amount of glucose

dQ1

dt
¼ UGðtÞ � x1ðtÞQ1ðtÞ � Fc

01
ðtÞ � FRðtÞþ

þk12Q2ðtÞ þ EGP0½1 � x3ðtÞ�
ð165Þ

dQ2

dt
¼ x1ðtÞQ1ðtÞ � ½k12 þ x2ðtÞ�Q2ðtÞ ð166Þ

Measurable blood glucose concentration

GðtÞ ¼
Q1ðtÞ
VG

ð167Þ

Glucose utilization by the central nervous system

Fc
01
¼

F01 GðtÞ � 4:5mmol=L

F01

GðtÞ
4:5

otherwise

8
><

>:
ð168Þ
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Renal excretion of glucose

FR ¼

(
0:003½GðtÞ � 9�VG GðtÞ � 9mmol=L

0 otherwise
ð169Þ

Insulin effect on distribution/transport of glucose

dx1

dt
¼ � ka1x1ðtÞ þ kb1IðtÞ ð170Þ

Insulin effect on glucose disposal

dx2

dt
¼ � ka2x2ðtÞ þ kb2IðtÞ ð171Þ

Insulin effect on EGP released from liver

dx3

dt
¼ � ka3x3ðtÞ þ kb3IðtÞ ð172Þ

Oral CHO intake expressed as glucose equivalent

D ¼ frac1000MwGdðtÞ ð173Þ

With MwG ¼
g

mol

� �
glucose molecular weight

Glucose in the absorption compartment

dD1

dt
¼ AGDðtÞ �

1

tD
D1ðtÞ ð174Þ

Glucose in the conversion compartment

dD2

dt
¼

1

tD
D1ðtÞ �

1

tD
D2ðtÞ ð175Þ

The glucose absorption rate

UGðtÞ ¼
D2ðtÞ
tD

ð176Þ
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Amount of short-acting insulin

dS1

dt
¼ uðtÞ �

1

tS
S1ðtÞ ð177Þ

dS2

dt
¼

1

tS
S1ðtÞ �

1

tS
S2ðtÞ ð178Þ

Insulin concentration

dI
dt
¼

UI

VI
� keIðtÞ ð179Þ

Insulin absorption rate into the blood

dUI

dt
¼

S2

tS
ð180Þ

Determined parameters.

VG ¼ 0:16 � BoW ð181Þ

VI ¼ 0:12 � BoW ð182Þ

EGP0 ¼ 0:161 � BoW ð183Þ

Q10 ¼ G0VG ð184Þ

FR0 ¼
0:003½G0 � 9�VG G0 � 9mmol=L

0 otherwise

(

ð185Þ

D10 ¼ D0AGtD ð186Þ

D20 ¼ D10 ð187Þ

S10 ¼ uis0tS ð188Þ

S20 ¼ S10 ð189Þ
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UI0 ¼
S20

tS
ð190Þ

I0 ¼
UI0

keVI
ð191Þ

UG0 ¼
D20

tD
ð192Þ

x10 ¼
kb1

ka1

I0 ð193Þ

x20 ¼
kb2

ka2

I0 ð194Þ

x30 ¼
kb3

ka3

I0 ð195Þ

Q20 ¼ Q10

x10

x20 þ k12

ð196Þ

Fc
010
¼

F01 G0 � 4:5mmol=L

F01

G0

4:5
otherwise

8
><

>:
ð197Þ

T1DM Sorensen model initialization

Arterial Glucose Concentration Cycle

GH0 = [Guess Arterial Glucose Concentration]

Initialize Glucagon model

compute MI
PGR0

, MG
PGR0

GN
0
¼ MI

PGR0
MG

PGR0

Initialize Glucose model

GBV0 ¼ GH0 �
rBGU0

QG
B

GJ0 ¼ GH0 �
rJGU
QG

J

compute MI
PGU0

GPV0 ¼
GH0

1þ
VPIM

I
PGU0

rB
PGU

QG
P VPIG

B
PIþT

G
P QG

P MI
PGU0

rB
PGU

Kidney Glucose Concentration Cycle

GK0 = [Guess Kidney Glucose Concentration]

compute rKGE0

verify that GK00 ¼ GH0 �
rKGE0

QG
K

is the same of GK0, otherwise re-start from [Kidney Glucose Concentration Cycle]

END Kidney Glucose Concentration Cycle
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Liver Glucose Concentration Cycle

GL0 = [Guess Liver Glucose Concentration]

compute rHGP0, rHGU00

verify that GL00 ¼
1

QG
L
ðQG

AGH0 þ QG
J GJ0 þ rHGP0 � rHGU0Þ

is the same of GL0, otherwise re-start from [Liver Glucose Concentration Cycle]

END Liver Glucose Concentration Cycle

verify that GH00 ¼
1

QG
H
ðQG

BGBV0 þ QG
LGL0 þ QG

KGK0 þ QG
PGPV0 � rRBCUÞ

is the same of GH0, otherwise re-start from [Arterial Glucose Concentration Cycle]

END Arterial Glucose Concentration Cycle

GPI0 ¼
GPV0

1þ
MI

PGUrBPGUTG
P

VPIG
B
PI0

GBI0 ¼ GBV0 �
TBrBGU

VBI

Metabolism: initialize using values computed on last glucose model mass balance iteration

compute: MI
HGP0

,MI
HGU0

f2 ¼ MG0 � 1

2
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