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Background: Epigenetic regulation, including DNA methylation, plays a major role

in shaping the identity and function of immune cells. Innate and adaptive immune

cells recruited into tumor tissues contribute to the formation of the tumor immune

microenvironment (TIME), which is closely involved in tumor progression in breast

cancer (BC). However, the specific methylation signatures of immune cells have not

been thoroughly investigated yet. Additionally, it remains unknown whether immune

cells-specific methylation signatures can identify subgroups and stratify the prognosis

of BC patients.

Methods: DNA methylation profiles of six immune cell types from eight datasets

downloaded from the Gene Expression Omnibus were collected to identify immune

cell-specific hypermethylation signatures (IC-SHMSs). Univariate and multivariate cox

regression analyses were performed using BC data obtained from The Cancer Genome

Atlas to identify the prognostic value of these IC-SHMSs. An unsupervised clustering

analysis of the IC-SHMSs with prognostic value was performed to categorize BC patients

into subgroups. Multiple Cox proportional hazardmodels were constructed to explore the

role of IC-SHMSs and their relationship to clinical characteristics in the risk stratification

of BC patients. Integrated discrimination improvement (IDI) was performed to determine

whether the improvement of IC-SHMSs on clinical characteristics in risk stratification was

statistically significant.

Results: A total of 655 IC-SHMSs of six immune cell types were identified. Thirty of them

had prognostic value, and 10 showed independent prognostic value. Four subgroups

of BC patients, which showed significant heterogeneity in terms of survival prognosis

and immune landscape, were identified. The model incorporating nine IC-SHMSs

showed similar survival prediction accuracy as the clinical model incorporating age

and TNM stage [3-year area under the curve (AUC): 0.793 vs. 0.785; 5-year AUC:

0.735 vs. 0.761]. Adding the IC-SHMSs to the clinical model significantly improved

its prediction accuracy in risk stratification (3-year AUC: 0.897; 5-year AUC: 0.856).

The results of IDI validated the statistical significance of the improvement (p < 0.05).
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Conclusions: Our study suggests that IC-SHMSs may serve as signatures of

classification and risk stratification in BC. Our findings provide new insights into epigenetic

signatures, which may help improve subgroup identification, risk stratification, and

treatment management.

Keywords: immune cells, DNA methylation, tumor immune microenvironment, breast cancer, risk stratification

INTRODUCTION

Breast cancer (BC) is the most common cancer among
women worldwide. Despite significant advances in locoregional
therapies, endocrine therapies, chemotherapy, and molecular
targeted therapy, BC remains the second leading cause of cancer-
related deaths among women (1, 2). Immune evasion has recently
been recognized as a hallmark of tumor progression. Tumors
can induce local immune dysregulation by suppressing innate
and adaptive immune responses in BC (3). The tumor immune
microenvironment (TIME) is an important part of the tumor
microenvironment. It is highly heterogeneous and plays an
important role in tumor progression and disease prognosis in
various cancers (4). Therefore, accurate classification of disease
based on the TIME is crucial for the assessment of prognosis, as
well as to aid in making treatment decisions.

The rapid development of high throughput technologies has
enabled the identification of the transcriptomic signatures of
immune cells. Several tools based on the use of information
about the transcriptomic signatures of immune cells have
been successfully used for the classification and risk
stratification of various cancers, including BC (5–7). These
tools include ESTIMATE, TIMER, and CIBERSORTx, which
were created to assess the conditions prevailing in TIME, as
well as indicators such as immune score and immune cell
population. Unlike the transcriptomic signatures of immune
cells, methylation signatures are heritable and reversible,
and can be adjusted rapidly in the course of an immune
response, to appropriately regulate the progression of immunity.
However, the methylation signatures of immune cells have
not been thoroughly investigated, and it is not clear whether
they would be useful for classification and risk stratification
in BC.

The primary tumor, regional lymph nodes, distant metastases
(TNM) staging system, established by the American Joint
Committee on Cancer (AJCC)/Union for International Cancer
Control (UICC), is the most commonly used risk stratification
system in BC (8). Prognostic information provided by this
system, although useful, is incomplete, and many studies
have shown that incorporating additional clinicopathological
and molecular characteristics, such as tumor differentiation
grade, non-coding RNA, mutation status, immune score and
microsatellite instability, may improve the accuracy of prediction
of prognosis (9–11). Due to the rapid advances that have
been made in methylation sequencing technology, single-base
resolution has been achieved, and a large number of methylation
signatures have been discovered and defined as biomarkers
of prognosis in BC (12, 13). Therefore, we speculated that

immune-related methylation signatures may be useful for
risk stratification.

DNA methylation is a dynamic epigenetic modification,
which plays a prominent role in determining cell development
and lineage identity, especially in the immune system (14).
During the differentiation of hematopoietic stem cells into
innate and adaptive immune cells, methylation events,
including hypermethylation and hypomethylation, facilitate
the commitment of these cells to a lymphoid or myeloid fate,
thereby establishing the identities of differentiated cell types (15).
Therefore, immune cell-specific methylation signatures may be
closely associated with the function of the cells in immunity.
Due to the association between methylation events and immune
cells, which is compounded by the association between immune
cells and tumor progression, specific methylation signatures
of immune cells may play an important role in classification
and risk stratification of cancers. In this study, we focused on
the role of immune cell-specific hypermethylation signatures
(IC-SHMSs) in the classification and risk stratification of
BC. Specific hypermethylation signatures of six immune cell
types were separately identified by analyzing methylome
data. Unsupervised hierarchical clustering analysis and Cox
proportional hazard models were used to explore the roles of
these signatures in the classification and risk stratification of
BC patients.

MATERIALS AND METHODS

Data Collection
DNA methylation profiles of immune cells from eight datasets
(GSE35069, GSE83156, GSE88824, GSE61195, GSE130030,
GSE130029, GSE131989, and GSE87095) based on the Illumina
HumanMethylation 450 (450K) platform were downloaded
from the Gene Expression Omnibus (GEO) database. Immune
cell samples from patients with immune-related diseases were
filtered out, leaving only normal samples, and all these immune
cell samples were isolated from peripheral blood. The Cancer
Genome Atlas (TCGA) level 3 gene expression data normalized
by fragments per kilobase of exon per million reads mapped
(FPKM), DNA methylation data, and somatic mutation data
(mutect2) from BC patients, which were downloaded from
the National Cancer Institute’s Genomic Data Commons Portal
(GDC; https://portal.gdc.cancer.gov/); matched survival and
clinical information were obtained from the University of
Santa Cruz (UCSC) Xena database (http://xena.ucsc.edu/). Only
primary BC samples marked with barcode 01A from TCGA
database were retained for our study.
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Identification of the IC-SHMSs
The methylation profiles of immune cells were quality controlled
and normalized separately using the R package “ChAMP” and
combined after correcting for batch effects between different
datasets using the ComBat method associated with the “ChAMP”
package (16). Principal component analysis (PCA) was used to
test the quality of immune cell samples showing methylation
profiles, using the R package “FactoMineR” (17). Using the
champ.DMP function in the “ChAMP” package with the cutoff
adjusted to p < 0.05 and deltabeta >0.2, five differential analyses
were conducted between CD8+T cells and the other five immune
cell types separately. Five sets of significant hypermethylated
probes of CD8+T were identified, and the intersection of these
five sets was defined as the IC-SHMSs of CD8+T cells. In a
similar manner, the IC-SHMSs of the other five types of immune
cells were also identified separately. Moreover, we performed
univariate and multivariate Cox regression analyses to identify
the prognostic value of these IC-SHMSs, using the survival
information and methylation profiles of BC.

Identification of the Subgroups of BC
Patients
To identify subgroups of BC patients, we used the list of
IC-SHMSs showing prognostic value to perform unsupervised
hierarchical clustering of BC patients using the R package
“cluster.” The distances between BC samples were calculated
using the Euclidean method, and clustering was accomplished
via the ward.D2 method. In addition, we utilized the Calinski-
Harabasz index (CHI) to evaluate the clustering significance
using the R package “fpc.” CHI is the ratio of the sum of
between-clusters dispersion and inter-cluster dispersion for all
clusters, the higher the score, the better the performances of
clustering. To validate the stability of the clustering result, we
utilized the bootstrap resamplingmethod in the R package “boot”
to randomly resample from the original dataset to generate
resampling datasets with the same sample size 1,000 times and
calculated the CHIs, respectively, in the same way. Then, a t-
test was performed to identify if the difference between the
CHIs from the resampling datasets and the CHI from the
original dataset is statistically significant. The Kaplan-Meier
(KM) curves and log-rank tests were used to identify survival
differences between the subgroups. Finally, the optimal cluster
number was decided by combining the clustering results and the
clinical features.

Immune Landscape of the Subgroups
To estimate the immune infiltration levels of the 28 immune cell
types for each BC sample, we performed single-sample gene set
enrichment analysis (ssGSEA) to derive an enrichment score for
each immune cell population using the R package “GSVA” (18),
and the R code and the immune cell maker list were, respectively,
shown in Supplementary Tables 1, 7. The enrichment scores
were normalized using the Min-Max Normalization method,
which turned the scores into values ranging from 0 to 1. The
marker gene set for the 28 immune cell types was obtained
from a previous study (19), which included data from innate
and adaptive immune cells. We used the ESTIMATE algorithm

to assess the tumor microenvironment of each BC sample by
calculating immune scores, stromal scores, and tumor purity
based on the specific gene expression signatures of immune cells
and stromal cells.

Calculation of Tumor Mutation Burden
Tumor mutation burden (TMB) is defined as the total number
of non-synonymous mutations per million bases. Missense, non-
sense, splice-site, and frameshift mutations were considered non-
synonymous for the purposes of this study. We calculated the
TMB score using the formula: TMB score = the number of non-
synonymous mutations/length of exons (38 million), for each
sample (20).Wilcoxon rank-sum tests were used for comparisons
between two groups, and Kruskal-Wallis tests were used for three
or more groups.

Differential Analysis and Functional
Annotation of the Subgroups
To clarify the functional differences between the subgroups,
we first performed differential analyses to identify differentially
expressed genes (DEGs) between the subgroups, using the R
package “limma” and the gene expression profiles of BC (21).
The criteria for identification of DEGs was an adjusted p <

0.05 and |Log2 (Fold Change)| > 1. These DEGs were subjected
to functional annotation via gene ontology (GO) enrichment
analysis and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis, using the R package,
“clusterProfiler” (22).

Construction and Validation of the
Prognostic Model of IC-SHMS
Multiple Cox proportional hazard models were constructed with
different prognostic features using the R package “survival”
(23, 24) and the algorithm equation used in the package
was displayed in Supplementary Table 2. IC-SHMSs showing
independent prognostic values were used to construct the IC-
SHMS model. To investigate the efficacy and stability of the IC-
SHMS model, we randomly divided BC patients into a training
set and a validation set, at a ratio of 7:3. The training set was
used to construct the model, while the validation set was used
to test the model. Subsequently, the R package “rms” was used
to determine the optimal model, in which the algorithm was
used to select the optimal combination of IC-SHMSs via Akaike’s
Information Criterion (AIC) in a stepwise approach. The IC-
SHMSs included in the final model were used to establish the
risk signature, and the risk score for each patient was calculated
using the function “predict” supplied in the R package “stats.”
Patients were divided into high and low-risk groups based on
the median of risk scores. Kaplan-Meier (KM) curves and log-
rank tests were used to identify survival differences between the
two groups. The area under the curve (AUC) of time-dependent
receiver operating characteristic (ROC) curve was calculated to
evaluate the prediction accuracy for 3- and 5-year overall survival
(OS) using the R package “survivalROC” (25), and the equation
used in the package was also shown in Supplementary Table 2.
Finally, the IC-SHMS model developed on the training set was
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applied to the validation set in order to quantify its efficacy
and stability.

Comparison of the Prognostic Value of the
IC-SHMSs and Clinical Features
To compare the prognostic value of the IC-SHMSs and clinical
features, we used all BC patients’ survival information and
different prognostic features to, respectively, construct an IC-
SHMS model and a clinical model. The IC-SHMS model was
constructed using the IC-SHMSs with independent prognostic
values as described before, and the clinical model was constructed
using the clinical features of patient age and TNM stage. Time-
dependent ROC analyses were then performed to estimate the
survival prediction accuracy of these two models separately,
using 1,000 × bootstrap resampling. Finally, to identify whether
the prognoses predicted by the IC-SHMSs could significantly
improve the prediction accuracy of the clinical model, we
integrated the IC-SHMSs with the clinical features to construct
a combined model, and calculated the integrated discrimination
improvement (IDI) compared with the clinical model, using
the R package “survIDINRI” (26). In constructing each optimal
prognostic model, a stepwise algorithm incorporating AIC was
used to select the features.

Clinical Application of the Combined Model
The features in the combined model were used to establish a risk
signature, and the risk scores of BC patients were calculated for
risk stratification purposes. Kaplan-Meier (KM) curves and log-
rank tests were used to identify differences in OS between high-
and low-risk groups, defined based on the median of risk scores.
A nomogram with weighted scores calculated using the features
included in the combined model was used to predict the 3- and
5-year OS of BC patients. Calibration curves were created to test
the accuracy of the survival prediction of the combined model
compared with that of an ideal model.

Statistical Analyses
All statistical analyses were conducted using R software, version
3.63 (https://www.r-project.org/). Appropriate R packages and
statistical methods were selected for different analyses. The R
package “survival” was used for survival analysis, and only
patients whose follow-up time was >30 d were included.
Wilcoxon rank-sum tests were used for mean comparisons
between two groups, and Kruskal-Wallis tests were used for three
or more groups. Statistical significance was set at p < 0.05.

RESULTS

Data Preparation
A total of 325 samples obtained from six immune cell types
(CD14+ monocyte: 45; CD19+ B cell: 117; CD4+ T cell: 94;
CD8+ T cell: 41; CD56+ NK cell: 14; neutrophil: 14) found in
eight DNA methylation datasets were used to identify the IC-
SHMSs. A methylation beta value matrix containing 774 BC
samples was used to detect the prognostic value of the IC-SHMSs
and to perform cluster analysis. The gene expression matrix of
1,077 BC samples was used to assess the immune landscape.

Somatic mutation data containing 985 BC samples were used to
calculate the tumor mutation burden (TMB) score. The entire
workflow is shown in Figure 1.

Identification of the IC-SHMSs
Following quality control and correction for batch effects in
the methylation profiles, the combined methylation beta value
matrix contained a total of 325 immune cell samples and
361,262 methylation probes. The PCA plot clearly discriminated
between these six types of immune cells (Figure 2A). A total
of 655 IC-SHMSs was identified from the six immune cell
types as follows: CD14+ monocytes, 34; CD19+ B cells, 270;
CD4+ T cells, 109; CD8+ T cells, 54; CD56+ NK cells, 84;
and neutrophils, 104 (Figure 2B; Supplementary Table 3). PCA
analysis of immune cells was performed based on themethylation
profiles of these 655 IC-SHMSs. The discrimination between
immune cells was more obvious than that based on the whole
methylation profiles, indicating that IC-SHMSs may accurately
represent these immune cells (Figure 2C). The distributions
corresponding to the gene region and CpG island of these IC-
SHMSs are shown in Figure 3, which shows that IC-SHMSs were
most frequently located in the region of gene body and CpG
island opensea. In addition, univariate Cox regression analyses
suggested that 30/655 IC-SHMSs (CD14+ monocyte: 4; CD19+

B cell: 12; CD4+ T cell: 5; CD8+ T cell: 1; CD56+ NK cell: 5;
and neutrophil: 3), age, and TNM stage may have prognostic
values. Those features were used in multivariate Cox regression
analyses, and the results showed that 10/30 IC-SHMSs, age, and
TNM stage may have independent prognostic values (Table 1).
This observation indicated that the IC-SHMSs which showed
prognostic value may affect the prognoses of BC patients by
regulating immune cell function.

Identification of the Subgroups of BC
Patients
The 30 IC-SHMSs showing prognostic value were used as
variables to perform clustering analysis and four subgroups of BC
patients were identified. Besides, the results of the CHI analyses
showed the clustering has a good significance when k = 4 (CHI
= 98.23; Supplementary Table 4), and the t-test result indicated
the difference between the CHI distribution from the resampling
datasets and the CHI value from the original dataset is not
statistically significant (p = 0.1662; Supplementary Figure 1). A
heatmap of the beta values of the 30 IC-SHMSs is displayed in
Figure 4. It indicates significant differences in the methylation
levels of IC-SHMSs between different groups. In addition,
survival analysis showed that patients in group 3 and group 4
had a significantly better OS than patients in group 1 and group 2
(Figure 5B). Therefore, our findings indicate that IC-SHMSs can
be used to effectively group BC patients.

Immune Landscape and TMB Score
Distribution of the Four Subgroups
The enrichment scores of the 28 immune cell types were
calculated for each BC sample using the ssGSEA method and
were normalized using theMin-Max Normalizationmethod. The
distribution of enrichment scores of the 28 immune cell types
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FIGURE 1 | Workflow chart. IC-SHMS, immune cell-specific hypermethylation signatures; Go, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes;

ssGSEA, single-sample gene set enrichment analysis; TME, tumor microenvironment; TMB, tumor mutation burden.

between the four subgroups is shown in Figure 5A. Group 1 had
the lowest immune response; group 2 showed moderate immune
activation and relatively high immune suppression; group 3
displayedmedium immune activation and relatively low immune
suppression; group 4 showed the strongest immune response.
Combined with the results of survival analysis, these results
indicate that the ratio of immune activating cells (activated B cells
and activated CD8T cells) to immune suppressing cells [myeloid-
derived suppressor cells (MDSCs) and regulatory T cells] may
play an important role in tumor progression and patient survival.
A box plot depicting the ratio of immune-activating cells
to immune-suppressing cells of the four subgroups strongly
supported this hypothesis (Figure 5C).

On the other hand, the tumor microenvironment of each
BC sample was assessed using immune scores, stromal scores,
and tumor purity, using the ESTIMATE algorithm. The

distribution of these features between the four subgroups showed
significant differences (Figure 5D). TMB scores were calculated
as previously described, and outliers detected by the quartile
method were deleted. The box plot showed that the TMB
scores of groups 2 and 4 were significantly higher than those
of groups 1 and 3 (Figure 5D). A box plot of the expression
levels of seven immune checkpoint molecules (PD-1, PD-L1,
CTLA-4, TIM3, LAG3, KIR, and VISTA) also showed significant
differences between the four subgroups (Figure 5E). Thus, our
findings indicate that the four subgroups displayed heterogeneity
in immune landscapes and somatic mutations.

Differential Analysis and Functional
Annotation of the Subgroups
Based on differences in the immune landscape between the
subgroups, we performed two differential analyses: group
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FIGURE 2 | Identification of the IC-SHMSs of six immune cell types. (A) PCA plot of six immune cell types based on the whole methylation profiles. (B) Venn diagrams

showing the IC-SHMS numbers of each immune cell; a total of 655 IC-SHMSs was identified. (C) PCA plot of six immune cell types based on the methylation profiles

of the 655 IC-SHMSs.

4 vs. group 1; and group 3 vs. group 2, resulting in
2,849 and 865 significant DEGs, respectively, being identified
(Supplementary Figure 2). GO and KEGG enrichment analyses
indicated that the difference in immune response between
group 4 and group 1 may be closely associated with the
biological processes of lymphocyte activation and leukocyte cell-
cell adhesion, and that the signaling pathways of cytokine-
cytokine receptor interaction, viral protein interaction with
cytokines and cytokine receptors and cell adhesion molecules

may play an important role in this process (Figures 6A,B;
Supplementary Table 5). On the other hand, the difference
in immune response between group 3 and group 2 may
be closely related to the biological processes of cornification
and regulation of hormone secretion, the neuroactive ligand-
receptor interaction signaling pathway, the PPAR signaling
pathway and the estrogen signaling pathway, all of which
may play an important role in this process (Figures 6C,D;
Supplementary Table 6). Therefore, these results may clarify

Frontiers in Medicine | www.frontiersin.org 6 August 2021 | Volume 8 | Article 674338

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Chen et al. Immune Cell-Specific Hypermethylation Signatures

FIGURE 3 | Distributions corresponding to the gene region and CpG island of the IC-SHMSs. Most of these IC-SHMSs were located in the region of gene body and

CpG island opensea. IGR, Intergenic region; TSS, transcription start site; UTR, untranslated region.

the differences in immune responses that were observed
between groups, as well as provide clues that are useful for
personalized treatment.

Construction and Validation of the
Prognostic Model of IC-SHMS
To test the efficacy of the prognostic model of IC-SHMS, 751
BC patients with follow-up times >30 d were divided into
two groups, at a ratio of 7:3, as follows: a training set (n =

523); and a validation set (n = 228). The training set was
used to construct an IC-SHMS model, while the validation
set was used to verify the IC-SHMS model. Ten IC-SHMSs
showing independent prognostic values were used to construct
the Cox proportional hazard model using the training set,
and 9/10 IC-SHMSs (cg08708961, cg19473529, cg24088496,
cg24536818, cg17124583, cg17988310, cg10639435, cg14084689,
and cg07141504) were retained in the optimal model selected
by the stepwise algorithm (Supplementary Figure 3). Based
on these nine risk signatures in this model, risk scores were
calculated for each BC patient in the training set and validation
set separately. Time-dependent ROC analyses indicated that both
the training set (3-year AUC: 0.780; 5-year AUC: 0.728) and
the validation set (3-year AUC: 0.786; 5-year AUC: 0.722) of
this model showed similarly good performances in terms of
survival prediction accuracy (Figures 7A,B). Patients with high-
risk scores had poorer prognoses than those with low-risk scores
in the training set, a result which was verified using the validation
set (Figures 7C,D). Based on the median risk scores, patients
included in the four groups (TNM stages I, II, III, and IV)

could be, respectively, stratified into two groups with significantly
different prognoses, indicating that higher risk scores were
associated with poorer survival (Figures 7E–H). Therefore, our
findings demonstrated that the prognostic model based on IC-
SHMSs showed good stability and accuracy of survival prediction
in BC.

Comparison of Prediction Accuracy of the
IC-SHMS Model, the Clinical Model, and
the Combined Model
Using the survival information and different features of 751
BC patients, three Cox proportional hazard models were
constructed as follows: the 10 IC-SHMSs with independent
prognostic value were used to construct an IC-SHMS model,
and 9/10 IC-SHMSs were selected for the optimal model
using AIC (Supplementary Figure 4A); the clinical model was
constructed using the clinical features of patient age and TNM
stage, both of which features were retained in the optimal
model (Supplementary Figure 4B); the combined model was
constructed using the 10 IC-SHMSs, age, and TNM stage. 9/10
IC-SHMSs, age, and TNM stage were retained in the optimal
model selected using AIC (Figure 9A). Time-dependent ROC
analyses showed that the prediction accuracy for 3- and 5-year
OS obtained via the IC-SHMS model (3-year AUC: 0.793; 5-year
AUC: 0.735) was similar to that of the clinical model (3-year
AUC: 0.785; 5-year AUC: 0.761), and considerably better than
the prediction accuracy obtained using age alone or TNM stage
alone. The combined model, with added IC-SHMSs, significantly
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TABLE 1 | Statistical summary of the IC-SHMSs with prognostic value.

Univariate analysis Multivariate analysis

Item Cell.type HR (95% CI) p-value HR (95% CI) p-value

age – 1.04 (1.02–1.05) <0.001 1 (1–1.1) <0.001

TNM stage II – 1.98 (0.93–4.21) 0.077 1.6 (0.71–3.6) 0.262

TNM stage III – 3.35 (1.54–7.27) 0.002 3.8 (1.7–8.7) 0.001

TNM stage IV – 29.0 (10.68–78.9) <0.001 46 (15–140) <0.001

cg08708961 Neutrophil 2.2 (1.1–4.1) 0.019 5.5 (2–15) <0.001

cg19473529 CD4.T.cell 0.28 (0.08–0.94) 0.039 0.05 (6.4 e-03–0.31) 0.002

cg24536818 CD19.B.cell 0.28 (0.1–0.78) 0.015 0.1 (0.02–0.43) 0.002

cg24088496 CD56.NK 3.6 (1.5–8.9) 0.005 6.3 (1.8–22) 0.004

cg17124583 CD19.B.cell 6.5 (1–41) 0.045 20 (2–210) 0.011

cg17988310 CD56.NK 0.35 (0.16–0.78) 0.01 0.22 (0.07–0.74) 0.014

cg14084689 CD56.NK 10 (1.6–67) 0.014 12 (1.6–88) 0.015

cg10639435 CD14.monocyte 6.1 (1.4–27) 0.017 12 (1.4–110) 0.023

cg11930955 CD56.NK 8.4e-05 (1.1e-07–0.06) 0.005 2.5e-06 (7.6e-12–0.82) 0.0465

cg07141504 CD4.T.cell 0.02 (2.5e-04–0.18) <0.001 0.004 (1.9e-05–0.99) 0.0498

cg21278103 CD19.B.cell 0.29 (0.12–0.7) 0.005

cg16704703 CD19.B.cell 0.13 (0.02–0.72) 0.02

cg25869889 CD19.B.cell 0.22 (0.07–0.67) 0.008

cg06470558 Neutrophil 0.06 (3.6e-03–0.87) 0.04

cg01151584 CD14.monocyte 9.5 (1.3–71) 0.029

cg01946401 CD4.T.cell 0.2 (0.06–0.69) 0.011

cg18445438 CD19.B.cell 0.08 (0.01–0.45) 0.005

cg07240557 CD19.B.cell 0.38 (0.15–0.98) 0.046

cg22843803 CD14.monocyte 0.08 (8.5e-03–0.67) 0.021

cg26687579 CD56.NK 0.06 (7.3e-03–0.51) 0.01

cg11658419 CD8.T.cell 0.19 (0.04–0.87) 0.032

cg04136456 CD4.T.cell 0.16 (0.04–0.68) 0.013

cg02493211 CD19.B.cell 0.12 (0.02–0.83) 0.032

cg11906021 Neutrophil 0.08 (0.01–0.63) 0.017

cg14655843 CD14.monocyte 7.9 (1.5–42) 0.015

cg13437525 CD4.T.cell 0.004 (3.5e-05–0.48) 0.024

cg06881965 CD19.B.cell 0.26 (0.09–0.77) 0.014

cg24171555 CD19.B.cell 0.12 (0.02–0.77) 0.026

cg23925650 CD19.B.cell 0.3 (0.11–0.82) 0.018

cg20541456 CD19.B.cell 0.27 (0.09–0.79) 0.017

Only the items with p < 0.05 were displayed. TNM stage I was defined as the reference of stage II, stage III, and stage IV. IC-SHMS, immune cell-specific hypermethylation signature;

HR, hazard ratio; CI, confidence interval.

improved upon the prediction accuracy of the clinical model (3-
year AUC: 0.897; 5-year AUC: 0.856); (Figures 8A,B). The IDI
results indicated that the improvement that was gained in the
accuracy of predicting both 3- and 5-year OS using the combined
model was statistically significant when compared with the
clinical model (Figures 8C,D). Therefore, our results indicated
that IC-SHMSs exhibit good prognostic value and show potential
for use as a supplement in the current risk stratification system.

Clinical Application of the Combined Model
The 11 features (cg08708961, cg19473529, cg24088496,
cg24536818, cg17124583, cg17988310, cg10639435, cg14084689,
cg07141504, age, and TNM stage) that were included in the

combined model were used to establish the risk signatures,
following which the risk score of each BC patient was calculated
for risk stratification purposes. The hazard ratios associated
with these features are shown in Figure 9A. Kaplan-Meier
curves and log-rank tests showed a significant difference in
OS between the high and low-risk groups as defined based
on the median of risk scores (Figure 9B). A nomogram plot
was used to predict the 3- and 5-year OS of BC patients,
based on the weighted scores of the 11 features incorporated
into the combined model (Figure 9C). The calibration curves
showed that the combined model had good performance in
predicting the 3- and 5-year OS, compared with the ideal model
(Supplementary Figure 5).
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FIGURE 4 | Heatmap showing the distribution of the beta values of the 30 IC-SHMSs with prognostic value between the four subgroups.

DISCUSSION

DNA methylation plays a central role in immune cell
differentiation and function, by stabilizing and driving gene
activity (27). Both innate and adaptive immune cells in
blood are able to infiltrate tumor tissues to form the tumor
immune microenvironment (TIME). Previous studies have
shown that the TIME, which is heterogeneous and consists of
a variety of different immune cells, plays an important role
in tumor progression and patient survival-outcomes which are
closely associated with immune evasion (28). Tools such as
ESTIMATE, TIMER, and CIBERSORTx, which are based on the
transcriptomic signatures of immune cells, have been created
to assess the status of the TIME. The indicators generated by
them have been used for classification and risk stratification
in various cancers (29–31). However, few studies have either
investigated the methylation signatures of immune cells or linked
these signatures with classification and risk stratification in
cancer patients. The current study successfully identified the
immune cell-specific hypermethylation sites (IC-SHMSs) of six
immune cell types separately by analyzing methylome data, and
subsequently, applied these IC-SHMSs to classification and risk
stratification in BC. Our findings indicated that BC patients
could be classified into four heterogeneous clusters based on
the 30 IC-SHMSs with prognostic value. Our results indicated
that incorporating IC-SHMSs with independent prognostic
value into a prognostic model with age and TNM stage may
significantly improve the accuracy of prediction of prognosis in
BC patients.

BC is a heterogeneous disease, and has significant variability
in clinical presentation, response to treatment, and survival

prognosis. At an individual level, accurate classification may
provide valuable predictive information and guide the selection
of patients for adjuvant hormonal therapy, chemotherapy,
and radiotherapy (32). The classification of BC according
to the expression of estrogen receptors (ER), progesterone
receptors (PR), and HER2 is currently standard practice for
histopathological examination of BC patients (33). However,
this method of classification provides limited information for
decision-making related to immunotherapy. Therefore, the
development of better predictive biomarkers may facilitate the
identification of particular subsets of patients that are most
likely to benefit from immunotherapy, either alone or in
combination with chemotherapy or other therapies. In this
study, four heterogeneous clusters based on IC-SHMSs were
identified in BC. These subgroups displayed obvious differences
in immune landscapes and survival prognoses. Our findings
suggested that the balance between immune activation (activated
B cells and activated CD8T cells) and immune suppression
(MDSC and regulatory T cells) was closely related to survival
prognosis. This conclusion was consistent with those of previous
studies (34, 35), which showed that the ratio of CD8+ T
cells to regulatory T cells plays an important role in the
survival prognosis and molecular subtypes of BC patients.
Furthermore, our findings may provide important indicators
for personalized immunotherapy. For instance, patients in
group 1, characterized by the lowest immune response, lowest
expression levels of all seven immune checkpoint molecules,
highest tumor purity and poor prognoses, may benefit from a
combination therapy of enhanced immunity and targeted tumor
cell, while patients in group 2, characterized by medium immune
activation, relatively high immune suppression, relatively high
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FIGURE 5 | Heterogeneity of the four subgroups. (A) Box plot showing enrichment scores of 28 immune cell types between the four subgroups. (B) Overall survival

curves of the four subgroups. (C) Box plot showing the ratio of immune activation to immune suppression in the four subgroups. (D) Box plot showing the distribution

of immune scores, stromal scores, tumor purity, and TMB scores in the four subgroups, The scores of each character were normalized by the z-score method. (E)

Box plot showing the expression levels of seven immune checkpoint molecules. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

expression levels of immune checkpoint molecules of CTLA-
4 and LAG-3 and poor prognoses, may benefit from a
combination therapy of enhanced immunity and immune
checkpoint inhibitors. Many studies have shown that, compared
with monotherapy, a combination of immunotherapy with
conventional therapies such as chemotherapy and radiotherapy,

may significantly improve cancer therapeutic efficacy, possibly
leading to the development of promising methods of treatment
(36–38).We propose that combining the traditional classification
method of BC with our classification method would lead to
BC patients being offered more accurate and personalized
treatment plans.
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FIGURE 6 | Functional annotation of the subgroups. GO and KEGG enrichment analyses, respectively, revealed the significantly associated processes and signaling

pathways with differences in immune response between groups 4 and 1 (A,B), and between groups 3 and 2 (C,D).

In addition to exploring the differences in immune landscapes
that were observed between subgroups, we performed GO and
KEGG enrichment analyses to perform functional annotation of
these differences with respect to immunity. Our results suggested
that the differences in immune response between groups 4 and 1,
which were associated with immune activation, centered on the

processes of regulating lymphocyte activation and leukocyte cell-
cell adhesion, as well as cytokine-cytokine receptor interaction
signaling. Our results also indicated that a few hormone-related
biological processes and signaling pathways, such as hormone
secretion and transport, and the estrogen signaling pathway,
may be closely related to the differences in immune suppression
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FIGURE 7 | Construction and validation of the prognostic model constructed using IC-SHMSs. Time-dependent ROC analyses for 3- and 5-year OS, respectively,

were performed to estimate the prediction accuracy of the prognostic model, using a training set (A) and a validation set (B). Overall survival curves of the low- and

high-risk groups in the training set (C) and the validation set (D). Overall survival curves of the low- and high-risk groups based on the BC patients in TNM stage I, II,

III, and IV (E–H).

between groups 3 and 2. Although estrogen and its metabolites
are known to be important to the development of BC, the
association and mechanism between estrogen and immunity
remains unclear (39, 40). Our findings regarding the regulatory
relationship between hormones and immune suppression are
consistent with those of several previous studies. For instance,
Svoronos et al. (41) showed that estrogens facilitated tumor
progression by driving MDSC mobilization and augmenting
their immunosuppressive activity. Segovia-Mendoza et al. (42)
reported that functions in, and responses of, infiltrating immune
cells in BC are regulated by steroid hormones and their receptors.
Thus, our study identified several major biological processes, as
well as key signaling pathways associated with the variability
in immune responses displayed by these subgroups, thereby
providing important guidelines for personalized treatment.

As understanding of the association between the TIME and
tumor progression improves, immunotherapy has also rapidly
advanced. To date, immunotherapies using PD-1/PD-L1 or
CTLA-4 antagonistic antibodies have shown promising outcomes
in various cancers such as melanoma, liver cancer and non-
small cell lung cancer, thereby establishing immunotherapy
as one of the most promising new therapeutic approaches
(43–45). However, due to the heterogeneity of the TIME,

and the effects of various resistance mechanisms, <25% of
patients treated with immunotherapy have shown a meaningful
response (46). Therefore, efforts to identify other specific,
effective biomarkers that may be used for immunotherapy
are important. In this study, 30 IC-SHMSs with prognostic
value, closely related to the identity and/or function of
immune cells and potential targets of immunotherapy, were
identified. The dynamic plasticity of the epigenome makes it
susceptible to therapeutic operations, and the past few years have
witnessed an unprecedented development of targeted epigenetic
therapies. The most clinically advanced epigenetic therapies
in cancers thus far are DNA hypomethylating agents, such
as DNA methyltransferase inhibitors, which restore aberrant
hypermethylation patterns to the normal phenotype, and
thereby provide significant therapeutic advantages compared to
genetic alterations (47). Preclinical studies suggest that DNA
methyltransferase inhibitors have the greatest efficacy when
combined with other cancer therapies. Although epigenetic
therapy is undoubtedly a potential and powerful tool that is
especially associated with immunity based cancer therapy, much
work is required to produce satisfactory treatments.

Currently, risk stratification of BC patients is predominantly
based on clinicopathological characteristics, and the TNM risk
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FIGURE 8 | Comparison of the predictive accuracy of the IC-SHMS, clinical, and combined models. (A,B) Box plot showing the prediction accuracy for 3- and 5-year

OS, based on the AUC with 1,000× bootstrap resampling. (C,D) IDI charts showing that, compared with the clinical model, the combined model with nine additional

IC-SHMSs improved the prediction accuracy of 3- and 5-year OS in a statistically significant manner (p < 0.05).

stratification system remains the gold standard. However, an
increasing number of studies have shown that many other
characteristics may be used to supplement the TNM system.
For instance, Mavaddat et al. (48) assessed the role of genetic
variants in risk stratification of BC patients. Lai et al. (49)
incorporated novel miRNAs into a prognostic model for BC
patients. CD8+ T cell and NK cell infiltration has been shown
to serve as an independent prognostic biomarker of BC (34, 50).
An increasing number of tumor-related methylation markers are
being discovered in BC (51), and Tao et al. (52) has proposed
a seven DNA methylation signature-based prognostic model.
The current study explored the role of specific methylation
signatures of immune cells in the risk stratification of BC patients.
Compared with Tao’s seven methylation signature prognostic
model, the IC-SHMS model with nine methylation signatures
of immune cells used in our study yielded a more accurate
survival prediction (AUC: 0.793 vs. 0.74). Besides, adding these
IC-SHMSs to the clinical model of patient age and TNM stage
significantly improved the accuracy of prognosis prediction
(AUC: 0.897). Although our results indicated the IC-SHMS
model almost has the same predictive efficacy for prognosis as

the clinical model, it doesn’t exceed. We think possible reasons
leading to this result include: firstly, these clinical prognostic
markers are selected through long-term clinical practice, so
its predictive efficacy for prognosis is very reliable; secondly,
the tumor microenvironment is a complex regulatory system
composed of a highly heterogeneous population of cancer cells,
as well as a large variety of resident and infiltrating host cells,
extracellular matrix proteins, and secreted proteins. Although
TIME plays an important role in tumor progression, it is just
a small part of the whole tumor microenvironment. Therefore,
the predictive efficacy for prognosis is limited to a certain
extent by only using the IC-SHMSs as prognostic factors and
many other molecular characteristics also should be considered.
Therefore, our findings suggest that IC-SHMSs may be used
not only for classification but also to supplement the TNM risk
stratification system.

To our knowledge, ours is the first study to correlate immune
cell hypermethylation signatures with classification and risk
stratification in BC. Our finding of four subgroups and 30 IC-
SHMSs with prognostic value may contribute to personalized
treatment and targeted therapy in BC patients, and the new
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FIGURE 9 | Clinical application of the combined model. (A) Survival curves of high- and low-risk groups. (B) Forest plot showing the hazard ratios of the risk features

included in the combined model. (C) Nomogram created using the 11 risk features incorporated into the combined model, to predict the 3- and 5-year OS of

BC patients.

prognostic model constructed in this study is expected to
increase the accuracy of risk stratification, thereby contributing
to decisions pertaining to clinical treatment that may lead to

improved outcomes for BC patients. However, the volume of data
used in this study was limited, and these findings may require
more clinical data and experiments in order to be fully validated.
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Our future research entails testing additional clinical data and
performing additional mechanistic experiments on the signatures
that have been identified.

In conclusion, our study demonstrated that IC-
SHMSs are well-suited to serve as signatures of
classification and risk stratification in BC. Furthermore,
this study provides new insights into the use of
epigenetic signatures, which may help improve subtype
identification, risk stratification, and the management
of treatment.
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