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Abstract

The most well-known and widely used mathematical representations of the physiology of a
diabetic individual are the Sorensen and Hovorka models as well as the UVAPadova Simu-
lator. While the Hovorka model and the UVAPadova Simulator only describe the glucose
metabolism of a subject with type 1 diabetes, the Sorensen model was formulated to simu-
late the behaviour of both normal and diabetic individuals. The UVAPadova model is the
most known model, accepted by the FDA, with a high level of complexity. The Hovorka
model is the simplest of the three models, well documented and used primarily for the devel-
opment of control algorithms. The Sorensen model is the most complete, even though some
modifications were required both to the model equations (adding useful compartments for
modelling subcutaneous insulin delivery) and to the parameter values. In the present work
several simulated experiments, such as IVGTTs and OGTTs, were used as tools to com-
pare the three formulations in order to establish to what extent increasing complexity trans-
lates into richer and more correct physiological behaviour. All the equations and parameters
used for carrying out the simulations are provided.

Introduction

Type 1 diabetes mellitus is a pathological condition in which blood glucose levels reach exces-
sively high values because of absent or insufficient insulin production [1-3]. It occurs mainly in
juveniles, due to a combination of genetic determinants and environmental factors [1-3]. The
worldwide spread of the disease has reached the 8.5% of all diabetes cases in the world, with
about 210,000 affected children in the US only [4, 5]. Type 2 diabetes mellitus (T2DM) individu-
als, instead, exhibits excessive blood glucose concentrations mainly due to the insufficient effi-
cacy of circulating insulin to stimulate tissue glucose uptake (insulin resistance) and is
correlated with obesity [6, 7]. T2DM affects more than 400 million people around the world and
it is estimated to double within the next 10 years [8, 9], with the increasing in obesity, age and
the population size of ethnic groups at higher risk [6]. While metformin, troglitazone, sulfonilur-
eas and other oral hypoglycemic drugs are, together with an improved lifestyle with increased
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exercise and weight loss, the first treatment choice for most patients with Type 2 diabetes [8],
individuals with Type 1 diabetes mellitus require exogenous insulin administrations to supply
the lack of endogenous pancreatic insulin production. Insulin cannot be administered orally
and must be delivered subcutaneously, either with discrete boli (multiple daily injections, MDI)
or through insulin pumps. Recently, much research efforts has been addressed to the develop-
ment of the so-called “artificial pancreas” (AP) [10-12], a system that includes an insulin pump
connected to a continuous glucose monitor (CGM) and to a (possibly model-based) control
algorithm: the pump delivers an insulin amount calculated on the basis of predicted glycemia.
In this case, insulin is administered via a small cannula inserted through the skin into the subcu-
taneous tissue. Insulin is released as a basal continuous infusion at pre-programmed variable
rates, which differ from individual to individual, and as insulin boli at mealtimes.

Different strategies, using different mathematical models needed to describe and predict
the dynamics of glucose and insulin, exist for the development of the control algorithms
embedded in the APs [13-16]. The accuracy of these models is important in successfully deter-
mining the optimal therapy, i.e. the appropriate insulin dose to deliver in order to avoid both
hyperglycaemic and hypoglycaemic episodes. The algorithms to be embedded in the pumps
must therefore be developed, in-silico, testing their performance over a wide variety of possible
physiological situations against a good mathematical model of the glucose-insulin system,
implemented in software. The availability of physiologically plausible mathematical models to
be used as part of the control algorithm and as a tool for simulating and testing the system in
silico is therefore critical for the development of safe and effective insulin infusion control algo-
rithms. It is mandatory that these models are able to reproduce the correct physiological
behaviour under different conditions and/or experimental procedures. It is to be noted that
many mathematical models of the glucose-insulin system exist. Some of these may be relatively
simple approximations, to be used in order to interpret specific clinical testing procedures and
identifying specific parameters of interest from relatively small data sets. Others may be rela-
tively complex representations of what is known about the different aspects of glycemic con-
trol, including meals, insulin and other hormones, several distribution compartments and so
on. We will henceforth denote the simpler models as “compact” and the more extended, hypo-
thetically complete models as “maximal”. What is needed for control algorithm development
is therefore a physiologically correct maximal model.

In the present work we analyse and compare three such maximal models of the glucose/
insulin system, all three of which have been used in the development of infusion control algo-
rithms: the Hovorka model [17-19], the Sorensen model [20, 21] and the more recent UVAPa-
dova model [22-27]. The UVAPadova implementation used in the present work refers to the
S2017 model version [24], which is the latest updated version of the model.

The implemented version of the Sorensen model derives from the equations presented in
his original PhD thesis [20], with the corrections introduced in [28] and modified to account
for both (possible) subcutaneous administration of insulin and for the reduced insulin-sensi-
tivity, which would be expected in a diabetic patient with respect to a normal individual [1].
The three models present different levels of complexity and a comparison among them gives
the opportunity to understand to which extent increasing complexity translates into richer and
more correct physiological behaviour.

Methods
Comparison among models simulations

In the present work three maximal models of the glucose/insulin system are compared based
on glucose and insulin predictions following several simulated experiments. The models
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analysed are the Hovorka model [17-19], the Sorensen model [20, 21] and the UVAPadova
model [22-27]. The Sorensen model is the most complex; it has been extensively described in
the Author’s PhD thesis and has been thoroughly analyzed in a previous work [28], correcting
some errors which were present in the original description by the Author. An extended version
of the model, including a representation of the gastrointestinal tract, was also presented in
[28], and is used in the present work to simulate experiments where glucose is orally adminis-
tered. Sorensen’s model consists of three sub-models (one for glucose, one for insulin and one
for glucagon) that describe the time-course of the variable concentrations in the brain, liver,
heart and lungs, periphery (tissue and muscles), gut and kidney. In its original version, it
includes pancreatic release of insulin, which in the present work is not considered, given our
primary attention to applications for Type 1 Diabetes Mellitus (TIDM). For completeness, all
equations are reported in the Appendix. The set of parameter values adopted by Sorensen in
his original work is compatible with the normal physiological response to any type of simu-
lated perturbation experiment. The peculiar conditions of T1DM are approximated by Soren-
sen introducing modifications to the original model. This modified version is the one adopted
in the next section. On the contrary, the Hovorka model and the UVAPadova model were
originally formulated to represent the physiological behaviour of T1DM individuals, and no
modification is necessary for the purpose of the present work. The comparison among the
three models was conducted in three steps:

« aseries of in-silico experiments were set-up and the three models were compared in terms of
insulin and glucose concentrations over time;

the three models were adapted to observations of glucose and insulin from an Oral Glucose
Tolerance Test performed on a normal individual: the procedure allowed the estimation of
the amount of insulin that would be needed to be administered as a bolus in order to obtain
the observed time courses, together with some other crucial model parameters. The estima-
tion procedure followed a weighted least squared approach, with weights w;(i =1, . . ., n) the
inverse of the squared expectations. The variance-covariance matrix of the estimates was
obtained with a linear approximation of the model at the optimum by computing
62(J"S7'])~", where J is the Jacobian; o® x S is the variance-covariance matrix of the
observed vector; S is a diagonal matrix with elements (i, i) equal to the squared expectations;

&2 is calculated as - 5", x (¥ — 3,)°, with n the number of observations and p the num-
n*p 1 1 1 1

ber of free parameters. The symbol # is used to indicate quantities computed at the
optimum.

the estimates obtained in the previous step were used to simulate subsequent two other
OGTTs, with the administration of the same amount of glucose and insulin given in the first
OGTT, with the aim of simulating glucose and insulin concentrations during one day as to
mimic three meals.

The in-silico experiments. The implemented in-silico experiments are described as
follows:

e Intra Venous Glucose Tolerance Test (IVGTT): a continuous administration of basal insulin
of 6.67 mU/min, in conjunction with 0.5 g/kg of glucose administered over 3 minutes.

o IVGTT + insulin bolus: a continuous administration of basal insulin of 6.67 mU/min, in con-
junction with 0.5 g/kg of glucose administered over 3 minutes, accompanied by a bolus of
1000mU delivered in 1 minute.
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o OGTT + basal insulin administration: an oral administration of 100 g of glucose in 1 minute
was simulated together with a continuous administration of basal insulin of 6.67 mU/min.

o OGTT + basal insulin + insulin bolus: an OGTT of 100 g of glucose was administered over 1
minute with a continuous basal insulin delivery of 6.67 mU/min in combination with 1000
mU IVITT bolus in 1 minute.

All the above experiments were performed by setting the initial conditions (which also rep-
resent the steady state conditions) at a glucose concentration of 5 mmol/L with a basal insulin
delivery of 6.67 mU/min for each model considered.

The Sorensen T1DM model

The original version of the Sorensen model was adapted by the Author himself to represent a
subject with T1IDM. In this process of adapting normal physiology to impaired physiology, the
model was modified by removing the pancreatic insulin secretion sub-model and fixing the
scale of absolute concentrations of the metabolic source and sink functions in such a way that
the diabetic response to any combination of circulating glucose, insulin and glucagon concen-
trations would have been the same as that of normal individuals subjected to similar condi-
tions. The model adapted in this way therefore represents what would be a “normal” response
in a subject with TIDM.: for this reason it suffers from an important limitation in that it does
not take into account the physiological abnormalities typically present in association with dia-
betes. In fact, the Author stated that the objective of modelling diabetes condition in the con-
text of his work was “. . .to provide a basis for designing and assessing improved insulin
therapies, and in particular for developing an insulin infusion algorithm for closed-loop insu-
lin delivery based on blood glucose measurement.”. In this perspective, the comparison of the
efficacy of different therapeutic regimens might be considered as largely independent of the
details of the physiological model adopted: this is of course no longer true when comparing
different models with one another.

A set of normal glucose and insulin concentrations at baseline (Table 1) must be adopted to
calculate metabolic rates during diabetic model simulations. This stems from the fact that the
post-absorption steady state in the insulin-treated diabetic subjects cannot be determined by
the model parameters themselves (as is the case for simulations of normal subjects) as it is
dependent on an external forcing function (y;yy), which represents the input rate of peripheral
venous insulin administration (the therapeutic regimen).

In the case of TIDM modelling, an iterative method for variable initialization must be
adopted. Assuming that the response of diabetic subjects to circulating glucose concentrations

Table 1. Reference normal basal state glucose and insulin concentrations used to fix the concentration scales
defining normal metabolic source and sink rates.

Reference normal basal concentrations Used for calculation of

G} =101% Hepatic Glucose Uptake, rycu
Hepatic Glucose Production, rygp

Gh, =86.8 o Peripheral Glucose Uptake rpgus

Gy =91.9% Pancreatic Glucagon Release rprr

I} =21.42¢ Hepatic Glucose Uptake rygy
Hepatic Glucose Production rygp

Iy =5.302Y Peripheral Glucose Uptake rpgys

I = 15.22¢ Pancreatic Glucagon Release rpry

https://doi.org/10.1371/journal.pone.0257789.t001
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is the same as in the normal situation, and setting the steady-state values of local glucose and
insulin concentrations to values compatible with normal physiology, the glucose concentra-
tions that are at equilibrium with the basal insulin imposed by the external variable yy,; must
be calculated.

The procedure is performed by Sorensen and is reported in the Appendix in the subsection
“T1DM Sorensen Model initialization”.

The equations derived from the steady state conditions are the same as those obtained
under normal conditions (model for normal subjects) except for the equation related to Irz,
where the rpy function is set to 0 and the y;y; is included in the numerator:

L= o , , (1)
Ql, — Qi (1 — Fe) — Qk(1 — Fyo) — QL(1 — Fpe) — Q4

oo = T (1 = Fue) 2)

Ieo = (1 = Fige) 3)

Lo = (1 = Fye) (4)

I = Lo (5)

Iy = Iy (6)

Lo = T = S22 Ly~ L) o)

All the equations of the Sorensen model are reported in the Appendix (subsection “The Sor-
ensen Model”). As mentioned above, the y;y; input was introduced by Sorensen into the equa-
tion for I (insulin heart and lung compartment). This obviously represents a simplification,
because in the treatment of patients with T1DM insulin is administered subcutaneously, via
bolus or continuous infusion. To make the three models comparable, two subcutaneous com-
partments were therefore added to the revised Sorensen model (which already includes the
gastro-intestinal compartment [28]). The model of the subcutaneous compartments used is
equivalent to that present in the Hovorka model. The formulation adopted in the UVAPadova
model is marginally more complicated: if the parameter k,; is set to zero and the parameter k,,
is set to same value as the parameter k, then the two formulations are equivalent. All the
parameter values and descriptions are reported in Table 2.

The Hovorka model

The Hovorka model includes two equations for glucose kinetics (amount of glucose in plasma
and tissue). Input into the plasma compartment is determined by endogenous glucose produc-
tion, which depends on plasma insulin concentration, and by absorption through the gastro-
intestinal compartment. The equations and the values of the model parameters are shown in
the Appendix. The term related to Endogenous Glucose Production (EGP), which appears in
the final part of Eq [165], represents a linear inverse relationship between glucose production
and insulin. This formulation could lead to negative EGP predictions in the presence of high
levels of insulin concentrations or in correspondence with particular values of some parame-
ters: a representation that incorporates a saturated effect would be more realistic. The gastro-
intestinal tract is represented by two compartments: the absorption glucose compartment
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Table 2. Sorensen model parameters.

Parameter Units Meaning Value
Qs L/min Vascular blood water flow rate for Brain (glucose-related) 0.59
| L Distribution Volume of Glucose in Brain Vascular space 0.35
Var L Distribution Volume of Brain Interstitial space 0.45
Tp min Trans-capillary diffusion time constant for Brain 2.1
rBGU mmol/min Brain Glucose Uptake rate 0.388889
o L/min Vascular blood water flow rate for Liver (glucose-related) 1.26
o L/min Vascular blood water flow rate for Kidney (glucose-related) 1.01
S L/min Vascular blood water flow rate for Peripheral tissues (glucose-related) 1.51
o L/min Vascular blood water flow rate for Heart/lung (glucose-related) 4.37
TRBCU mmol/min Red Blood cell Glucose Uptake rate 0.0555556
\4 L Distribution Volume of Glucose in Heart/lung Vascular space 1.38
Q]G L/min Vascular blood water flow rate for Gut/Jejunum (glucose-related) 1.01
vy L Distribution Volume of Glucose in Gut/Jejunum Vascular space 1.12
16U mmol/min Gut/Jejunal Glucose Uptake or utilization rate 0.233394
G L/min Vascular blood water flow rate in hepatic Artery (glucose-related) 0.25
Ve L Distribution Volume of Glucose in Liver space 2.51
\4 L Distribution Volume of Glucose in Kidney space 0.66
VS, L Distribution Volume of Glucose in Peripheral Vascular space 1.04
Vpr L Distribution Volume of Peripheral Interstitial space 6.74
TS min Trans-capillary diffusion time constant for Peripheral tissues (glucose-related) 5
ooy mmol/min Baseline rate of Peripheral Glucose Uptake 0.194444
Boew # PGU Insulin effect midpoint 0.703
Brew # PGU Insulin effect half-amplitude 0.652
Brcw # PGU Insulin effect steepness 0.338
Bocw # PGU Insulin effect shift 5.82
B # HGP gluCagon effect scale 2.7
Brcp # HGP gluCagon scale 0.388852
Tc min Inverse of the decay rate for the glucagon-driven intensification of f, Hepatic Glucose Uptake suppression 65
Bicr # HGP Insulin effect midpoint 1.21
B # HGP Insulin effect half-amplitude 1.14
Bl # HGP Insulin effect steepness 1.66
Bicp # HGP Insulin effect shift 0.887748
94 min Inverse of the decay rate for the insulin-driven intensification of M}, and M}, (same for both) 25
B # HGP Glucose effect midpoint 1.0923
Brr # HGP Glucose effect half-amplitude 1.0846
Bricr # HGP Glucose effect steepness 0.206667
b # HGP Glucose effect shift 0.504543
THGPO mmol/min Baseline value of rygp at initial time (¢,) 0.318611
Brew # HGU Insulin effect half-amplitude 2
[ # HGU Insulin effect steepness 0.549306
Breu # HGP Glucose effect midpoint 5.66
Biew # HGP Glucose effect half-amplitude 5.66
Bicw # HGP Glucose effect steepness 2.44
Brcu # HGP Glucose effect shift 1.4783
THGUO mmol/min Baseline value of rygyp at initial time (t,) 0.111111
(Continued)
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Table 2. (Continued)

Parameter Units Meaning Value

Brce mmol/min KGE Glucose effect midpoint 0.394444

Brcs mmol/min KGE Glucose effect half-amplitude 0.394444

Bioe /mM KGE Glucose effect steepness 0.198

Brce mM KGE Glucose effect shift, point of transition between tanh and linear regime 25.5556

Broe mmol/min KGE Glucose linear effect intercept 1.834

Brce mmol/min/mM KGE Glucose linear effect slope 0.0872

Q; L/min Vascular blood water flow rate for Brain (insulin-related) 0.45

Vi L Distribution Volume of Insulin in Brain vascular space 0.26

Vi L Distribution Volume of Insulin in Heart/Lung vascular space 0.99

Q L/min Vascular blood water flow rate for Liver (insulin-related) 0.9

Qi L/min Vascular blood water flow rate for Kidney (insulin-related) 0.72

Q, L/min Vascular blood water flow rate for Periphery (insulin-related) 1.05

Qy L/min Vascular blood water flow rate for Heart and Lungs (insulin-related) 3.12

4 L Distribution Volume of Insulin in Gut Vascular space 0.94

Q; L/min Vascular blood water flow rate for Gut (insulin-related) 0.72

4 L Distribution Volume of Insulin in Liver Vascular space 1.14

Q, L/min Vascular blood water flow rate in hepatic Artery (insulin-related) 0.18

Fric # Fraction of insulin Liver clearance 0.459

Fxic # Fraction of insulin Kidney clearance 0.3

Vi L Distribution Volume of Insulin in Kidney Vascular space 0.51

Vi, L Distribution Volume of Insulin in Peripheral Vascular space 2.442

T, min Trans-capillary diffusion time constant for Peripheral tissues (insulin-related) 20

Fpre # Fraction of insulin Periphery clearance 0.24

Ty pM Starting value for glucagon 11.43

ramce L/min Rate constant of glucagon clearance 0.91

Vr L Glucagon distribution volume 11.31

B # PCR Glucose effect midpoint 293

ﬁ;CR # PCR Glucose effect half-amplitude 2.1

B # PCR Glucose effect steepness 4.18

Bn # PCR Glucose effect shift 0.621325

Bica # PCR Insulin effect midpoint 1.31

Boc # PCR Insulin effect half-amplitude 0.61

ﬁi - # PCR Insulin effect steepness 1.06

Bok # PCR Insulin effect shift 0.471419

Y1veo mmol/min Intravenous Glucose Infusion starting value 0

¥scio pmol/min Subcutaneous Insulin Infusion starting value 0

Yivio pmol/min Intravenous Insulin Infusion starting value 46.746

So mmol Baseline value of the stomach compartment at initial time (t,) 0

ki 1/min Glucose transfer rate from Stomach to Jejunum compartment 0.01

Jo mmol Baseline value of the jejunum compartment at initial time (t,) 0

koi 1/min Glucose transfer rate from Jejunum to Gut compartment 0.03672
1 1/min Glucose transfer rate from Jejunum to Delay compartment 0.0351517

Ry mmol Baseline value of the delay compartment at initial time () 0

ki 1/min Glucose transfer rate from Delay to Ileum compartment 0.0289023

Ly mmol Baseline value of the ileum compartment at initial time (#,) 0

(Continued)
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Table 2. (Continued)

Parameter Units Meaning Value
kg 1/min Glucose transfer rate from Ileum to Gut compartment 0.0267142
f # Fraction of absorbed glucose 1
Rogao mmol/min Baseline value of R,g, at initial time (t,) 0
TPIRO pmol/min Baseline value of rpp at initial time (t,) 0
Gy # Reference normal basal state of glucose in the Heart/Lung compartment 5.105
G, # Reference normal basal state of glucose in the Peripheral Interstitial fluid space 4.822
G? # Reference normal basal state of glucose in the Liver compartment 5.61
I # Reference normal basal state of insulin in the Liver compartment 150.01
)i # Reference normal basal state of insulin in the Peripheral Interstitial fluid space 37.128
Ir # Reference normal basal state of insulin in the Heart/Lung compartment 106.05
Ts /min Time constant for insulin absorption 55
Sio mU Starting value of the amount of short-acting insulin in the compartment 1 starting value Determined
Sa0 mU Starting value of the amount of short-acting insulin in the compartment 2 starting value Determined
I pM Starting value of Iy (insulin in the Heart/Lung compartment) at initial time (f,) Determined
Ipyo pM Starting value of Ipy (insulin in the Peripheral Vascular plasma space) at initial time (%) Determined
Ixo pM Starting value of Ix (insulin in the Kidney compartment) at initial time (t,) Determined
Ipo pM Starting value of Iy (insulin in the Brain compartment) at initial time (¢,) Determined
Iso pM Starting value of I (insulin in the Gut compartment) at initial time (t,) Determined
Ipo pM Starting value of Ip; (insulin in the Peripheral Interstitial fluid space) at initial time (¢,) Determined
Ipo pM Starting value of I}, (insulin in the Liver compartment) at initial time (t,) Determined
N # Starting value of Iy; (normalized insulin in the Liver compartment) at initial time (t,) Determined
I # Starting value of Iyp; (normalized insulin in the Peripheral Interstitial fluid space) at initial time (#) Determined
Iy, # Starting value of Iy (normalized insulin in the Heart/Lung compartment) at initial time (f) Determined
pICO pmol/min Starting value of rpc at initial time (¢,) Determined
Mpcuo # Starting value of Mpgy at initial time (#) Determined
Guo mM Starting value of Gy (glucose in the Heart/Lung compartment) at initial time (f,) Determined
Gxo mM Starting value of G (glucose in the Kidney compartment) at initial time (£) Determined
Gro mM Starting value of G|, (glucose in the Liver compartment) at initial time (t,) Determined
Gpyo mM Starting value of Gpy (glucose in the Peripheral Vascular blood water space) at initial time (,) Determined
Ggvo mM Starting value of Gpy (glucose in the Brain Vascular space) at initial time () Determined
Gjo mM Starting value of G; (glucose in the Gut compartment) at initial time (%) Determined
Gsgro mM Starting value of Gp; (glucose in the Brain Interstitial fluid space) at initial time (¢o) Determined
Gpro mM Starting value of Gp; (glucose in the Peripheral Interstitial fluid space) at initial time (%) Determined
Gy, # Starting value of Gy (normalized glucose in the Heart/Lung compartment) at initial time (t,) Determined
Gho # Starting value of Gypr (normalized glucose in the Peripheral Interstitial fluid space) at initial time (f,) Determined
G, # Starting value of Gy, (normalized glucose in the Liver compartment) at initial time (f,) Determined
M.on # Starting value of M}, , at initial time (t;) Determined
MLGPWO # Starting value of MLGW at initial time (¢,) Determined
Mo # Starting value of Mg, at initial time (t,) Determined
Micvo # Starting value of M}, at initial time (t,) Determined
Mi6uim0 # Starting value of Mj,,,, at initial time (f,) Determined
Moo # Starting value of Mg, at initial time (t,) Determined
TKGEO mmol/min Starting value of rxgr at initial time (t,) Determined
rLICO pmol/min Starting value of r;c at initial time (%) Determined
rKICO pmol/min Starting value of rx;c at initial time (t,) Determined
Mo # Starting value of Mg, at initial time (t,) Determined
(Continued)
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Table 2. (Continued)

Parameter Units Meaning Value

Mo # Starting value of Mj,., at initial time (t,) Determined
ry # Starting value of I'y at initial time (¢,) Determined
MO # Starting value of M, at initial time (f,) Determined
o # Starting value of f, at initial time (f) Determined
M r # Starting value of Mj,, at initial time (f,) Determined
prco pmol/min Starting value of rpy at initial time (t,) Determined
Thrr pM/min Baseline value of rp/x Determined
PGUO mmol/min Starting value rate of the Peripheral Glucose Uptake Determined
THGPO mmol/min Starting value of the rate of Hepatic Glucose Production Determined
THGUO mmol/min Starting value of the rate of Hepatic Glucose Uptake Determined
PIRO pM Starting value of the rp/x at initial time () Determined

BGU: Brain Glucose Uptake

GGU: Gut Glucose Utilization

HGP: Hepatic Glucose Production
HGU: Hepatic Glucose Uptake

KGE: Kidney Glucose Excretion
PGU: Peripheral Glucose Uptake
RBCU: Red Blood Cell Glucose Uptake
KIC: Kidney Insulin Clearance

LIC: Liver Insulin Clearance

PIC: Peripheral Insulin Clearance
PI"C: Plasma Glucagon Clearance
MI'C: Metabolic Glucagon Clearance
PT'R: Pancreatic Glucagon Release

https://doi.org/10.1371/journal.pone.0257789.t1002

(D1), which is fed by the glucose equivalents of ingested carbohydrates, and the conversion
compartment (D2) through which uptake of glucose occurs through a linear transfer to the
plasma compartment. Insulin is released into the body by means of two subcutaneous com-
partments, S; and S,, and then into the bloodstream which represents the plasma insulin com-
partment. All the values of parameters are shown in Table 3.

The UVAPadova model

The UVAPadova model used in the present work is the S2017 formulation presented in [24],
which is an updated version of the original 2013 model [23]. This new formulation includes
two new routes of insulin administration: inhaled insulin and intradermal insulin. Some
parameters (kp3, Vi kp1), which in the 2013 version were assumed to be constant, in the later
version are made to be time-varying functions. Since their formulations have not been
reported in the original work, in the present study we assumed piecewise constant functions
for k,3 and V,,,, from the inspection of Fig 2 in [24], whereas k,; was set to a constant value. In
addition, a new variable (k;,) is also added, which represents a decreasing factor of insulin
dependent glucose utilization (U,,). These latest modifications were included into the model
to account for variability of metabolism over 24 hours.

The UVAPadova S2017 version makes use of two compartments for glucose (amounts of
glucose respectively in plasma and tissues) and two compartments for insulin (amounts of
insulin in plasma and liver). The glucose enters the system from the liver (EGP) and the

PLOS ONE | https://doi.org/10.1371/journal.pone.0257789  September 27, 2021

9/43


https://doi.org/10.1371/journal.pone.0257789.t002
https://doi.org/10.1371/journal.pone.0257789

PLOS ONE

Three maximal mathematical models of the glucose-insulin system

Table 3. Hovorka model parameters [17-19].

Parameter | Units Meaning Value

Gy mmol/L The measurable blood glucose concentration starting value 5

ks /min Rate constant for transfer of glucose from the peripheral tissue into the blood stream 0.066

BoW kg Body weight 70

F, mmol/min Insulin-indipendent glucose flux 0.679

ka1 /min Deactivation rate constant 0.006

kaz /min Deactivation rate constant 0.06

ka3 /min Deactivation rate constant 0.03

kp1 L/(min*mU) Activation rate constant 3.072e-05
ki L/(min*mU) Activation rate constant 4.92e-05

kys L/(min*mU) Activation rate constant 0.00156

M, mmol/min Unit of meal 5.55556

D, mmol/min Oral CHO intake expressed as glucose equivalent starting value 0
MealRate, g/min Rate of CHO in the meal 1 10.625

Ag # Factor expressing the utilization of CHO to glucose 0.8

D min Time constant 40

U mU/min Rate of subcutaneous insulin infusion into compartment 1 starting value 6.68

Uy mU/min Rate of subcutaneous insulin infusion into compartment 1 at time TimeInf11 1000

Upasal mU/min Continuous rate of subcutaneous insulin infusion into compartment 1 6.68

Tg min Time constant for insulin absorption 55

k. /min The fractional elimination rate of insulin from the blood 0.138

Vs L The distribution volume of the blood glucose compartment Determined
Vi L The distribution volume of the blood insulin compartment Determined
EGP, mmol/min Endogenous release of glucose from the liver at the zero insulin concentration Determined
Qo mmol Amount of glucose starting value Determined
Fro mmol/min Renal excretion of glucose Determined
Do mmol Glucose equivalence of CHO in the absorption compartment starting value Determined
Dy mmol Glucose in the conversion compartment starting value Determined
Sio mU Amount of short-acting insulin in the compartment 1 starting value Determined
S20 mU Amount of short-acting insulin in the compartment 2 starting value Determined
Uro mU/min Insulin absorption rate into the blood starting value Determined
Iy mU/L Insulin concentration starting value Determined
Ugo mmol/min The exogenous input of glucose into blood stream from food absorption (the glucose absorption rate) starting value | Determined
X10 /min The effect of insulin on distribution/transport of glucose starting value Determined
X20 /min The effect of insulin on glucose disposal starting value Determined
X30 # The (remote) effect of insulin on endogenous glucose production that released from liver starting value Determined

https://doi.org/10.1371/journal.pone.0257789.1003

gastro-intestinal tract [22]. Glucose exits the system due to renal elimination and due to glu-

cose utilization, which in turn is divided into two terms: the Uy, function, insulin-dependent
utilization (whose correct formulation is reported in the 2013 version [23]) and the constant
U, uptake of glucose by the brain and erythrocytes.

Insulin appears in plasma via three routes of administration: subcutaneous, inhaled and
intra-dermal. The subcutaneous insulin sub-model is described in [25], while the intra-dermal
model appears in [29] and the inhaled model is presented in [26]. The action of insulin on glu-
cose is delayed by the introduction of variables that act both on EGP (decreasing as insulin
increases) and on insulin-dependent glucose utilization Uy, (increasing as insulin increases).
Once again it should be noted that at high values of insulin concentration, the UVAPadova
model would predict negative EGP’s.
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The glucagon sub-model is composed of only one differential equation including:
« endogenous glucagon production (input);
« subcutaneous glucagon administration (input);
« glucagon elimination (output).

Glucagon affects glucose by enhancing its production (EGP increases with increasing gluca-
gon levels in plasma); this effect also occurs through a delayed action. All the values of parame-
ters and their sources are shown in Table 4.

Results

A first set of simulations showed that without making any change to the Sorensen model
parameter values, the model is insufficient to predict reasonable time courses of blood glucose
concentrations in diabetic subjects undergoing an OGTT: the curve reaches a maximum glyce-
mia of 10 mM, a much lower value than that observed with the other two formulations (18
mM) and presumably observed in such patients; also, the time required for plasma glucose to
return to its basal value is approximately 300 min, about half the time required for the Hovorka
and UVAPadova models. One reason for the observed divergences from the expected behav-
iour relies on the assumption that, apart from the defect in insulin production, the physiology
of a diabetic individual is otherwise the same as that of a normal individual. This assumption
represents an understandable simplification in the absence of further information, but diabetic
people are actually known to suffer from reduced insulin sensitivity as well [1], and avoiding
to consider diabetic insulin resistance could lead to misleading results. In Fig 1 it can be seen
that glucose concentrations forecasts by the Sorensen model differ substantially from those by
the other two models. This suggests the need to modify the values of those Sorensen model
parameters involved in the description of insulin-dependent glucose uptake. In order to check
whether Sorensen’s model was qualitatively different from the other two models, parameter
values were estimated for Sorensen’s model by adapting its predictions to the corresponding
Hovorka and UVAPadova predicted time-courses for an OGTT plus insulin experiment
(OGTT + basal insulin + insulin bolus in-silico experiment). In order to obtain comparable
predictions, three steps were followed:

1. The peripheral venous insulin volume (V7},,) of the Sorensen model was increased to initial-
ize steady-state insulinemia to a value as close as possible to the initial insulin concentra-
tions observed for the Hovorka and UVAPadova models under the same basal insulin
infusion conditions. Parameters Fp;c and Fj ¢, which represent fractional peripheral and
hepatic insulin clearance, respectively, were also increased.

2. Plasma glucose concentrations, after oral administration of 100g of glucose without insulin
delivery, were simulated with the Hovorka and Sorensen models and then compared to
determine the values of the Sorensen parameters involved in the description of insulin-
independent glucose production and elimination. The parameters and functions involved
in the two processes are r},, (the constant basal glucose production), Gy (the constant rate
of intestinal glucose utilization) and M, (the hepatic glucose production) depending on
parameters Boycp, Biucp and Brrcp, which were all reduced to make the liver less sensitive
to circulating glucose concentrations.

3. In the final step the plasma glucose concentrations from the Sorensen model, following an
oral administration of 100g of glucose in combination with both an insulin infusion and an
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Table 4. UVAPadova model parameters.

Parameter Ref. Units Meaning Value
ky 1 /min Rate parameters 0.042
k, 1 /min Rate parameters 0.071
Vg 1 dL/kg Distribution volume of glucose 1.49
Gy, F mg/dL Glucose plasma starting value 90
Ui 1 mg/kg/min Glucose uptake by the brain and erythrocytes 1
my 5 /min Rate parameters 0.356
my 5 /min Rate parameters 0.644
ms 5 /min Liver degradation rate 0.534
" 5 /min Rate parameters 0.258
Vi 1 L/kg Distribution volume of insulin 0.044
Kmaxo 3 /min Maximum levels of gastric emptying rate starting value 0.03
Komaxs 3 /min Maximum levels of gastric emptying rate Breakfast 0.04
Kymaxr 3 /min Maximum levels of gastric emptying rate Lunch 0.028
KpnaxD 3 /min Maximum levels of gastric emptying rate Dinner 0.03
Dose F mg Initial glucose Dose 100000
Kabso 3 /min Rate constant of intestinal absorption starting value 0.147
KapsBL 3 /min Rate constant of intestinal absorption Breakfast and Lunch 0.13
KabsD 3 /min Rate constant of intestinal absorption Dinner 0.147
f F # Fraction of glucose absorbed 0.7
BW F kg Body weight 70
Kumino 3 /min Minimum levels of gastric emptying rate starting value 0.008
Koming 3 /min Minimum levels of gastric emptying rate Breakfast 0.015
Kmint, 3 /min Minimum levels of gastric emptying rate Lunch 0.01
KminD 3 /min Minimum levels of gastric emptying rate Dinner 0.008
b 1 # Fraction of dose corresponding to the flexes of gastric emptying curve 0.68
c 1 # Fraction of dose corresponding to the flexes of gastric emptying curve 0.09
Qst00 3 mg Glucose into the Stomach starting value 0
Qsro10 3 mg Glucose into the Solid Stomach compartment starting value 0
Qst020 3 mg Glucose into the Liquid Stomach compartment starting value 0
Qquro 3 mg Glucose into the Gut compartment starting value 0
Raealo 3 mg/kg/min Rate of appearance of the meal starting value 0
EGPO F mg/kg/min Endogenous Glucose Production starting value 24
ko 1 /min Hepatic glucose effetiveness 0.0007
kp3o 3 mg/kg/min/pmol/L Hepatic insulin sensitivity starting value 0.014
kp3p 3 mg/kg/min/pmol/L Hepatic insulin sensitivity Breakfast 0.015
ko3p 3 mg/kg/min/pmol/L Hepatic insulin sensitivity Lunch and Dinner 0.014
14 C mg/kg/min/ng/L Hepatic responsivity to glucagon 0.013
k; 1 /min Rate parameter accounting for delay between insulin signal and insulin action 0.0066
kg C /min Inverse of time delay between glucagon concentration and action 0.009
pes 3 ng/L Delayed glucagon action on EGP starting value 0
Xo 3 pmol/L Insulin action on the glucose utilization starting value 0
Gy C mg/dL Hypoglycemic threshold 60
Vimo 1 mg/kg/min Rate parameter 4.65
Vonxo 3 mg/kg/min/pmol/L Insulin sensitivity 0.058
Vs 3 mg/kg/min/pmol/L Insulin sensitivity Breakfast 0.051
ViuxLD 3 mg/kg/min/pmol/L Insulin sensitivity Lunch and Dinner 0.058
riskg F # Blood glucose risk function starting value 0
(Continued)
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Table 4. (Continued)

Parameter Ref. Units Meaning Value

rn C # Risk parameter 1 1.5

1 C # Risk parameter 2 0.8

Ko 1 mg/kg Glucose mass appearing in Michaelis-Menten relation 466.21

Pav 1 /min Rate constant of insulin action on the peripheral glucose utilization 0.084

ke 1 /min Glomerular filtration rate 0.0007

ker 1 mg/kg Renal threshold of the glucose 269

ka1 2 /min Rate constant of non-monomeric insulin absorption 0.0018

Kaz 2 /min Rate constant of monomeric insulin absorption 0.0182

ka 2 /min Rate constant of insulin dissociation 0.0164

Katin 5 /min Rate constant 0.026

Frn 5 /min Rate constant 0.14

Linss 5 pmol/kg Inhaled insulin starting value 0

T, F min Time constant 1

n C /min Clearance rate 0.01

H, F ng/L Glucagon plasma concentration starting value 58

p C /min Rate parameter accounting for delay between static glucagon secretion and plasma glucose 0.86

4 C ng/L/min/mg/dL/pmol Responsivity of alpha cells for glucose level 0.01

6 C ng/L*mg/dL Responsivity of alpha cells for glucose rate of change 0.98

SRé, 4 ng/L/min Glucagon secretion component 2 starting value 0

k1 F /min Rate parameter describing subcutaneous glucagon kinetics 1 0

kina F /min Rate parameter describing subcutaneous glucagon kinetics 2 0

ki3 F /min Rate parameter describing subcutaneous glucagon kinetics 3 0

H.p 4 ng/L Glucagon subcutaneous concentration 1 starting value 0

Hop 4 ng/L Glucagon subcutaneous concentration 2 starting value 0

Rapy 4 ng/L/min Rate of appearance of the glucagon starting value 0

Usco F pmol/kg/min Exogenous insulin infusion rate 0.667

UgcBolo F pmol/kg/min Exogenous insulin infusion rate bolus at the breakfast time 100

UgcBasal F pmol/kg/min Exogenous insulin infusion rate at the basal condition 0.667

Ujp F pmol/kg/min Inhaled insulin infusion rate 0

Gpp D mg/kg Glucose plasma concentration starting value Determined

E, D mg/kg/min Renal excretion starting value Determined

Loy D pmol/kg Insulin plasma concentration starting value Determined

I, D pM Insulin plasma starting value Determined

X; D pM Delayed insulin action in the liver starting value Determined

kp1 D mg/kg/min Extrapolated EGP at zero glucose and insulin Determined

Gy, D mg/kg Glucose tissue concentration starting value Determined

Usao D mg/kg/min Insulin-dependent utilization starting value Determined

ki D # Decrease factor for insulin-dependent glucose utilization Determined

Iy D pmol/kg Insulin liver concentration starting value Determined

a D /mg Constant Determined

B D /mg Constant Determined

Kempto D /min Emptying rate of the Stomach starting value Determined

f D # Function 2 Determined

I D pM Delayed insulin starting value Determined

Loerss D pmol/kg Amount of non-monomeric insulin in the subcutaneous space starting value Determined

Lioss D pmol/kg Amount of monomeric insulin in the subcutaneous space starting value Determined

Gy D mg/dL Subcutaneous glucose starting value Determined

Rag D pmol/kg/min Subcutaneous insulin kinetics starting value Determined
(Continued)
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Table 4. (Continued)

Parameter Ref. Units

Ragino D pmol/kg/min
Ray D pmol/kg/min
SR, D ng/L/min
SR}, D ng/L/min

Meaning Value

Inhaled insulin kinetics starting value Determined
External insulin rate of appearance starting value Determined
Glucagon secretion starting value Determined
Glucagon secretion component 1 starting value Determined

1: Meal Simulation Model of the Glucose-Insulin System (2007) [22]

2: GIM, Simulation Software of Meal Glucose-Insulin Model (2007) [25]

3: One-Day Bayesian Cloning of Type 1 Diabetes Subjects: Towards a Single-Day UVA/Padova Type 1 Diabetes Simulator (2016) [27]
4: The UVA/Padova Type I Diabetes Simulator Goes From Single Meal to Single Day [24]

5: Improving Efficacy of Inhaled Technosphere Insulin (Afrezza) by Postmeal Dosing: In-silico Clinical Trial with the University of Virginia/Padova Type 1 Diabetes

Simulator [26]
F: Fixed

D: Determined
C: Calibrated

https://doi.org/10.1371/journal.pone.0257789.t1004

insulin bolus, were made as close as possible to the Hovorka time courses, by modifying the
parameters involved in insulin-dependent glucose uptake (M7.,,). The modified parameters
were fypcu and B pcu, both decreased in order to reflect reduced peripheral tissue sensitiv-
ity to insulin, as expected in diabetic subjects.

1 8 T T T T T
Hovorka
— — — - Sorensen
wero N e UVAPadova

—
N

12

10

Plasma Glucose Conc. [mM]

4 | | 1 1 |
0 100 200 300 400 500 600

Time [min]
Fig 1. Blood glucose concentrations from Hovorka (solid line), Sorensen (dashed line) and UVAPadova (dotted

line) models with the original Sorensen model, during an in-silico OGTT experiment in conjunction with an
insulin bolus.

https://doi.org/10.1371/journal.pone.0257789.9001
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Fig 2. Blood glucose concentrations from the Hovorka (solid line), Sorensen (dashed line) and UVAPadova
(dotted line) models with the modified Sorensen model, during an in-silico OGTT experiment in conjunction
with an insulin bolus.

https://doi.org/10.1371/journal.pone.0257789.9002

Fig 2 shows the plasma glucose concentrations resulting from the three models following
the changes described above. The original and the modified parameter values are reported in
Table 5 (“(before)” and “(after)” columns respectively). In this figure the predictions from the
Sorensen model are comparable with those obtained under the Hovorka and UVAPadova

Table 5. Results of the set up calibration (trial and error) procedure to make the simulation of the Sorensen model
comparable with the simulations of the Hovorka and UVAPadova formulations.

Before After
Fpic(#) 0.150 0.240
Fric(#) 0.400 0.459
Vi, (L) 0.740 2442
i () 0.861 0319
oy (222) 0.111 0.233
Borcp(®)" 1.42 1.092
ﬂlHGP(#)l 1.41 1.085

Borigp(®)' 0.62 0.2067
Borcu(#) 7.03 0.703
Bircu#)’ 6.52 0.652

g Miior = Bonce = Bincetanh[Boyce(GY — Byiep)]
% Mgy = Bopu + BrocutanhBopey (I — Bypeu)]

https://doi.org/10.1371/journal.pone.0257789.t1005
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Fig 3. Blood glucose concentrations from the Hovorka (solid line), Sorensen (dashed line) and UVAPadova
(dotted line) models, during the in-silico OGTT experiment.

https://doi.org/10.1371/journal.pone.0257789.9003

model, exhibiting similar maximum concentrations despite a faster return to baseline condi-
tions. Similar time courses were obtained by slightly modifying parameters Fp;c and F;c but
by tripling V7, that was set to a value very close to that assumed by UVA/Padova. Large
changes were also necessary for the parameters involved in the insulin-dependent glucose utili-
zation which were decreased by about ten times. This seems however to be reasonable for a
diabetic individual.

The other planned simulations, reported in the subsection “The in-silico experiments”, are
shown in Figs 3-5. The figures show a similar behaviour of the three models with slight diver-
gences: the Hovorka time courses differ from the trends observed for the Sorensen and UVA-
Padova models in the OGTT experiment without insulin administration (Fig 3); Sorensen’s
predictions deviate from the other two in the IVGTT experiment (Fig 4). In the latter figure,
the Sorensen model shows reduced insulin sensitivity compared to the other two formulations,
exhibiting a much slower return to the basal values, more in line with the profile of a diabetic
individual.

OGTT model fitting

The three models were compared in terms of their ability to adapt to observed glucose concen-
trations from a normal individual undergoing an OGTT with the administration of 100 g glu-
cose. Data were taken from Sorensen’s PhD thesis [20]. The fitting procedure was performed
by minimizing the sum of the weighted squared residuals (weighted least-squares estimation,
WLS, with weights the inverse of the squared expectations). The choice to use real data from a
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Fig 4. Blood glucose concentrations from the Hovorka (solid line), Sorensen (dashed line) and UVAPadova
(dotted line) models, during the in-silico IVGTT experiment in conjunction with an insulin bolus.

https://doi.org/10.1371/journal.pone.0257789.9004

normal individual derives from the unavailability in the literature of OGTT data from diabetic
subjects, since OGTT is not a standard procedure performed on diabetic people. It should be
underscored that model parameters needed to be assessed numerically via fitting, because the
parameter values used in the simulations above (representing the response of a diabetic indi-
vidual), were inadequate to represent the physiological behaviour of normal subjects, who
show different rates of absorption and production of glucose.

For each of the three models the fitting procedure allowed the estimation, among other
things, of the amount of insulin administered as a bolus; the basal insulin was instead deter-
mined in such a way that all three models started (i.e. at time zero, before the glucose and insu-
lin bolus administrations) from the same level of glucose concentration.

The list of the estimated parameters for the three models, together with their before and
after estimation process values, are reported in Table 6. The last two columns of the table
report the Standard Deviations (SDs) and the Coefficients of Variation (CVs) of the estimated
parameters. Since the obtained estimate of the parameter k;; was essentially zero, the parame-
ter was set to 0 and no variability for it was computed. CVs larger than 100% are not reported
and they are identified only as being >100%. This happened for all the free parameters of the
UVAPadova model. Fig 6 shows the performance of the three formulations.

For the Sorensen and Hovorka models, the parameters left free to vary are those related to
the external insulin input (yscri,1 and u;, respectively), to the insulin sensitivity mechanism
(some parameters in the M}, function for the Sorensen model and parameters k;,; and k3 for
the Hovorka model) and to the transfer rates that appear in the subcutaneous insulin compart-
ments (leaving parameter 75 in Eq [177] to vary only for the Sorensen formulation).
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Table 6. Before vs after fitting.

24

— N N
@ o N

—_
(o))

—_
N

Plasma Glucose Conc. [mM]
) IS

Hovorka
— — —-Sorensen
------------- UVAPadova

100

200

300
Time [min]

400

600

Fig 5. Blood glucose concentrations from the Hovorka (solid line), Sorensen (dashed line) and UVAPadova
(dotted line) models, during the in-silico IVGTT experiment.

https://doi.org/10.1371/journal.pone.0257789.9005

Sorensen Before After SD CV
1g(min) 55 39.538 1.898 4.78%
Boru(#)* 7.03 3.387 0.387 11.41%
Bipcu(#)* 6.52 2.608 0.402 15.42%
Hovorka
Ky (=) 3.07E-05 1.571E-04 2.875e-05 18.30%
ki () 1.56E-03 5.341E-17 / /
UVAPadova
k(L) 0.042 0.095 0.755 >100%
ky(:L) 0.071 0.016 0.155 >100%
ky ( s p;(n_gl) 0.014 0.015 0.257 >100%
f(k;in f) 0.013 0.011 3.091 >100%
k(L) 0.0066 0.0080 11.461 >100%
ky () 0.009 0.012 10.313 >100%
Vo, (k;f /p,:oz) 0.051 0.040 24.735 >100%
K, (rkn_gg) 466.21 0.002 0.045 >100%
Pon () 0.084 0.050 29.79 >100%

*:MI

tou = Borcr + Pircutanh|Bopey (I — Bipeu)]

https://doi.org/10.1371/journal.pone.0257789.t006
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Fig 6. A)Blood glucose concentrations of Sorensen (dashed line), Hovorka (solid line), UVAPadova (dashed dotted line) models with data points
from Sorensen PhD thesis (asterisks); B) Hovorka (solid line) vs data points (asterisks); C) Sorensen (dashed line) vs data points (asterisks); D)
UVAPadova (dashed dotted line) vs data points (asterisks).

https://doi.org/10.1371/journal.pone.0257789.9006

The UVAPadova parameters involved in the fitting procedure are those that appear in the
external insulin input (#pos), in the representation of insulin sensitivity (kps, Viup and Kiy),
in the delayed effect of the insulin (k; and p,,,), in the mechanisms of glucose transport between
the plasma and tissue compartments (k; and k,) and in the effect of glucagon on glucose pro-

duction (¢ and kp).

While for the Sorensen and Hovorka model it was necessary to optimize the values of four
and three parameters respectively, for the UVAPadova model it was necessary to leave ten
parameters free to vary to obtain a good fit of the model predictions to data. The greater num-
ber of parameters to be estimated for the UVA/Padova formulation may be due to its great
complexity. While it is true that the Sorensen model includes the largest number of equations,
it should also to be noted that all parameters are set to values compatible with normal
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physiology. The parameters of the Hovorka and UVA/Padova models are instead indicated for
a diabetic individual, but the more compact formulation of the Hovorka model requires fewer
modifications to obtain a good fit.

The estimated boluses of insulin required by the three model formulations are: 56387.7
pmol (8886.6 SD, 15.76% CV) (approximately 8 IU), 2361 mU (402.19 SD, 17.03% CV)
(approximately 2.3 IU) and 849 pmol/kg (2.508e+05, >100% CV) (approximately 8 IU) for the
Sorensen, Hovorka and UVAPadova model respectively. While a similar amount of insulin is
necessary for the Sorensen and UVAPadova formulations, the Hovorka model estimated a
value four times lower than that estimated by the other two.

Fig 6 shows the glycemia time-course predicted by the three models after the fitting process.
As expected, the Sorensen model produces the best fit of predictions to observed concentra-
tions. The Hovorka and UVAPadova models seem to be insufficient to represent the final part
of the experiment: the Sorensen model is able to predict the rebound observed around the
minute 200, where after a decrease below the basal conditions, there is a recovery towards the
baseline.

Subsequent three OGTTs in one day. Fig 7 shows the results obtained with three subse-
quent OGTTs in one day (at 7:00, 12:00 and 19:00) with parameter values set to the estimates
obtained by adapting the models to the OGTT data in Fig 6. The Sorensen model appears to be
the only one capable of reproducing exactly the same glycemic pattern in the three sub-experi-
ments, with a return to pre-bolus conditions after each OGTT. The UVAPadova formulation
is the one for which subsequent OGTTs bring glucose concentrations to lower and lower val-
ues (until they fall below a 2mM glycaemia). This feature could be overcome by adopting
decreasing values for the parameters V.5 and k3, expressing peripheral and central insulin
sensitivities respectively, as observed in normal individuals [30]. However, Hinshaw [30] dem-
onstrated that there was no evidence of differences between breakfast and dinner in terms of
glucose disappearance in Type 1 diabetic subjects. In the present simulated experiment the val-
ues of the two aforesaid parameters were kept constant during the day at the values obtained
in the fitting procedure. The Hovorka model predicts glucose concentrations lower than those
observed in the first sub-experiment both in the second and third OGTT, nevertheless never
producing concentrations below 3mM.

Discussion

Much work has been done within the scientific community, and is still being done, on the
study of appropriate models of the glucose/insulin system, aimed at supporting the develop-
ment of algorithms for controlled and automatic administration of insulin (the “artificial pan-
creas”). These models must be able to correctly describe the relevant physiology and need to
be identified on each single individual: the ability of a model to provide reliable predictions of
the glucose and insulin time courses allows the development of robust control algorithms for
automatic glucose control in the management of TIDM patients. Among the models present
in the literature, the Sorensen model [20], the Hovorka model [17-19] and the UVAPadova
model [22, 24-27] are most frequently used to represent virtual patients to this end. The Sor-
ensen model appears to be, among these three, the most complete and detailed in terms of
physiological description and parameter values, with its 22 nonlinear differential equations
and 135 parameters. Conversely, the UVAPadova model is the most recent and, judging from
the number of publications citing it, is the most frequently used, also because its 2013 [23] ver-
sion was approved by the FDA.

One limit in using this model, however, lies in the difficulty in deciding the values of its
many parameters (about 100). In fact, although the mathematical description of the model
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Fig 7. A)Blood glucose concentrations of Sorensen (dashed line), Hovorka (solid line), UVAPadova (dashed dotted line) models after three OGTT in
conjunction with three insulin bolus; B) Hovorka (solid line); C) Sorensen (dashed line); UVAPadova (dashed dotted line).

https://doi.org/10.1371/journal.pone.0257789.9007

appears complete from the aggregated publications describing it, the values of several of its
parameters are not published, and this prevents the use of the model by potential users. From
a usability point of view, the Hovorka model is the simplest, with few model parameters, and
therefore easier use for simulation purposes. With the aim of making them available to the
interested scientific community, this work provides a complete description of all three models,
together with the values of all of the respective parameters.

The present work compares the three models in terms of their performance when simulat-
ing the response of a T1DM individual to different glucose stimuli under different types of
insulin administration. The comparison among the three models was performed by imple-
menting four types of in-silico experiments.
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The Sorensen [20] model can be defined as a maximal model, as it describes the relationship
and interactions between the most important actors of glucose metabolism (glucose, insulin
and glucagon) for both a normal individual and a diabetic. This means that, compared to the
other two, it provides a description of the role of the pancreas, so as to allow not only the
simulation of a Type 1 diabetic patient but also of a Type 2 diabetic subject, as well as a nor-
mal individual, for which insulin secretion is still maintained or fully guaranteed, respec-
tively. As mentioned above, the model is well documented with regards to the description of
both equations and parameters. It does not provide for a mathematical formalization of the
gastrointestinal tract and subcutaneous compartments of insulin, but these two drawbacks
can be easily overcome by recovering the missing parts from other model formulations.

The UVAPadova 2018 [24] model is a maximal model that describes the relationship among
glucose, insulin and glucagon only for patients with Type 1 diabetes. Compared to the Soren-
sen model, the UVAPadova model includes a description of gastric emptying and glucose
absorption and offers the possibility of considering different types of insulin and glucagon
administration routes (subcutaneous, intradermal, inhaled). Most of the model equations
are well documented, but some of these are described only in qualitative terms (as for the k,;
and k;, functions in Eq [119] and in Eq [123] respectively): these time-varying parameters
were therefore kept constant throughout the simulations. The most important flaw however
lies in the lack of values for some parameters. Table 4 reports the values of the parameters
used in the in-silico experiments, column Ref; some of them have been found in the litera-
ture and the sources are provided (listed with numbers), some have been determined (indi-
cated with the letter D), some have been set at known or reasonable values (denoted by the
letter F), the rest of the unknown parameters have been calibrated (and are indicated with
the letter C). Therefore, the model, on the basis of what is reported in literature, is not of
immediate implementation and use. The present work provides the scientific community
with the most complete description having appeared so far of this model’s equations and
parameters, gathering all the information available from the several sources in the literature
[22, 24-27].

The Hovorka model [18] is the simplest among the three analysed models; it describes the
relationship between glucose and insulin in subjects with in Type 1 diabetes: therefore, like
the UVAPadova model, it does not present a description of the secretion and the release of
endogenous insulin. While simpler than the other two, this model does provide a clear for-
malization of gastro-intestinal absorption after oral administration of glucose, and it
includes subcutaneous compartments for the representation of external insulin administra-
tion. The Hovorka model appears to be easy to understand, sraightforward to implement,
and well documented [17-19].

The Sorensen model, when used for a diabetic individual, is insufficient to adequately

describe the response to any type of experiment if no adjustment is made in terms of parameter

values. This is due to the fact that, since people with Type 1 diabetes are at risk of severe hyper-

glycaemia when undergoing perturbation experiments, no perturbation data are available from
the literature, so for this Author it was not possible to derive parameter values under these
altered conditions. Sorensen therefore adopts the same formalization and quantification used

in normal individuals to approximately describe the physiological behaviour of a diabetic sub-

ject, apart from the exclusion of the representation of insulin secretion. Fig 1 highlights the

behaviour of the Sorensen model, clearly different compared with the other two. The Hovorka
and UVAPadova models instead, show similar time courses, reaching the same maximum
value with a slight difference in the return to basal conditions. After making the appropriate
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modifications to the Sorensen model, as described in the “Methods” section, the resulting pre-
dictions resemble those obtained with the other two formulations (see Fig 2), although a faster
recovery towards the basal values is observed. It is however clear that, in the absence of actual
observation data on diabetic subjects, it is not possible to state which of the three models comes
closer to describing the correct physiology. Fig 3, mimicking an OGTT without insulin bolus,
shows similar trends for Sorensen and UVAPadova, with similar maximum values reached.
The Hovorka model predicts higher glucose concentrations and a slower return to baseline
conditions. The higher concentrations could be due both to higher than expected endogenous
glucose production and to lower tissue glucose uptake in the absence of an insulin bolus.

In Fig 4, where the IVGTT experiment is simulated in conjunction with an insulin bolus,
the Hovorka and UVAPadova models show a similar time course, while the predictions of the
Sorensen model appear to be qualitatively different. Although no observations on actual
patients are available to demonstrate the plausibility of the three models, the predictions
obtained with the Sorensen model seem to be more in line with the expected response of a dia-
betic subject since exhibit a slower return towards pre-experiment values.

In the IVGTT experiment without insulin bolus administration (Fig 4) UVAPadova and
Hovorka are quite in agreement, while Sorensen shows a glucose trend more consistent with
an insulin-resistant profile. These results have been obtained by modifying some model param-
eters of the Sorensen formulation, in particular those relating to the description of both central
and peripheral insulin sensitivity (Table 5). It is likely that,by changing the values of other
parameters, a greater similarity of the predictions of the three models may be obtained. How-
ever, in the absence of clear evidence pointing to the better performance of one model with
respect to the others, introducing changes in the parameter values chosen by the Author after a
thorough literature search is not advisable unless supported by physiological justifications.

The adaptation of the three models to real OGTT data of a normal individual emphasizes
the ability of all three models to adapt to real glycemic trends. Even if the setting in which the
comparison is made is not optimal (observations are made on a normal individual and not on a
diabetic patient), this procedure allows us to investigate the ability of the models to adapt to real
data, leaving some parameters free to vary and estimating the administered insulin dose neces-
sary to reproduce the glucose observations. A “good” model should be able to elucidate the rela-
tionship between glucose and insulin and should be able to predict a recovery to baseline
conditions, with a time course as close as possible to that of a normal subject, with a reasonable
amount of insulin. This aspect is important when these models are used in model-based control
algorithms, so that the ability of a model to adapt to real observations becomes an essential fea-
ture and deviations from what is observed emphasize important physiological deficiencies.

Fig 6 shows a very good performance of all three models in adapting to the data, but we can
see that the Sorensen model is the only one able to predict the recovery phase with a rebound
after a hypo-glycaemic period produced by the administration of insulin, reaching the last
available data point. This could be due to the fact that the parameter values used for the Soren-
sen model were those originally adapted to the physiology of a normal individual. Surprisingly,
while the Hovorka model tries to predict a recovery phase, which will indeed occur at a later
time, the UVA/Padova model appears to stabilize at a lower blood glucose levels despite a
greater number of free model parameters (ten for UVa-Padova, four for Sorensen and three
for Hovorka). The estimated amount of insulin administered as a bolus, needed to obtain the
predictions of Fig 6 are 2.3 IU, 8.5 IU and 8 IU for the Hovorka, UVAPadova and Sorensen
formulations respectively. The much lower value observed for the Hovorka model could
depend on the estimated values of the other free parameters: insulin sensitivity, explicitly rep-
resented in the Hovorka model by the parameter k1, is estimated in fact at about 1.6 x 107%,
and if insulin sensitivity is high, then necessary amount of insulin to be delivered decreases. In
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this context however it should be noted that a lower k3 (roughly representing central periph-
eral insulin) determines greater production of endogenous glucose, which on one hand com-
pensates for the augmented sensitivity to peripheral insulin, while on the other causes final
recovery to attain a higher blood glucose concentration. Concurrently with a large bolus of
insulin obtained for the Sorensen model, the parameters of the M}, function (representing
insulin sensitivity) all decreased by about a factor of two. For the UVAPadova model an exter-
nal insulin input (u#s.p.1,) of approximately 8 IU is required. A much lower K,,,o parameter
(approximately zero) in Eq (123) is consistent with much improved insulin sensitivity, acceler-
ating the effect of insulin on glucose utilization.

Conclusion

The three models seem to reproduce all the simulated experimental situations quite well with-
out obvious divergences. The Sorensen model produces predictions similar to those of the
other two models once some parameter values are modified, suggesting that, with suitable
adaptation, this model could be used to also represent the physiology of diabetic subjects. An
updated formulation including both the gastrointestinal tract and the subcutaneous insulin
deposit compartment should be used in this case.

With the information available at the present time, the final choice about which model to
use lies in the confidence that the experimenter places on how plausibly the mathematics rep-
resents the underlying physiology, as well as on the simplicity, robustness and versatility of the
formulation. A more complex model with a large number of parameters might in principle fit
better with observations, but the complexity of a model not only makes identification statisti-
cally harder, but it suffers from possible over-fitting and consequently fragile, unreliable fore-
casts. From this point of view, the Sorensen model is the one with the greatest number of
parameters (adding the fixed, determined and free ones). However, since they are well docu-
mented and an in-depth bibliographic research has been carried out by the Author, most of
the parameters are set to known values, so as to require the estimation of a lower number of
free parameters than the UVAPadova model, which in any case is poorly documented. Con-
versely, Hovorka’s model is the simplest, and still fits sufficiently well the observed data. We
notice however that the Sorensen model is the only one capable of predicting the rebound
phase in the OGTT experiments, where the other two models fail.

From purely in silico experiments it is not possible to draw definitive conclusions on which
model is physiologically more credible. The next logical step in the evaluation of these and pos-
sibly other maximal models of the glucose-insulin system would be to compare their predic-
tions against actual observational data, obtained with different experimental set-ups in
patients with a range of normal and diabetes conditions.

Appendix
The Sorensen Model
Mass Balance—Glucose
BRAIN
. dG %
Vzg’v = Qg(GH - GBV) - (GBV - GBI) (8)
dt T,
dG V.
VBIWBI = TEI (Ggy — Ggy) — Ty 9)
B
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HEART AND LUNGS
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GUT
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V/Gd—t] = Q]G(GH - G}) — Yiu (11)
LIVER
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Vi ar Q,Gy + Q/ G, — Q)G + Ty — Theu
KIDNEY
dG
1? dtK = QIG<(GH — Gy) — Ty (13)
PERIPHERY
. dG \%
VI(’,V d:v = QE(GH - Gpv) - T_I;l (GPV - GPI) (14)
P
dG V
PI dtPI = ?g( PV GPI) — Tpu (15)
Metabolic Source and Sinks—Glucose
mg
=70—= tant 16
Tacu i [constant] (16)
mg
.o =10—= tant 17
rRBCU I’I’lin [Cons an ] ( )
mg
=20—= tant 18
Ticu - [constant] (18)
Ty = MII’GUM}?GUrgGU (19)
mg
Ty = 35~ (20)
M., = 7.03 + 6.52tanh[0.338(I} — 5.82)] (21)
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Mgy = Gy (22)
Tror = MueeMyuceMiiceT fioe (23)
mg
rhop = 155—= — (24)
dM! 1
d?GP iy [Myer — M) (25)
1
7, = 25min (26)
Mg = 1.21 — 1.14tanh[1.66(IN — 0.89)] (27)
Myyep = My —f (28)
M;2, = 2.7tanh[0.39T""] (29)
df, 1 (Mg —1
P2 — 30
a1 < 2 fa (30)
1 = 65min (31)
M., = 1.42 — 1.41tanh[0.62(GY — 0.497)] (32)
Tuov = MyeuMicuteu (33)
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Moy = 20— min (34)
dM?! 1
dI:GU 7:_ [MHGU MiIGU] (35)
1
Mgy = 2tanh[0.551"] (36)
Mg, = 5.66 + 5.66tanh[2.44(GY — 1.48)] (37)

71 + Tltanh[0.011(G, — 460)] 0 < G, < 460 5;
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Mass Balance—Insulin

BRAIN
dIl
thz d_: = Q{i(IH - IB) (39)
HEART AND LUNGS
T dly Ve 1 i
Vi— = Qly + QI + Qi+
dt (40)
+QIIJIPV - Q;-IIH + Vv
GUT
dl
VIS = Q1) (a)
LIVER
1 dIL vl I vl 42
vy at =Q Iy + Q]I] = QL+ tpr — T (42)
KIDNEY
dl
Vlid_: = QL(IH - IK) — Txic (43)
PERIPHERY
dl V.
Vzlvv dz;v = Q;(IH - IPV) - T_;)I (IPV - IPI) (44)
PI
dIl \%
PI_PI = _P;I( PV IPI) — Trc (45)
at T}
Metabolic Source and Sinks—Insulin
Trie = FLIC[QQIH + Qﬂ] + rPIR] (46)
F,,c=0.40 (47)
rac = Fracl QL] (48)
Fye = 0.30 (49)
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r — IPT
He [(1 — FPIC)( 1 ) T}I>] (50)
FPIC Qf’ VP[
Fpe = 0.15 (51)
$(Gy)
Tpir S(G};) rgIR (52)
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dP
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dl
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Mass Balance—Glucagon
dr
vt ar Yprr = Tprc (59)
Metabolic Source and Sinks—Glucagon
Torg = Nyrel (60)
ml
Tmrc = 910% (61)
Torr = MipreMpraTor (62)
MG = 2.93 — 2.10tanh[4.18(GN — 0.61)] (63)
M. =1.31 — 0.61tanh[1.06(I§ — 0.47)] (64)
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Parameter values’
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1: Sorensen PhD thesis [20]

Determined parameters.
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Tuco = Frc(QyLyy + Q}IIO + T5prz) (93)
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The UVAPadova Model

Glucose Model

dG
—r = EGP(t) + Rameul<t) - Uii - E(t)+

dt
_lep(t> + kQGt<t)
dG
T = U0 + K G(0) ~ kG, (1)
G, (1)
Gl =2
G
Insulin Model
dl
d—: = _(m2 + m4)1p(t) + mIIl(t) + Ral(t)
dl
d_: = 7<m1 + m3)Il(t) + mQIp(t)
L,(t)
I(t) = "V
I

Gastrointestinal Model

Qsto(t) = eral(t) + Qsto?(t)

dQ &
stol __
d—tt - _kmasztal(t) + ZDOS@é(t - ti)

i=1

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

The equation from UVAPadova S2017 [24] is changed because it is incorrect with respect

to the operating conditions.
+ N, = number of meals (maximum 3)
o i =1 (Breakfast)
o i=2 (Lunch)
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e i =3 (Dinner)

EGP Model

d
% = _kemPt(Qsto)Qst(t) + kmuxQSlﬂl(t)
dQ ut
di - _kathgut<t) + kemPf(QSf")QS‘”Z(t)
Rameal(t) = M;#V‘;{(t)

koo — Ko
kemPr(Qsto) = kmin + % {tanh[(x(Qsm—’_

—bDose)| — tanh[f(Q,, — cDose)]+

sto

+2}

EGP(t) =k

pl - kpZGp(t) - kp3XL(t) + 5XH(t)

df;—: =k, X"(t) + kymax[(HI(t) — H,), 0]

Glucose Utilization Model

kir[vm() + meX(t)(]' + rlriSk)}Gt(t)
Km() + Gt(t)

Uid(t) =

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

The equation from UVAPadova S2017 [24] is replaced by that in UVAPadova (2014) [23],
because reported with an error.

66%( = _p2UX(t) +P2U[I(t) - Ih]

(124)
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0 G>G,
risk< 10f7 G, < G< G, (125)
10f; G<G,
fi = (lg(G))* — (log(G,))" (126)
Renal Elimination
(ko (G,(t) — k) G, (1) >k,
E(t) (127)
0 G,(t) <k,
Insulin Rate of Appearance Model
Ral(t) = Ralsc<t) + Ralih(t) (128)
Subcutaneous insulin kinetics
Ra[sc(t> = kallscl(t) + ku21562(t) (129)
dIscl
7 = _(kd + kal)Iscl(t) + usc(t - T) (130)
dI_.
d—tz = kdIscl(t) - kaZIsr:? (131)
Inhaled insulin kinetics
Ralih(t> = kalthih(t) (132)
dl,
d—th = 7kalihlih(t) + Flihuih(t) (133)
Subcutaneous glucose kinetics
dG 1 1
= ——G_(t) +=G(¢t 134
a =~ O+ G (134)
PLOS ONE | https://doi.org/10.1371/journal.pone.0257789  September 27, 2021 35/43


https://doi.org/10.1371/journal.pone.0257789

PLOS ONE

Three maximal mathematical models of the glucose-insulin system

Glucagon kinetics and secretion

dH
- = —nH(t) + SR, (t) + Ray(t) (135)
SR, (t) = SR}, (t) + SRY(1) (136)
PSR () — SRy
SRy () = G, — G(t) (137)
PISRS,(t) — max(o;%t)ﬁ + SR?,0)]
dG(t
SRY(t) = 5max[—%,0] (138)
Subcutaneous Glucagon kinetics
dH_
71 = —(ky + khZ)Hscl(t) (139)
dH
d;CZ = kthscl(t) - khZSHsc2(t) (140)
Rate of appearance of the Glucagon
Ray(t) = ky;H,(t) (141)
Determined parameters.
G, (1) = VG, (142)
(kyy * (pr — k) G,, > ke,
E, = (143)
0 pr S ke?
I _ usc()
pb m2+m4 B mym, (144)
m, + my
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I
[ =2 145
=y (145)
Xt=1, (146)
k. = EGP, + k,G,, + Ky X! (147)

U, + Ek,G,, — EGP,

th k (148)
2
Uw = k, pr —k,G, (149)
k. — UidO(Km() + th) (150)
" VmUth
m,l
I, =—21"_ (151)
my + my
5
*= 2[Dose,(1 — )] (152)
5
f=— 153
2(Dose,c) (153)

k k

empt( = Kimino

k_.—k, .
+ M * {tanh[o x (—b * Dose,)] — tanh[p * (—c * Dose,)] + 2} (154)

f, = log(Gy;) — log(Gy) (155)
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IL=1I (156)
u
I — sc0
sclss kd _|_ kal (157)
k,
k,2 (158)
Isc2ss =
Isclxs
Gch = Gb (159)
Ralsc{) = kalIsclss + kaQISEZSS (160)
Ragy = kol (161)
Ray, = Ray, + Ray, (162)
SR, = nH,, (163)
SRS, = SR, (164)
The Hovorka Model
Amount of glucose
dQ
d—l = UG(t) - xl(t)Ql(t) - F61(t) - F}z(t)Jr
t (165)
+k,,Q,(t) + EGPO[1 — x,(t)]
B — 2 Q1) ~ ks + 50]Q0) (166)
dt - M 1 12 2 2
Measurable blood glucose concentration
Q(t)
G(t) = 167
()= (167)
Glucose utilization by the central nervous system
F,, G(t) > 4.5mmol/L
F, = G(t) ' (168)
F, 15 otherwise
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Renal excretion of glucose

0.003[G(t) — 9]V, G(t) > 9mmol/L
F, = (169)
0 otherwise
Insulin effect on distribution/transport of glucose
dx,
dr = —k,x,(t) + kbll(t) (170)
Insulin effect on glucose disposal
dx.
7: = —kx,(t) + kypI(t) (171)
Insulin effect on EGP released from liver
dx,
dit( = —kyx,(t) + Ky I(2) (172)
Oral CHO intake expressed as glucose equivalent
D = frac1000M, .d(t) (173)
With M, = [-£] glucose molecular weight
Glucose in the absorption compartment
dD, 1
—=A.D(t) ——D,(t 174
& = AP0 ~ - Di(0) (174)
Glucose in the conversion compartment
dD, 1 1
—— =—D,(t) ——D,(t 175
=D~ D, (175)
The glucose absorption rate
D,(t
Uy(t) = 2 () (176)
Tp
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Amount of short-acting insulin

ds, 1
— =u(t) ——S,(¢t 177
G =0 =80 (177)
as, 1 1
—=—-S ——S,(t 178
=TS0 80 (178)
Insulin concentration
d U
—=——kI(t 179
N0 (179)
Insulin absorption rate into the blood
au, S,
i G 180
e 1 (180)
Determined parameters.
Vo =0.16*B,, (181)
V,=0.12%B,, (182)
EGP, = 0.161 * B, (183)
Q =GV, (184)
0.003[G, — 9]V, G, > 9mmol/L
Fpo = (185)
0 otherwise
D\, = DyAgT, (186)
D,, =D, (187)
S10 = Ui Ts (188)
S0 = Sy (189)
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S
Up=—" (190)
Ts
U
I, =2 191
0 ke VI ( )
D
Ugy = — (192)
I-D
k
X, =21, (193)
kal
k
Xy =221, (194)
ka?
k
Xy =0, (195)
kaS
X
Q= Q,—2— 196
20 10 xz() + k12 ( )
F, G, > 4.5mmol/L
Foyy = G, ) (197)
F,, 15 otherwise
T1DM Sorensen model initialization
Arterial Glucose Concentration Cycle
Gro = [Guess Arterial Glucose Concentration]
Initialize Glucagon model
compute My, Mg
1—3] = MIITROMI?FR()
Initialize Glucose model
Gpyy = Gy — TBQC+§/O
Gy = Gy — Zf}c”
compute M}
G,
GPVU - . Ver Mfc?un’gcu
QVRIGEFTEAEMY Ty
Kidney Glucose Concentration Cycle
Go = [Guess Kidney Glucose Concentration]
compute rxGeo
verify that G,y = Gy, — %
is the same of Gy, otherwise re-start from [Kidney Glucose Concentration Cycle]
END Kidney Glucose Concentration Cycle
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Liver Glucose Concentration Cycle
Gy = [Guess Liver Glucose Concentration]

compute ryGpos THGU0O
: 1 G G
verify that G, = o (Q3Gu + QG + Thm — Trowo)

is the same of Gy, otherwise re-start from [Liver Glucose Concentration Cycle]
END Liver Glucose Concentration Cycle

verify that Gy = Q]_g (Q5Gyyy + QG + Q¢Gyy + QFGpyg — Tipew)
is the same of Gy, otherwise re-start from [Arterial Glucose Concentration Cycle]
END Arterial Glucose Concentration Cycle

G, = Gpvo -
PI0 — T B
HMPGU'PGUTP

B
VerCpp

_ _ Tyrpeu
Gy = GBVO Var

Metabolism: initialize using values computed on last glucose model mass balance iteration
compute: M1 .. .M!

HGPO>* Y HGUO
_ Mo—1
f‘z_ 2
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