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This study was aimed at constructing a pyroptosis-related signature for prostate cancer (PCa) and elucidating the prognosis and
immune landscape and the sensitivity of immune checkpoint blockade (ICB) therapy in signature-define subgroups of PCa. We
identified 22 differentially expressed pyroptosis-related genes in PCa from The Cancer Genome Atlas (TCGA) database. The
pyroptosis-related genes could divide PCa patients into two clusters with differences in survival. Seven genes were determined
to construct a signature that was confirmed by qRT-PCR to be closely associated with the biological characteristics of
malignant PCa. The signature could effectively and independently predict the biochemical recurrence (BCR) of PCa, which was
validated in the GSE116918 and GSE21034. We found that patients in the high-risk group were more prone to BCR and
closely associated with high-grade and advanced-stage disease progression. Outperforming clinical characteristics and nine
published articles, our signature demonstrated excellent predictive performance. The patients in the low-risk group were
strongly related to the high infiltration of various immune cells including CD8+ T cells and plasma B cells. Furthermore, the
high-risk group with higher TMB levels and expression of immune checkpoints was more likely to benefit from immune
checkpoint therapy such as PD-1 and CTLA-4 inhibitors. The sensitivity to chemotherapy, endocrine, and targeted therapy
showed significant differences in the two risk groups. Our signature was a novel therapeutic strategy to distinguish the
prognosis and guide treatment strategies.

1. Introduction

Prostate cancer (PCa) is the second most widespread male
cancer with high lethality, causing more than 370000 deaths
worldwide in 2020 [1]. Meanwhile, more than one-third of
patients eventually experience biochemical recurrence
(BCR) after definitive treatment [2]. Patients with BCR were
more likely to develop clinical recurrence, metastases, and
cancer-specific mortality [3]. Therefore, early detection of
BCR was essential for the management and treatment of
PCa patients. The existing clinical indicators cannot effec-

tively predict BCR and guide treatment, necessitating repre-
sentative and robust clinical models to promote preclinical
translational and mechanistic studies of treatment in PCa.

Pyroptosis is considered to be a form of programmed
cell necrosis triggered by proinflammatory signals and asso-
ciated with inflammation [4]. Pyroptotic cells undergo cyto-
plasmic swelling and membrane pore formation, leading to
loss of plasma membrane integrity and ultimately to leakage
of cytoplasmic contents. The occurrence of pyroptosis
requires the activation of caspase-1, which is responsible
for the maturation of proinflammatory cytokines through
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inflammasome-dependent pathways, such as interleukin 1 β
(IL-1β) and IL-18 [5]. Meanwhile, gasdermin D (GSDMD)
cleaved by activated caspase-1 locks into the plasma mem-
brane to form pores [6]. More and more studies on the rela-
tionship between pyroptosis and tumors had shown that
pyroptosis played an important role in the proliferation,
invasion, and metastasis of tumor cells and affected the
prognosis and therapeutic effects of tumors. GSDME-
mediated pyroptosis promoted the development of colitis-
related colorectal cancer, inducing tumor cell proliferation
and proliferating cell nuclear antigen expression [7]. Gasder-
min E-dependent pyroptosis might be indispensable in
mediating the immunotherapy response of BRAF mutant
melanoma [8].

The tumor microenvironment (TME) has been con-
firmed to play a central role in tumorigenesis, immune
escape, progression, and metastasis [9]. Tumor cells actively
secrete inflammatory factors and growth factors to recruit
stromal cells, inflammatory, and immune cells. The interac-
tion between tumor cells and nontumor cells shapes TME,
which in turn affects tumor progression and evades immune
surveillance [10]. Characterized as inflammatory, pyroptosis
recruited and activated immune cells through the inflamma-
tory factors released during cell death to bridge innate
immunity and adaptive immunity to regulate the TME and
induce immune responses [11]. Meanwhile, neoantigens
produced during the process of pyroptosis further induced
new immune responses and hindered the development of

tumors [12]. The study by Z. Zhang et al. showed that the
infiltration of CD8+ T cells and natural killing cells in the
pyroptosis-activated TME could promote pyroptosis and
form a positive feedback loop [13]. The important role of
pyroptosis in the efficacy of cancer immunotherapy, such
as immune checkpoint blockade (ICB), and the new
approaches of pyroptosis to aid immunotherapy were receiv-
ing increasing attention [14]. Therefore, there was a need to
identify the different risk stratification of PCa patients for
immunotherapy through a comprehensive and deep insight
into TME by pyroptosis.

In this study, we sought to develop a prognostic signa-
ture for PCa, which can effectively stratify patients and pre-
dict the prognosis and treatment efficacy of patients with
different risk levels. The results revealed that the predictive
ability of our signature was superior to traditional clinical
features. On this basis, we systematically explored the role
of the signature in the TME. Our signature was a promising
prognostic biomarker to guide and determine the subgroup
of PCa patients more suitable for endocrine therapy, chemo-
therapy, and immunotherapy.

2. Materials and Methods

2.1. Data Source and Preprocessing. Transcriptome RNA
sequencing data and corresponding clinical information of
PCa samples, which was the training cohort, were down-
loaded from the TCGA program (https://tcga-data.nci.nih
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Figure 1: The workflow of this study.
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Figure 2: Continued.
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.gov/tcga/). The GSE116918 dataset as testing cohort and
GSE21034 dataset as validation cohort were extracted from
the Gene Expression Omnibus (GEO) dataset (https://www
.ncbi.nlm.nih.gov/geo/). The ComBat algorithm of SVA
package was applied to correct the batch impact of nonbio-
technical bias. The training cohort was appointed to build
signature, and the testing and validation cohorts were used
to validate it. The R package maftools was used to visualize
the mutation landscape, and the CNV feature in human
chromosomes was investigated by the Rcircos package. The
rms package was used to build a predictive nomogram for
predicting the 1-, 2-, and 3-year overall survival.

2.2. Identification of Differentially Expressed Pyroptosis-
Related Genes. A total of 33 pyroptosis-related genes were
selected based on the previously published literature [15].
The difference in pyroptosis-related genes with a P value

< 0.05 was identified by limma package. We constructed
a protein-protein interaction (PPI) network using the
Search Tool for Retrieval of Interacting Genes (STRING).

2.3. Consensus Clustering. To identify different pyroptosis
modifications, we applied consensus clustering to identify
different pyroptosis patterns associated with the expression
of pyroptosis-related genes. The ConsensuClusterPlus pack-
age was applied to determine the number of clusters and
their stability, performing 1000 replications. The clusters
were selected based on the relative change in the area under
the cumulative distribution function (CDF) curve, the num-
ber of samples in the cluster, and the relevance of the cluster.

2.4. Construction of the Signature. The Cox regression
analysis was conducted to assess the correlation between
the expression level of each gene and its prognosis.
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Figure 2: Expression and interactions of the pyroptosis-related genes in PCa. (a) Heatmap of differentially expressed pyroptosis-related
genes in tumor and normal tissues. (b) Protein-protein interaction network of 22 DEGs. (c) The correlation network of DEGs. (d) The
CNV variation frequency of DEGs. (e) The location of CNV alteration of DEGs on chromosomes. (f) Bubble graph for GO enrichment
and (g) KEGG pathways.
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Figure 3: Clinical characteristics of PCa clusters. (a) CDF curves in clustering PCa patients. (b) Relative changes in the AUC of CDF curves.
(c) PCa patients were divided into two clusters based on consensus clustering matrix. (d) The clinical characteristics of the two clusters in the
heatmap. (e) Survival analysis in the two clusters.
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Furthermore, we obtained candidate gene through the least
absolute shrinkage and selection operator (Lasso) with 10-
fold cross-validation. In the end, we kept the 7 genes and
the coefficients, and the penalty parameter (λ) was deter-
mined by the minimum criterion. The formula to calculate
the risk score was as follows: Risk Score =∑λ

i βiSi, where β
is the coefficients and S is the gene expression level.

2.5. Evaluation of the Signature. The area under curve
(AUC) value of ROC curves was used to assess the sensitivity
and specificity. A risk score was assigned to each patient
according to the signature. Furthermore, we divided the
PCa patients into high- and low-risk groups by the median
value of risk score. Survival curves were plotted by the
Kaplan-Meier analysis to assess the overall survival of
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Figure 4: Identification of a signature to predict the BCR of PCa. (a and b) Process of variable selection in Lasso Cox regression and the
optimal values of the penalty parameter were determined by 10-fold cross-validation in the training cohort. The risk score, survival
status, and heatmap of the signature in the (c) training cohort, (d) testing cohort, and (e) validation cohort.
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Figure 5: Validation of the signature in multiple cohorts. Time-dependent ROC curves analysis in the (a) training cohort, (b) testing cohort,
and (c) validation cohort. The Kaplan-Meier survival curves based on the signature in the (d) training cohort, (e) testing cohort, and (f)
validation cohort. Univariate analysis in the (g) training cohort, (h) testing cohort, and (i) validation cohort. Multivariate Cox regression
in the (j) training cohort, (k) testing cohort, and (l) validation cohort.
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patients in the high- and low-risk groups. The univariate
and multivariate Cox regression analyses were implemented
to evaluate the independent prognostic value. These R soft-
ware packages include timeROC, survival, and survminer.

2.6. Functional Enrichment Analysis. Gene Ontology (GO)
including biological process (BP), cellular component
(CC), and molecular function (MF) categories and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) were analyzed
by the clusterProfiler R package.

2.7. Immune Landscape and TIDE Analysis. In order to
explore the difference of the abundance of immune infiltrates
in the high- and low-risk groups, we used the algorithms
including EPIC, XCELL, MCPCOUNTER, QUANTISEQ,
CIBERSORT-ABS, CIBERSORT, and TIMER to score the
infiltration of each immune cell subtype. The significance
threshold was set to a P value less than 0.05. The Wilcoxon
sign-rank test was used to analyze the difference in the abun-
dance of immune infiltrating cells between the high- and
low-risk groups. The tumor immune dysfunction and exclu-
sion (TIDE) of the PCa patients was calculated from the
website (http://tide.dfci.harvard.edu/). The tumor inflamma-
tion signature (TIS) score was computed as the mean of
log2-scale normalized expression of 18 signature genes [16].

2.8. Association between the Signature and the Treatments.
To investigate the potential role of the signature in immuno-
therapy, we analyzed the relationship between the signature
and immune checkpoints expression. Here, we adopted the

ggpubr package. In addition, we explored the function of sig-
nature in endocrine therapy and chemotherapy by analyzing
the half-maximal inhibitory concentration (IC50) of the
drugs. The difference in targeted therapy between the high-
and low-risk groups was found by the Wilcoxon signed-
rank test. The R packages used here were pRRophetic and
ggplot2. NCI-60 database of 60 different tumor cell lines
from 9 different tumor types was provided by CellMiner
(https://discover.nci.nih.gov/cellminer). Pearson’s correla-
tion analysis was carried to analyze the drug sensitivity
between the expression of genes and 263 drugs approved
by the FDA or in clinical trials.

2.9. Cell Line Culture and qRT-PCR. All human cell lines
were purchased from the American Type Culture Collection
(ATCC, USA), including DU145, PC3, and BPH-1. All cells
were cultured in Roswell Park Memorial Institute (RPMI)
1640 medium (Gibco, USA; catalog number: C11875500BT)
supplemented with 10% fetal bovine serum (FBS; Gibco,
USA; Cat.10270–106), 0.1mg/mL streptomycin, and 100U/
mL penicillin (Gibco, USA; catalog number: 15,140–122)
and were maintained in a humidified incubator at 37°C con-
taining 5% CO2. Total RNA was obtained with the RNeasy
mini kit (QIAGEN, Germany, Cat. No. 74,104) and reverse
transcribed with the RT kit (TaKaRa, Japan, Cat. No.
NR037A). The cDNA products were then subjected to real-
time PCR using Fast SYBR® Green Master Mix (Life technol-
ogy, USA; Cat. No: 4,385,610). The sequences of all primers
used for PCR were documented in the supplementary
materials.
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Figure 6: Distribution pattern and Kaplan-Meier survival analysis. (a) 2D PCA plot and t-SNE analysis between the high- and low-risk
groups in the training cohort. (b) 2D PCA plot and t-SNE analysis between the two groups in the testing cohort. (c–i) The Kaplan-Meier
survival curve of 7 genes between the two groups.
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2.10. Statistical Analysis. All statistical analyses were applied
by R version 4.1.1 (Institute for Statistics and Mathematics,
Vienna, Austria; https://www.r-project.org), and some related
packages were applied to all statistical analyses. P < 0:05 was
considered the significantly statistical difference.

3. Result

3.1. Screening Differentially Expressed Pyroptosis-Related
Genes. The brief process of this research was depicted in
Figure 1. Initially, we compared the expression of 33
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Figure 7: The expression of seven genes in PCa cell lines. (a–g) The relative mRNA levels of UBAP1L, UBE2C, KIFC2, MAPK8IP3, TTLL3,
MYBL2, and MMP11 in DU145, PC3, and BPH-1.
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Figure 8: Continued.
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pyroptosis-related genes in 52 normal tissues and 499 PCa
samples from the TCGA database and identified 22 differen-
tially expressed genes (DEGs), which were depicted in the
heatmap (all P < 0:001) (Figure 2(a)). Protein-protein inter-
action (PPI) analysis with the minimum required interaction
score of 0.9 was employed to investigate the interactions of
these DEGs. CASP1, CASP8, IL1B, and PYCARD were iden-
tified as hub genes (Figure 2(b)). Furthermore, the correla-
tion network of the DEGs was illustrated in Figure 2(c).
The analysis of CNV alteration frequency exhibited that
most DEGs were focused on copy number reduction

(Figure 2(d)). We further annotated the sites of CNV alter-
ations of DEGs on the chromosome (Figure 2(e)). In order
to further explore the biological processes and potential
molecular mechanisms that the DEGs involved, we con-
ducted GO analysis and KEGG pathway, revealing the par-
ticipation of many biological processes and signaling
pathways (Figures 2(f) and 2(g)).

3.2. Classification of PCa Patients Based on Pyroptosis-
Related Genes. The empirical CDF was depicted to identify
the optimum k values for the distribution of samples with
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Figure 8: Evaluating the relationship between the signature and clinical characteristics of PCa. (a) The distribution of clinicopathological
factors between the high- and low-risk groups. Risk scores were significantly associated with BCR (b), tumor grade (c), tumor stage (d),
T stage (e), N stage (f), and M stage (g).

22 Computational and Mathematical Methods in Medicine



+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++
++++ + +

+++ + ++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++++ + + + +

p < 0.001

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Patients with age < = 65

145 106 76 39 24 18 10 7 6 6 2 2 0 0 0 0
161 141 106 76 46 30 13 7 3 2 2 1 1 1 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Su
rv

iv
al

 p
ro

ba
bi

lit
y

High

Ri
sk

Low

Time (Years)

Time (Years)

Risk

+ Low
+ High

(a)

++++++ +++++++++++++++++++++++++
++++++ + ++

+++++

+++ + + + +

+++ +++ ++++++++++++++++++ +++++ ++++++++++ ++ +++ + +++ ++

p = 0.001

0 1 2 3 4 5 6 7 8 9 10

Patients with age > 65

68 54 29 19 10 5 2 1 0 0 0
53 44 30 21 11 6 5 3 2 2 0
0 1 2 3 4 5 6 7 8 9 10

0.00

0.25

0.50

0.75

1.00

Su
rv

iv
al

 p
ro

ba
bi

lit
y

High

Ri
sk

Low

Time (Years)

Time (Years)

Risk

+ Low
+ High

(b)

Figure 9: Continued.
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maximal stability (Figures 3(a) and 3(b)). The result of con-
sensus matrices suggested that PCa patients can be divided
into two completely different clusters when clustering vari-
able ðkÞ = 2 (Figure 3(c)). We found significant differences
in the clinical characteristics including BCR, M stage, N
stage, T stage, tumor stage, and tumor grade between these
two different clusters (Figure 3(d)). In addition, the
Kaplan-Meier survival analysis confirmed that patients in
cluster 2 had a shorter BCR-free time than those in cluster
1 (P < 0:001) (Figure 3(e)).

3.3. Construction and Evaluation of Prognostic Signature for
PCa. To identify a specific prognostic signature for disease
diagnosis and treatment, we explored differentially
expressed genes between the above two clusters. Then, we
performed univariate Cox regression and Lasso regression
analysis, in which the best values of the penalty parameter
were determined by 10-fold cross-validation (Figures 4(a)
and 4(b)). Finally, 7 effective genes for the construction of
the risk signature were determined. The PCa patients were
stratified into high-risk and low-risk groups according to
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Figure 9: Stratification survival analyses. (a–j) The Kaplan-Meier curve analyses of overall survival in subgroups stratified by different
clinical features.
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Figure 10: Continued.
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the median risk score as the cut-off point. The distribution of
risk score showed a significant difference in BCR-free time
among the training cohort, testing cohort, and independent
external validation cohort, with a gradual increase in the
probability of BCR as the risk score increased (Figures 4(c)
– 4(e)). Furthermore, we performed time-dependent ROC
analysis and calculated the AUC at 1, 3, and 5 years, showing
good sensitivity and specificity of the signature for prognosis
of PCa patients in three cohorts (Figures 5(a) – 5(c)). The
result of the Kaplan-Meier survival curve indicated that the
patients in the high-risk group suffered shorter BCR-free
time, showing the same outcome in all three cohorts
(Figures 5(d) – 5(f)). The univariate and multivariate Cox
regression proved that the signature could serve as a robust
and independent prognostic factor for PCa patients
(Figures 5(g) – 5(l)).

3.4. Distribution Patterns of the High-Risk and Low-Risk
Groups. PCA and t-SNE analyses were conducted to reduce
dimensionality and showed a satisfactory separation
between the high- and low-risk groups. The distribution of
the high- and low-risk groups tended to be in different direc-
tions (Figures 6(a) and 6(b)). Furthermore, we explored the
impact of the 7 genes used to construct the signature on
BCR-free time. Surprisingly, patients had higher probability
of BCR when each of these genes was highly expressed
(Figures 6(c) – 6(d)). We further analyzed the mRNA
expression of the 7 genes used to construct the signature in
two PCa cell lines (DU145 and PC3) and benign prostatic
hyperplasia cell (BPH-1) by qRT-PCR assays. These results
indicated that the expression levels of UBE2C, KIFC2, MAP-
K8IP3, TTLL3, MYBL2, and MMP11 were significantly

upregulated in PCa cell lines, except for UBAP1L which
did not show significant differences (Figures 7(a) – 7(g)).

3.5. Correlation between Clinicopathological Characteristics
and the Signature. The distributed patterns between the sig-
nature and clinicopathological characteristics were illus-
trated on the heatmap (Figure 8(a)). The BCR, M stage, N
stage, T stage, tumor stage, tumor grade, and age were
diversely distributed in the high- and low-risk groups. To
further investigate whether the signature was closely related
to different clinicopathological conditions, we found that the
clinical features including BCR, tumor grade, tumor stage, T
stage, N stage, and M stage were significantly associated with
the signature (Figures 8(b) – 8(g)). The high-grade and
advanced-stage patients were more likely to be related to
the high-risk group. In addition, the low-risk group was
more inclined to low grade and early stage, which were
equivalent to a better prognosis. We further divided PCa
patients into different stratified groups according to age,
gender, tumor grade, tumor stage, and T stage. There were
significant differences between the high- and low-risk
groups, suggesting that the low-risk group had longer
BCR-free time in all stratification subgroups. (Figures 9(a)
– 9(k)) Therefore, the signature might be significantly asso-
ciated with the progression of PCa and had broad applicabil-
ity and feasibility for prognosis prediction.

3.6. Construction and Evaluation of the Nomogram.We con-
structed a nomogram containing risk scores and clinical
characteristics to predict the 1-, 2-, and 3-year BCR proba-
bility of PCa patients. A higher total score in the nomogram
represented a worse prognosis (Figure 10(a)). The
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Figure 10: Construction and validation of nomogram. (a) The nomogram for predicting the probability of the 1-, 2-, and 3-year BCR-free
survival. (b–d) Calibration curves for the validation of the nomogram. (e) Time-dependent ROC curves analysis of signature and the clinical
factors.
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calibration chart displayed excellent agreement between
observed and predicted rates at 1, 2, and 3 years
(Figures 10(b) – 10(d)). By comparing the AUC between
the signature and clinical features, we found that our signa-
ture can predict BCR more accurately (Figure 10(e)). Thus,
our nomogram based on the signature had good predictive
ability in clinical practice.

3.7. Comparison with Other Gene Expression Signatures. To
determine whether our signature was superior to other sig-
natures, we compared the signatures constructed for PCa
in 9 published articles [17–25]. We found that the accuracy
and stability of our signature in 1, 2, and 3 years were better
than those of the nine signatures in the ROC curves analysis
(Figures 11(a) – 11(j)). Then, in order to further compare
our signature with the predicted performance of these signa-
tures, we calculated the concordance index (C-index). As the
results depicted, the C-index of our signature was 0.731
(Figure 11(k)), which was better than other signatures.

3.8. Landscape of Somatic Mutations in PCa. We analyzed
the TMB level of the high- and low-risk groups and found
that the TMB level of the high-risk group was higher than
the TBM level of the low-risk group and was proportional
to the risk score (Figures 12(a) and 12(b)). PCa patients with
high TMB levels were more likely to develop BCR
(Figure 12(c)). After further dividing the patients into the
high- and low-risk groups by TMB level, we noticed that
the patients in the high-risk group with high TMB levels
had the shortest BCR-free time (Figure 12(d)). We then
compared the 20 genes with the highest mutation frequen-
cies in the high- and low-risk groups, showing that these
genes were mutated more frequently in the high-risk group,
with more significant gene-to-gene coincidence and exclu-
sivity relationships (Figures 12(e) – 12(j)).

3.9. Evaluation the Immune Landscape of PCa. We analyzed
the correlation between the signature and the immune cell
subtype infiltration, which showed that the signature was
positively associated with multiple immune cells including
CD8+ T cells, B plasma cells, B memory cells, and B naive
cells (Figures 13(a) – 13(g)). Compared with the high-risk
group, the abundance of infiltrating CD8+ T cells in the
low-risk group was significantly higher. To figure out the
relationship between the signature and the expression of
immune checkpoint in PCa, we found that the high-risk
group was positively correlated with high expression of
TIGIT, LAG3, PD-1, and CTLA-4 (Figure 14(a)). The TIDE
was applied to evaluate the potential response of ICIs for
PCa patients (Figures 14(b) – 14(d)). TIDE value in the
high-risk group was significantly lower than that in the
low-risk group, demonstrating that the high-risk group
deserved a better immunotherapy response and immuno-
therapy outcome. The time-dependent ROC analysis
revealed that the prognostic performance of the signature
was significantly higher than that of the newly discovered
biomarkers including TIDE and TIS (Figure 14(e)).

3.10. Correlation Analysis between the Signature and Drug
Treatments. Endocrine drugs and chemotherapeutic drugs
are the conventional options for the nonsurgical treatment
of PCa. Therefore, we analyzed the sensitivity of different
risk groups to endocrine drugs, which suggested that bicalu-
tamide had a lower IC50 in the low-risk group
(Figure 15(a)). Chemotherapy combined with immunother-
apy has been shown to have better efficacy than either ther-
apy alone. Our results indicated that patients in the low-risk
group were more sensitive to docetaxel. (Figure 15(b)) How-
ever, the high-risk group was more sensitive to chemothera-
peutic agents such as cisplatin, paclitaxel, doxorubicin,
etoposide, and mitomycin C than the low-risk group, imply-
ing that patients in the high-risk group were more likely to
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Figure 11: Comparison with other 9 published gene signatures (a–j). (k) C-index of signatures.
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benefit from these agents (Figures 15(c) – 15(g)). Olaparib, a
novel targeted drug, acted to inhibit poly ADP ribose poly-
merase protein [26]. The high-risk group was more sensitive
to olaparib than the low-risk group (Figure 15(h)). Finally,
we found that each of the seven genes was also closely
related to multiple drugs (Figure 15(i)).

4. Discussion

Treatment strategies for PCa have evolved and progressed
tremendously over the past decade yet remained unsatisfac-
tory. More than half of patients with high-risk PCa experi-
enced BCR postoperatively [27]. BCR was a significantly
poor prognosis for PCa patients and was strongly associated
with progression to metastatic castration-resistant prostate
cancer (mCRPC) [28]. Accurately predicting the risk of
BCR in PCa patients was essential for the clinical manage-
ment of PCa and the prognosis of patients. Effective man-
agement of PCa could be achieved by precisely stratifying
patients at low risk of BCR progression from those at high

risk of BCR progression. Watchful waiting (active surveil-
lance) and curative therapies of patients at different risks
of developing BCR could lead to a better prognosis for the
patient population in greater need. However, there was cur-
rently no feasible way for risk stratification of PCa patients
in clinical practice. Thus, this study focuses on a novel type
of programmed cell death pyroptosis that played a complex
and important role in tumor development and treatment.
Normal cells might be transformed into cancer cells by the
inflammatory factors released during the process of pyropto-
sis [29]. Meanwhile, the interaction between pyroptosis and
immune cells in TME affected immune defense and antitu-
mor immune function, which in turn had a significant
impact on tumor growth, invasion, and metastasis [30]. Pro-
viding a novel and comprehensive insight into the relation-
ship between pyroptosis and TME could lead to better
identification of PCa and more precise treatments for the
patients. As the first report of pyroptosis-related genes in
PCa, this study accurately and effectively classified the risk
of PCa patients by constructing a signature, which could
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predict the BCR and sensitivity to chemotherapy, endocrine
therapy, and immunotherapy for PCa patients at different
risk groups. Our signature could provide clinicians with
new ideas for managing the risk of BCR in PCa patients
and guiding clinical treatment strategies.

In this study, first, we determined the expression levels of
33 known pyroptosis-related genes in PCa and normal tis-
sues and identified 22 differentially expressed pyroptosis-
related genes related to prognosis. Second, sample classifica-
tion based on predefined gene expression features was a
proven method [31]. In order to verify the prognostic value
of pyroptosis-related genes, we found that the expression of
pyroptosis-related genes occurred differently in patients
divided into two groups, resulting in a completely different
prognosis. Patients in cluster 2 had higher expression levels
of pyroptosis-related genes and a poorer prognosis. Third,
a signature composed of 7 genes through Lasso regression
analysis was constructed. The independent and powerful
ability of the signature to predict the prognosis of PCa
patients was verified in the two independent datasets
GSE116918 and GSE21034. Fourth, our signature that was
closely associated with various stages of PCa could effectively
judge the prognosis of patients in different pathological con-
ditions. There were significant differences between the two
risk groups in N stage, T stage, and tumor stage and grade,
suggesting that our signature was closely related to the exist-
ing clinical characteristics. A total of 5 grading groups from
grade 1 to grade 5 were proposed based on the Gleason score
[32]. Our results found that our signature was closely related
to grade, and that grade increased with increasing risk score,
indicating that our signature was strongly associated with
the existing scoring systems such as Gleason score. Addi-
tionally, we then constructed a nomogram that combined
our signature and clinical characteristics to predict the 1-,
2-, and 3-year BCR-free survival rates of PCa patients. Fifth,
we compared our signature with nine published signatures

constructed for PCa and showed that our signature possesses
excellent and accurate prognostic performance superior to
the currently established PCa signatures. Overall, our signa-
ture had the unexpected predictive ability as well as excellent
predictive accuracy to classify PCa patients according to the
risk of BCR, which would facilitate clinicians to better treat
patients with higher risk.

Chronic inflammation and the associated sustained
immune response were thought to contribute to the develop-
ment and progression of PCa [33]. Pyroptosis was an
inflammatory programmed cell death caused by inflamma-
tory caspases and was involved in the inflammatory
response to enhance host protective immunity [34]. The
tumor microenvironment played a key role in the pathogen-
esis and disease progression. As the interaction between can-
cer cells and the tumor microenvironment triggered
complex physiological changes that lead to disease severity,
cancer metastasis, and resistance to conventional therapies
[35]. Q. Wang et al. found that less than 15% pyroptosis of
tumor cells could induce the elimination of entire 4T1 tumor
grafts in tumor-bearing mice by activating cytotoxic T cells
and CD4+ T helper cells in the TME, which was not repro-
duced in immunodeficient mice [36]. The plasma B cells
were considered to be the driving factor of the immune
response of PCa, which could improve recurrence-free sur-
vival after surgery, and the way that plasma cells participated
in the immune system for therapy might be a potential bio-
marker of the target for therapeutic response to immuno-
therapy for future prospective evaluation [37]. CD8+ T
cells were active antitumor lymphocytes with strong prog-
nostic relevance in many solid tumors [38]. Vicier et al.
revealed that low density of CD8+ T cells was influential as
an independent poor prognostic marker for BCR and risk
of metastatic recurrence in a study of 109 patients with pri-
mary PCa [39]. Collectively, it could be seen that the poor
prognosis and outcome of PCa were closely related to
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Figure 13: CCorrelation between the signature and the immune infiltration. (a) The difference between the signature and tumor-infiltrating
immune cells in multiple algorithms. (b) The distribution of the immune cells in the high- and low-risk groups. The abundance of (c) B
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immune cell infiltration, which was consistent with our
results. As we have discovered, the patients in the high-risk
group had a significantly shorter time to BCR, while the
high-risk group was negatively associated with the immune
cells such as CD8+ T cells and plasma B cells. The signature
distinguished different groups and thus determined different
degrees of immune cell infiltration, leading to different out-
comes in PCa. Paying more attention to immune cell infil-
tration might become a future treatment strategy and
further affect the clinical outcome of PCa patients.

One promising PCa treatment method currently under
study was immunotherapy, which used the antitumor
immune response of the innate immune system to destroy
tumorigenesis. ICB therapy targeting CTLA-4, PD-1, and
PD-L1 had shown significant therapeutic benefit and
become an attractive treatment option for several malignant
cancers, such as melanoma, bladder cancer, and lung cancer
[40]. It was previously widely believed that PCa did not show
a desirable therapeutic response to immunotherapy. How-
ever, a small percentage of PCa patients had shown impres-
sive and durable responses to immunotherapy PD-1
inhibition according to the results of KEYNOTE-028 trial
[41]. Meanwhile, the immunosuppressive microenviron-
ment of PCa suppressed tumor-specific T cell responses
and promoted tumor progression and invasion. A renewed
focus on the tumor immune environment was needed to
determine prognostic and predictive biomarkers and to
guide novel immunotherapies for precise cancer treatment.
KEYNOTE-199, the largest ongoing clinical study to date
evaluating anti-PD-1 therapy in mCRPC, noted that patients
with higher TMB after treatment with pembrolizumab were
strongly associated with better prostate-specific antigen
(PSA) response and time to PSA progression [42]. More-
over, in the subgroup of patients with mCRPC receiving

docetaxel and endocrine therapy, pembrolizumab demon-
strated favorable antitumor activity and disease control,
which was durable and encouraging [43]. As seen above, a
key challenge in managing PCa was clinical heterogeneity,
where patients with the same disease may have different out-
comes depending on the tumor microenvironment and
whether they were treated with a combination of chemother-
apy and endocrine therapy, which was difficult to predict
with the available biomarkers. In this study, we tried to pro-
vide novel insight to explore the immune landscape and
immunotherapy in PCa by our signature. We compared
the expression of immune checkpoints in the high- and
low-risk groups and found that most immune checkpoints
such as PD-1, CTLA-4, LAG3, and TIGIT were more
expressed in the high-risk group than in the low-risk group.
The previous studies reported that increased expression of
PD-1 and PD-L1 was associated with more aggressive PCa
[44, 45], which was in line with our findings that patients
in the high-risk group were more likely to develop BCR
and were associated with high-grade and advanced-stage
PCa. Meanwhile, patients with high levels of immune check-
point gene expression were prone to develop immunosup-
pressive microenvironment to promote tumor immune
escape [46], suggesting that PCa patients in the high-risk
group were more likely to benefit from immune checkpoint
inhibitor therapy. TMB, TIS, and TIDE were newly identi-
fied predictors of immunotherapy [16, 47]. In particular,
TIDE had been shown to have better performance than
other biomarkers or indicators in predicting immunothera-
peutic response [48]. We adopted TIDE to assess the poten-
tial clinical efficacy of immunotherapy in the high- and low-
risk groups. Higher TIDE represents less likely to benefit
from immunotherapy, such as PD-1 and CTLA-4 inhibition
therapy. Based on our results, patients in the high-risk group
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Figure 14: Immune function and TIDE analysis. (a) The expression of immune checkpoints in the high- and low-risk groups. (b) TIDE, (c)
dysfunction score, (d) T cell exclusion in the high- and low-risk groups. (e) Time-dependent ROC curves analysis of signature, TIDE, and
TIS.
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Figure 15: Continued.
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with low TIDE were more suitable for immunotherapy. Our
signature sheds new light on the effective identification of
subgroups of PCa patients who can benefit from immuno-
therapy. In addition, by comparing the AUC values of our
signature with other biomarkers in time-dependent ROC

analysis, we observed that our signature had better predic-
tive performance and superiority. Therefore, it was sug-
gested that our signature was not only effective as an
efficacy predictor to discriminate PCa patients with greater
benefit from immunotherapy but also had higher accuracy
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Figure 15: Assessment of the drug sensitivity. The high- and low-risk groups had significant differences in IC50 of drugs such as (a)
bicalutamide, (b) docetaxel, (c) cisplatin, (d) paclitaxel, (e) doxorubicin, (f) etoposide, (g) mitomycin C, and (h) olaparib. (i) The relation
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and specificity to predict the prognosis than other existing
biological indicators. We have proved that our signature
could effectively stratify the risk of PCa patients into sub-
groups that were more suitable for immunotherapy and
had the potential as an indicator of immunotherapy
response in PCa.

Bicalutamide is a nonsteroidal androgen receptor inhib-
itor widely used in the endocrine therapy of PCa. A prospec-
tive randomized trial demonstrated that the use of
bicalutamide significantly reduced the risk of objective dis-
ease progression in patients with locally advanced PCa
[49]. The sensitivity analysis of bicalutamide in the high-
and low-risk groups revealed that the low-risk group had a
lower IC50, which meant that patients in the low-risk group
had a higher sensitivity for bicalutamide. Chemotherapy is a
common treatment for advanced PCa, among which doce-
taxel is the first choice for chemotherapy in most cases.
Combined docetaxel and prednisone was the first-line treat-
ment for mCRPC [50]. Chemotherapy drugs were designed
to attack rapidly dividing cells, which include not only can-
cer cells but also normal cells in the body, and this is where
the side effects of chemotherapy arise. The side effects of
chemotherapy were determined by the type of drug and
the dose and period of taking the drug. Common side effects
included hair loss, diarrhea, and infections [51]. However,
there was currently no biological indicator for the choice of
chemotherapy drugs used in clinical practice. Our results
showed that patients in the low-risk group were more sensi-
tive to docetaxel and patients in the high-risk group could
benefit more from cisplatin, doxorubicin, etoposide, mito-
mycin C, and paclitaxel. Subgroups of prostate patients
stratified according to the signature had different sensitivi-
ties to chemotherapeutic agents. Targeted administration
of chemotherapeutic agents based on their sensitivity will
not only improve treatment outcomes but also reduce the
adverse effects of chemotherapy. In addition, the available
clinical trial results indicated that the targeted drug olaparib
could bring unexpectedly better results to PCa patients [52].
Our results showed that the high-risk group was more likely
to benefit from olaparib. Our signature was a promising and
reliable predictor of chemotherapy, endocrine, and targeted
therapy in PCa, providing a novel approach to get a better
prognosis for patients.

5. Conclusion

In short, we have constructed a pyroptosis-related signature
that could serve as an independent prognostic factor for
PCa. The role of the signature in the immune landscape
and treatments was fully elaborated. It was expected to
become a robust and promising signature to guide the treat-
ment of PCa.
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