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Benefiting from advances in high-throughput experimental techniques, important regulatory roles of
miRNAs, lncRNAs, and proteins, as well as biological property information, are gradually being comple-
mented. As the key data support to promote biomedical research, domain knowledge such as intermolec-
ular relationships that are increasingly revealed bymolecular genome-wide analysis is often used to guide
the discovery of potential associations. However, themethod of performing network representation learn-
ing from the perspective of the global biological network is scarce. Thesemethods cover a very limited type
ofmolecular associations and are therefore not suitable formore comprehensive analysis ofmolecular net-
work representation information. In this study, we propose a computational model based on the Biological
network for predicting potential associations betweenmiRNAs anddiseases called iMDA-BN. The iMDA-BN
has three significant advantages: I) It uses a new method to describe disease and miRNA characteristics
which analyzes node representation information for disease andmiRNA from the perspective of biological
networks. II) It can predict unproven associations even if miRNAs and diseases do not appear in the biolog-
ical network. III) Accurate description of miRNA characteristics from biological properties based on high-
throughput sequence information. The iMDA-BN predictor achieves an AUC of 0.9145 and an accuracy of
84.49% on the miRNA-disease association baseline dataset, and it can also achieve an AUC of 0.8765 and
an accuracy of 80.96% when predicting unknown diseases and miRNAs in the biological network.
Compared to existing miRNA-disease association prediction methods, iMDA-BN has higher accuracy and
the advantage of predicting unknown associations. In addition, 45, 49, and 49 of the top 50 miRNA-
disease associations with the highest predicted scores were confirmed in the case studies, respectively.
� 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction therapeutic strategies by acting as biomarkers for certain diseases.
MicroRNAs (miRNAs) are small, non-coding RNA molecules that
affect basic biological processes by base pairing with targeted
mRNAs [1,2]. In particular, many studies have revealed that miR-
NAs act as negative gene regulators in a variety of human diseases
and are involved in disease processes such as breast cancer, myas-
thenia gravis, primary biliary cirrhosis, and the like [3–5]. This sug-
gests that miRNAs can promote the development of new
Therefore, exploring how to predict the relationship between
miRNA and disease on a large scale has always been a research hot-
spot in the field of bioinformatics.

In recent years, many predictive tools have been proposed that
convert each node in the network (including miRNAs and diseases)
into low-dimensional potential representations to calculate net-
work representation associations in order to identify miRNA-
diseases association in the context of known network structures.
However, since most predictive tools only introduce intermediary
to build a two-layer network (like the two-layer network com-
posed of miRNA-disease association network, miRNA similarity
network and disease similarity network), the amount of informa-
tion represented by the network describing the nodes is relatively
rare. For example, Shi et al. proposed a computational model for
predicting potential miRNA-disease associations by integrating
miRNA-target networks, gene-disease networks, and protein–protein
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interaction networks. This method introduces many networks but
does not quantify the network representation information of nodes
from the entire network [6]. Similarly, Mork et al. constructed a
miRNA-protein-disease network for association prediction which
contributed greatly to inferring potential associations from the
network structure but was still not comprehensive enough [7].
Later, Yang et al. calculated miRNA functional similarity by con-
structing a miRNA gene network to improve the performance of
miRNA-disease association prediction. The contribution of this
method to the field is obvious, but the constructed two-layer net-
work does not truly reflect the relationship between nodes in real-
ity [8]. In addition, Chen et al. proposed a prediction model based
on binary network projection called BNPMDA, which introduces
Medical Subject Headings to describe disease information [9]. Fur-
thermore, there are many predictive tools that use domain knowl-
edge as a supplement to high-throughput data to improve
prediction accuracy, such as gene ontology (GO), medical subject
terms, and miRNA-disease-associated network information [10-
12]. For example, Lan et al. proposed a computational framework
called KBMF-MDI, which uses miRNA sequence similarity to
improve model performance [13]. Later, Wang et al. used natural
language processing techniques to extract miRNA sequence fea-
tures for the first time in the miRNA-disease association prediction
model, which made an important contribution to accurately
describe miRNA characteristics [14].

In this study, we propose a novel miRNA-disease association
predictor based on biological networks and graph embedding algo-
rithms to describe the characteristics of miRNAs and diseases from
the perspective of complex biological network, called iMDA-BN.
Different from the previous method, the new predictor has the fol-
lowing improvements: I) Biological networks composed of miRNA,
lncRNA, protein, drug, and disease can describe the network repre-
sentation of miRNAs and diseases from the perspective of the
entire network, rather than being restricted to intermediaries. II)
The association of pairs of new diseases and new miRNAs can be
predicted and has a high degree of accuracy. III) Sequence informa-
tion based on high-throughput sequencing is used to accurately
quantify miRNA function information. In summary, the correlation
of the three improvements is that they are all improvements made
to improve the performance of the model and solve the defects of
the existing methods. In iMDA-BN, 9 relationship types are inte-
grated, including miRNA-lncRNA, miRNA-disease, miRNA-protein,
lncRNA-disease, lncRNA-protein, protein-disease, drug-protein,
drug-disease, protein–protein and 105,546 associations to build
the biological network to assist in predicting potential associations
between miRNA and disease. To our knowledge, this is the largest
biological network for predicting miRNA-disease associations. To
verify the performance of the iMDA-BN, we applied it to the bench-
mark data set to achieve an AUC of 0.9145 with an accuracy of
84.49%. And when predicting the associations between new dis-
eases and new miRNAs, it can achieve an AUC of 0.8765 with an
accuracy of 80.96%. In addition, in order to verify the robustness
of the proposed predictor, three diseases were used for case stud-
ies. From the performance in various evaluations, the proposed
prediction model based on Biological Network can be used as a
good tool for predicting tasks.
2. Materials and methods

2.1. Data sets

2.1.1. The baseline data set of miRNA-disease association
With the deepening of biomedical research, the demand for

integrated miRNA disease association databases is also growing,
and various public databases and benchmark data sets have
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emerged. They manually collected a large number of miRNA-
disease association entries from the literature, for example, HMDD
v3. 0, dbDEMC v2.0 and miR2Disease [15–17]. In this study, HMDD
v3.0 was selected as the baseline database because it has the most
comprehensive miRNA-disease association to date, collecting
32,281 experimentally supported miRNA-disease associations con-
sisting of 1102miRNA genes and 850 diseases. Due to the update of
the version and the overlap of evidence supporting the association,
they were combined into a group of associations covering 1206
miRNAs and 894 diseases. In this group, 901 miRNAs have
sequence information in miRbase [18]. Therefore, the final data
set included 16,427 associations consisting of 901 miRNAs and
877 diseases were used in our experiments.

2.1.2. The baseline data set of miRNA sequence information
With the development of high-throughput sequencing technol-

ogy, biological characteristics such as miRNA sequence information
have been gradually supplemented, and many public databases
have begun to collect and integrate the biological information,
including miRBase, PMRD and MicroRNAdb [19,20]. Among them,
miRbase has the most complete miRNA information, containing
24,521 microRNA loci from 206, which can process 30,424 mature
microRNA products. Therefore, in this experiment we downloaded
high-throughput data from miRNAs from miRbase to complement
miRNA sequence information. The database is accessible free of
charge via the web server http://www.mirbase.org/.

2.1.3. The biological network
The complex homogeneous network constructed with associa-

tions between molecules can use the network representation infor-
mation of its nodes as features to predict associations. The
Biological Network consists of known molecules, as shown in
Fig. 1. However, few predictors based on the entire molecular net-
work to describe miRNA and disease characteristics have been pro-
posed. The biological network (BN) constructed by Guo et al.
provides a new perspective [21]. In order to fill this part of the
research gap, we introduce the biological network (BN) into the
prediction of miRNA-disease association. So far, the biological net-
work consists of small biomolecule transcripts (proteins, lncRNAs
and miRNAs), drugs and diseases. As shown in Table 1, there are
nine kinds of associations which are miRNA-disease (MDA),
miRNA-lncRNA (LMA), miRNA-protein (MPI), lncRNA-disease
(LDA), lncRNA-protein (LPI), protein-disease (PDA), protein–pro-
tein (PPI), drug-protein (DPI), drug-disease (DDI).

Based on the above reference database, the number of various
types of nodes in the statistical biological network is as shown in
Table 2.

2.2. Methods

2.2.1. Attribute information of miRNAs and diseases
Semantic descriptor of disease: Disease descriptors describe dis-

ease attributes in medical subject vocabulary terms and organize
them in Directed Acyclic Graphs (DAGs) where edges represent
the association between diseases and nodes indicate disease. One
of the core issues in the extraction of disease information is how
to measure disease semantic relevance through the Medical Sub-
ject Headings (MeSH) terms [11]. In disease DAG, the association
between the two diseases depends on their location/depth in the
DAG, and if the two diseases have semantic similarities they will
share more DAG parts. The semantic similarity Ssem d ið Þ; d jð Þð Þ of dis-
ease dðiÞ and disease dðjÞ are defined as follows:

Ssem d ið Þ;d jð Þð Þ ¼
P

k2Nd ið Þ\Nd jð Þ
Cd ið Þ kð Þ þ Cd jð Þ kð Þ� �

P
k2Nd ið Þ

Cd ið Þ kð Þ þP
k2Nd jð Þ

Cd jð Þ kð Þ ð1Þ

http://www.mirbase.org/


Fig. 1. The biological network.

Table 1
The nine associations that constitute the biological network.

Node Association Benchmark dataset Version Amount

miRNA miRNA-disease HMDD [15] v3.0 16,427
miRNA-lncRNA lncRNASNP2 [33] v1.0 8374
miRNA-protein miRTarBase [34] v7.0 4944

lncRNA lncRNA-disease LncRNADisease [35] v1.0 1264
lncRNASNP2 [33] v1.0

lncRNA-protein LncRNA2Target [36] v2.0 690

Protein protein-disease DisGeNET [37] v6.0 25,087
protein–protein STRING [38] v10.5 19,237

Drug drug-protein DrugBank [39] v5.1 11,107
drug-disease CTD [40] v2019 18,416

Total 105,546

Table 2
The number of five nodes in the biological network.

Node MiRNA LncRNA Protein Drug Disease Total

Amount 1023 769 1649 1025 2062 6528
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Cd ið Þ kð Þ ¼ 1 if k ¼ d ið Þ
Cd ið Þ kð Þ ¼ max x � Cd ið Þ k

0� �� ���k0 2 children of kÞ if k–d ið Þ

8<
:

ð2Þ

where Cd ið Þ kð Þ is the semantic contribution of disease k to disease
d ið Þ. x is the contribution coefficient, which is set to 0.5 according
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to the previous study [22]. Nd ið Þ is a collection of all diseases
that appear in the DAG of disease d ið Þ. When the semantic sim-
ilarity between all diseases in the biological network is calcu-
lated, the semantic similarity matrix Ssem whose size is
2062� 2062 can be obtained. Therefore, according to previous
studies [14,23–25], the descriptor for disease d ið Þ can be
defined as follows:



Fig. 2. The 2nd-order biased random walks procedure in Node2Vec.

K. Zheng et al. Computational and Structural Biotechnology Journal 18 (2020) 2391–2400
attribute d ið Þð Þ ¼ Ssem d ið Þð Þ ð3Þ
where Ssem d ið Þð Þ is a vector consisting of a collection of semantic
similarities between disease d ið Þ and all diseases. Descriptors corre-
sponding to 877 diseases in HMDD v3.0 were used to construct
attribute information of the disease.

Sequence descriptor of miRNA: The properties of the miRNA are
represented by sequence information. For the sake of simplicity,
k-mer is used to convert the sequence into a numerical vector,
where k represents the length of the segmented subsequence
[26]. For example, the 3-mer miRNA sequence can be expressed
as AAA, UAA, . . . UUU, and the number of all combinations is
4*4*4 = 64. Due to the short miRNA sequence, the feature vector
composed of 4-mer and 5-mer algorithm has a large number of
features that are 0, which makes the feature vector noise. In this
experiment, we use 3-mer to segment the sequence and use the
normalized frequency of 64 subsequences as the sequence descrip-
tor attribute m jð Þð Þ where m jð Þ is the jth miRNA.

2.2.2. Node representation
In order to effectively represent the relationship between each

node and other nodes in the entire biological network, a network
embedding method named Node2Vec is utilized in this study
[27]. Node2Vec method is based on the sampling node neighbor-
hood strategy of random walk, and optimizes the neighborhood
preserving likelihood objective by the Skip-gram model to obtain
the network embedded representation of the node. The method
simulates a random walk of each node, wherein the i-th node cðiÞ
in the walk can be described as follows:

P c ið Þ ¼ xjc i� 1ð Þ ¼ vð Þ ¼
pv ;x
Z ifv; xinE
0 otherwise

(
ð4Þ

where Z is the normalization constant and pv;x is defined as the
unstandardized transition probability of nodes v and x:

pv;x ¼ apq t; xð Þ �xv;x ð5Þ
where xv;x is the weight of the edges v and x, and the unweighted
graph used in this experiment is set to 1. apq t; xð Þ is used to adjust
the search process, interpolating between BFS and DFS. It is defined
as follows:

apq t; xð Þ ¼
1
p if dtx ¼ 0

1 if dtx ¼ 1
1
q if dtx ¼ 2

8><
>: ð6Þ

where dtx is the shortest distance between node t and node x. p and
q are the return parameter and the In-out parameter, respectively.
And, the default parameters are used in this experiment. The speci-
fic details are shown in Fig. 2. By learning the low-dimensional
potential representation of nodes in the entire biological network,
each node can describe its network relationship through a 64-
dimensional vector mannerðnodeðiÞÞ. nodeðiÞ is the i-th node in the
network.

2.2.3. Stacked autoencoder
Information frommultiple sources is integrated in the proposed

model, including information on the characteristics of diseases and
miRNAs, as well as network representations of diseases and miR-
NAs. This operation allows the feature to contain more informa-
tion, however, due to the different scope and size of the data
from different sources, the model will be overly complex and prone
to overfitting. Therefore, stacked Autoencoder is adopted to obtain
the appropriate subspace from the original feature space, which
can express the main features of the high-dimensional vectors in
a low-dimensional way. The encoder that encodes the input X as
a hidden representation Y is defined as follows:
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Y ¼ f Xð Þ ¼ Sc WT
1X þ b1

� �
ð7Þ

The decoder that maps the hidden representation Y to the
approximate output Z is defined as follows:

Z ¼ g Yð Þ ¼ Sd WT
2Y þ b2

� �
ð8Þ

where Sc and Sd are the activation functions. W1 and W2 are rela-
tional parameters. b1 and b1 are bias parameters.

Sc tð Þ ¼ Sd tð Þ ¼ max 0;Wt þ bð Þ ð9Þ
The principle of the autoencoder described above, and the

stacked autoencoder used in this article is composed of multiple
basic autoencoders. Specifically, we use disease semantic informa-
tion as input X to train the first hidden layer to obtain the main fea-
tures. Then train the second hidden layer through the main
features to obtain more abstract deep features. Iterate back and
forth until the final feature vector is obtained in the middle-
hidden layer. In the experiment, keras framework is used, where
the loss function is the mean-square error (MSE), the activation
function is relu, and the optimization function is the Adam algo-
rithm. The parameters used in the relevant models are all defaults.

2.2.4. Method overview
In this study, a new predictor called iMDA-BN was constructed

to predict potential associations between miRNAs and diseases.
The iMDA-BN is roughly divided into three parts, as shown in
Fig. 3. Firstly, node attribute, miRNA-based high-throughput data
information and disease semantic information are used to con-
struct miRNA sequence descriptors and disease semantic descrip-
tors, respectively. Secondly, edge embedding, the network
representation learning based on Biological Network calculates
the node representation of each miRNA and disease. Thirdly, the
autoencoder is used to extract the deep features of disease seman-
tic descriptors. Finally, training random forest models to calculate
miRNA-disease association scores. Next, the details in the experi-
ment are described in detail.

The choice of positive and negative samples: Specifically, the
16,427 miRNA-disease associations provided in HMDD are utilized
as positive samples. The downsampling method was used to con-
struct negative samples by randomly extracting the same number
of associations from positive samples from 773,750 unconfirmed
miRNA-disease associations. Although there may be potential



Fig. 3. The framework of iMDA-BN.
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associations, the number of negative samples we selected was

only 16427~A � ð901� 877Þ � 2:08% of the total number of sam-
ples. Therefore, there is a low probability of potential associations
that can be ignored.

The construction of the final feature descriptor: As shown in Fig. 3,
the final feature descriptor of size 256� 32854 is represented by
the miRNA sequence descriptor, the miRNA node, the disease
semantic descriptor and the disease node representation. The final
association descriptor F of disease d jð Þ and miRNA m ið Þ can be
described as a 256-dimensional vector:

F m ið Þ;d jð Þð Þ¼ descriptor m ið Þð Þ;manner m ið Þð Þ;descriptor d jð Þð Þ;manner d jð Þð Þð Þ
ð10Þ

Prediction of miRNA-disease association by Random Forest: The
final descriptor is used to train the random forest model and pre-
dict potential associations based on the trained model. In particu-
lar, the higher the prediction score, the more likely it is to be the
candidate for potential associations. The parameters used in the
relevant models are all defaults.
3. Experimental results

3.1. Performance of the new prediction method

In order to comprehensively evaluate the robustness and effec-
tiveness of the iMDA-BN predictor, a 5-fold cross-validation was
performed on the proposed model on the HMDD v3.0 dataset. It
is divided into three steps: 1) The 32,854 associations used in this
experiment were divided into five approximately equal and
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disjoint subsets (The positive and negative samples in each
subset are 1:1). 2) One of the subsets was selected as the test set
to test the model performance, and the remaining four subsets
were used as the training set to train model. 3) Repeat step 2 until
that all subsets are selected as test sets. Thus, five sets of experi-
mental results were obtained, and we reported them in Table 3
and Fig. 4, respectively. The area under the curve (AUC) is the area
of the graph surrounded by the receiver operating characteristic
curve (ROC) where the ROC is an evaluation criterion. It can be seen
from Table 3 that the average AUC of the iMDA-BN has reached
0.9145, and the standard deviation is only 0.32%, which indicates
that the proposed predictor is robust. In addition, the accuracy
(Acc.), sensitivity (Sen.), precision (Prec.), specificity (Spec.), Mat-
thews correlation coefficient (MCC) and the area under precision-
recall (AUPR) of the proposed model are 84.49%, 84.20%, 84.79%,
84.70%, 68.99% and 91.92%. From the results of this part of the
experiment (Table 3, Fig. 4 and Fig. 5), the method we proposed
is discriminative.

3.2. Compare different strategies to generate feature descriptors

Real-world networks, such as the biological network, are com-
posed of nodes and edges, each associated with an essential attri-
bute. In this method, the proposed feature descriptor F m ið Þ; d jð Þð Þis
composed of the node attribute information descriptor and the
node representation information manner that retains network
structure information. In order to verify the reliability of the
descriptors, we compare the three methods we implemented our-
selves, using different descriptors in this experiment. Details are as
follows.



Table 3
The result of 5-fold cross-validation of iMDA-BN on the HMDD v3.0 data set.

Test set Acc. (%) Sen. (%) Prec. (%) Spec. (%) MCC (%) AUC AUPR

1 84.14 83.84 84.45 84.35 68.29 0.9100 0.9148
2 84.57 84.51 84.63 84.61 69.14 0.9133 0.9168
3 85.04 85.39 84.69 84.8 70.09 0.9185 0.9216
4 84.57 84.02 85.12 84.95 69.15 0.9159 0.9214
5 84.15 83.25 85.04 84.77 68.3 0.9150 0.9218

Average 84.49 ± 0.37 84.20 ± 0.80 84.79 ± 0.28 84.70 ± 0.23 68.99 ± 0.75 0.9145 ± 0.0032 0.9192 ± 0.0032

Fig. 4. ROC curves performed by iMDA-BN. Fig. 5. PR curves performed by iMDA-BN.

Table 4
The comparison of different types of feature descriptors.

Metric Descriptor comparison

iMDA-BN (Attribute) iMDA-BN (Manner) iMDA-BN

Acc. (%) 80.96 ± 0.53 84.12 ± 0.28 84.49 ± 0.37
Sen. (%) 83.79 ± 1.12 83.85 ± 0.79 84.20 ± 0.80
Prec. (%) 78.14 ± 0.35 84.40 ± 0.29 84.79 ± 0.28
Spec. (%) 79.30 ± 0.28 84.31 ± 0.15 84.70 ± 0.23
MCC (%) 62.02 ± 1.11 68.25 ± 0.56 68.99 ± 0.75
AUC 0.8765 ± 0.0039 0.9106 ± 0.0034 0.9145 ± 0.0032
AUPR 0.8719 ± 0.0036 0.9143 ± 0.0031 0.9188 ± 0.0030
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� Descriptor ‘‘iMDA-BN (attribute)”: It consists of disease and
miRNA attribute information, which can be described as
Fattribute m ið Þ; d jð Þð Þ ¼ attributeðm ið Þ;d jð ÞÞ.

� Descriptor ‘‘iMDA-BN (manner)”: It consists of disease and
miRNA node representation information, which can be
described as Fmanner m ið Þ; d jð Þð Þ ¼ manner m ið Þð Þ;manner d jð Þð Þð Þ.

� Descriptor ‘‘iMDA-BN”: The proposed feature descriptor
F m ið Þ; d jð Þð Þ.

The above three descriptors all utilize the same random forest
classifier,Medical Subject Headings andmiRNA sequence informa-
tion. Table 4 shows the scores of the three descriptors in the seven
evaluation criteria including accuracy (Acc.), sensitivity (Sen.),
specificity (Spec.), precision (Prec.) andMatthews correlation coef-
ficient (MCC), AUC and AUPR. It can be seen that iMDA-BN outper-
forms other descriptors in the seven evaluation indicators,
especially the AUC andMCC that measure the overall performance
of themodel. This suggests thatmulti-source knowledge that com-
bines miRNA and disease attribute information with its node rep-
resentation information in the network can describe the
association between miRNA and disease from a more macro per-
spective, thereby characterizing the deeper meaning of multi-
source data.

Furthermore, for miRNAs and diseases that are not in the net-
work, their characteristics can be characterized by combining
their attribute information and setting the manner part to 0.
The performance of iMDA-BN (attribute) is verified in Fig. 6, indi-
cating that the attribute information has considerable recogni-
tion. Therefore, in this way, we solve the problem of association
prediction between miRNAs and diseases that are not in the
network.
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3.3. Comparison with highly related methods

In recent years, many predictors have been proposed for the
potential association between miRNAs and diseases. We compare
the performance of the iMDA-BN with 7 state-of-the-art methods,
including Shi’s, BNPMDA, LMTRDA, HGIMDA, BRWHNHA, KBMF-
MDI and KBMF-MDI. Table 5 not only lists the performance of the
various methods, but also shows the prior knowledge of building
the associated network and the attribute information of the nodes.
From the results, the iMDA-BN is superior to other methods using
less than four associations on AUC and is 4.9% higher than the aver-
age. It is shown that the node representation information based on
the biological network can improve the effect of predicting associa-
tions betweenmiRNAanddisease. In addition, the proposedmethod
has an improvement of 2.48% and 15.65% in performance compared
tomethods that do not use attribute information such asMDA-CNN
and Shi’s, which means that attribute information can also improve
prediction performance. Furthermore, in Table 5, a protein–protein
interaction (PPI) network of human genes was used as a gene net-



Fig. 6. ROC and PR curves performed by iMDA-BN (Attribute) and iMDA-BN (manner). (A) ROC curves performed by iMDA-BN (Attribute). (B) PR curves performed by iMDA-
BN (Attribute). (C) ROC curves performed by iMDA-BN (manner). (D) PR curves performed by iMDA-BN (manner).

Table 5
The comparison with related models.

Association Methods Attribute AUC scores MDA samples

PPI, MPI, DPI Shi’s1 N/A 0.7580 518
MDA-CNN2 N/A 0.8897 2449

MDA BNPMDA3 MeSH 0.8980 5430
LMTRDA4 miRNA sequence, MeSH 0.9054 32,226
HGIMDA5 MeSH 0.8781 5430
BRWHNHA6 MeSH 0.8570 5430

MDA, DPI KBMF-MDI7 miRNA sequence, MeSH, 0.8725 6084

MDA, LDA, PPI, LMA, LPI, DPI, MPI, PDI, DDI iMDA-BN miRNA sequence, MeSH 0.9145 16,427

1 This method is reported in [6].
2 This method is reported in [23].
3 This method is reported in [9].
4 This method is reported in [14].
5 This method is reported in [41].
6 This method is reported in [42].
7 This method is reported in [13].
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work, as in previous studies, sincemiRNAs affect disease by regulat-
ing gene expression post-transcriptionally [23].

3.4. Case study

In this part of the experiment, the iMDA-BN’s the ability of pre-
dicting disease-associated miRNAs was validated by case studies of
three common human diseases, assuming that prior knowledge are
2397
only associations in HMDD v3.0. Specifically, the training set is
made up of all the associations in the final descriptor. At the same
time, we used the associations that did not appear in HMDD for the
three diseases as a test set. After iMDA-BN gave prediction scores
to the test set, the top 50 miRNAs with the highest score for each
disease were validated in the dbDEMC database and the miR2Di-
sease database [16,17]. Breast cancer is the most common female
cancer in developed countries [28]. Its incidence increases rapidly



Table 6
Prediction of the top 50 predicted miRNAs associated with breast neoplasms.

miRNA dbDEMC miR2D miRNA dbDEMC miR2D

hsa-mir-181d-5p confirmed unconfirmed hsa-mir-508-5p confirmed unconfirmed
hsa-mir-99b-5p confirmed unconfirmed hsa-mir-154-5p confirmed unconfirmed
hsa-mir-330-5p confirmed unconfirmed hsa-mir-581 confirmed unconfirmed
hsa-mir-28-5p confirmed unconfirmed hsa-mir-501-5p confirmed unconfirmed
hsa-mir-361-5p confirmed unconfirmed hsa-mir-323a-5p confirmed unconfirmed
hsa-mir-371a-5p confirmed unconfirmed hsa-mir-628-5p confirmed unconfirmed
hsa-mir-885-5p confirmed unconfirmed hsa-mir-612 unconfirmed unconfirmed
hsa-mir-455-5p confirmed unconfirmed hsa-mir-490-5p confirmed unconfirmed
hsa-mir-651-5p confirmed unconfirmed hsa-mir-188-5p confirmed unconfirmed
hsa-mir-1271-5p confirmed unconfirmed hsa-mir-1299 confirmed unconfirmed
hsa-mir-504-5p confirmed unconfirmed hsa-mir-95-5p confirmed unconfirmed
hsa-mir-876-5p confirmed unconfirmed hsa-mir-1296-5p confirmed unconfirmed
hsa-mir-454-5p confirmed unconfirmed hsa-mir-582-5p confirmed unconfirmed
hsa-mir-532-5p confirmed unconfirmed hsa-mir-512-5p confirmed unconfirmed
hsa-mir-1297 confirmed unconfirmed hsa-mir-1303 confirmed unconfirmed
hsa-mir-449b-5p confirmed unconfirmed hsa-mir-323b-5p confirmed unconfirmed
hsa-mir-433-5p confirmed unconfirmed hsa-mir-889-5p confirmed unconfirmed
hsa-mir-544a confirmed unconfirmed hsa-mir-1184 confirmed unconfirmed
hsa-mir-136-5p confirmed confirmed hsa-mir-500a-5p confirmed unconfirmed
hsa-mir-23c unconfirmed unconfirmed hsa-mir-217-5p confirmed unconfirmed
hsa-mir-761 unconfirmed unconfirmed hsa-mir-518e-5p confirmed unconfirmed
hsa-mir-4500 unconfirmed unconfirmed hsa-mir-376b-5p confirmed unconfirmed
hsa-mir-346 confirmed unconfirmed hsa-mir-186-5p confirmed unconfirmed
hsa-mir-216a-5p confirmed unconfirmed hsa-mir-498-5p confirmed unconfirmed
hsa-mir-382-5p confirmed unconfirmed hsa-mir-764 unconfirmed unconfirmed

Table 7
Prediction of the top 50 predicted miRNAs associated with Colon Neoplasms.

miRNA dbDEMC miR2D miRNA dbDEMC miR2D

hsa-mir-16-5p confirmed unconfirmed hsa-mir-505-5p confirmed unconfirmed
hsa-mir-29c-5p confirmed unconfirmed hsa-mir-495-5p confirmed unconfirmed
hsa-mir-423-5p confirmed unconfirmed hsa-mir-122-5p confirmed unconfirmed
hsa-mir-146b-5p confirmed unconfirmed hsa-mir-34b-5p confirmed confirmed
hsa-mir-193a-5p confirmed unconfirmed hsa-mir-7-5p confirmed confirmed
hsa-mir-98-5p confirmed unconfirmed hsa-mir-370-5p confirmed unconfirmed
hsa-mir-124-5p confirmed confirmed hsa-mir-34c-5p confirmed confirmed
hsa-mir-9-5p confirmed confirmed hsa-mir-134-5p confirmed unconfirmed
hsa-mir-130b-5p confirmed confirmed hsa-mir-491-5p confirmed unconfirmed
hsa-mir-128-3p confirmed confirmed hsa-mir-212-5p confirmed unconfirmed
hsa-mir-199a-5p confirmed unconfirmed hsa-mir-149-5p confirmed unconfirmed
hsa-mir-362-5p unconfirmed unconfirmed hsa-mir-129-5p confirmed confirmed
hsa-mir-372-5p confirmed confirmed hsa-mir-181a-2-3p confirmed confirmed
hsa-mir-27b-5p confirmed confirmed hsa-mir-99b-5p confirmed unconfirmed
hsa-mir-494-5p confirmed unconfirmed hsa-mir-144-5p confirmed unconfirmed
hsa-mir-139-5p confirmed confirmed hsa-mir-182-5p confirmed confirmed
hsa-mir-92b-5p confirmed unconfirmed hsa-mir-99a-5p confirmed unconfirmed
hsa-mir-10a-5p confirmed confirmed hsa-mir-373-5p confirmed unconfirmed
hsa-mir-92a-2-5p confirmed unconfirmed hsa-mir-29b-2-5p confirmed confirmed
hsa-mir-199b-5p confirmed unconfirmed hsa-mir-20b-5p confirmed unconfirmed
hsa-mir-214-5p confirmed unconfirmed hsa-mir-320a-5p confirmed unconfirmed
hsa-mir-217-5p confirmed unconfirmed hsa-mir-28-5p confirmed unconfirmed
hsa-mir-590-5p confirmed unconfirmed hsa-mir-26a-2-3p confirmed confirmed
hsa-mir-342-5p confirmed confirmed hsa-mir-100-5p confirmed unconfirmed
hsa-mir-421 confirmed unconfirmed hsa-mir-302c-5p confirmed unconfirmed
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with age, but its incidence decreases near the age of menopause
[28]. Since some of the pathogenic factors of breast cancer are
endogenous, this makes prevention very difficult. Recent studies
have shown that mir-125b, mir-145, mir-21 and mir-155 in breast
cancer tissues are significantly dysregulated compared to normal
breast tissue [29]. In Table 6, we predicted potential breast
neoplasms-associated miRNAs and verified the top 50 miRNAs
with the highest scores, 45 of these miRNA-disease associations
were confirmed. Colon cancer is the second most common cancer
[30]. Since some colon cancer cells still cannot be eradicated by
existing therapies, the study of the pathogenic principle has been
2398
a hotspot in biomedical research [30]. Studies have shown that
the promoters of hsa-miR-9, hsa-miR-129 and hsa-miR-137 are
abnormally hypermethylated in colon cancer cells [31]. In Table 7,
we predicted potential Colon Neoplasms-associated miRNAs and
verified the top 50 miRNAs with the highest scores, of which 49
miRNA-disease associations were confirmed. Lymphoma is a
blood cancer that develops from lymphocytes and originates
from lymphocytes [32]. In Table 8, we predicted potential
Lymphoma-associated miRNAs and verified the top 50 miRNAs
with the highest scores, 49 of these miRNA-disease associations
were confirmed.



Table 8
Prediction of the top 50 predicted miRNAs associated with Lymphomas.

miRNA dbDEMC miR2D miRNA dbDEMC miR2D

hsa-mir-145-5p confirmed confirmed hsa-mir-876-5p confirmed unconfirmed
hsa-let-7b-5p confirmed unconfirmed hsa-let-7e-5p confirmed confirmed
hsa-let-7a-5p confirmed confirmed hsa-mir-15b-5p confirmed unconfirmed
hsa-mir-182-5p confirmed unconfirmed hsa-mir-199b-5p confirmed unconfirmed
hsa-mir-34a-5p confirmed unconfirmed hsa-mir-106b-5p confirmed unconfirmed
hsa-mir-107 confirmed unconfirmed hsa-mir-192-5p confirmed unconfirmed
hsa-mir-424-5p confirmed unconfirmed hsa-mir-106a-5p confirmed confirmed
hsa-mir-98-5p confirmed unconfirmed hsa-mir-146b-5p confirmed unconfirmed
hsa-mir-195-5p confirmed unconfirmed hsa-mir-33b-5p confirmed unconfirmed
hsa-mir-181b-5p confirmed unconfirmed hsa-mir-196a-5p confirmed confirmed
hsa-mir-9-5p confirmed confirmed hsa-mir-33a-5p confirmed unconfirmed
hsa-mir-218-5p confirmed unconfirmed hsa-mir-125b-1-3p unconfirmed unconfirmed
hsa-mir-335-5p confirmed unconfirmed hsa-mir-181d-5p confirmed unconfirmed
hsa-mir-196b-5p confirmed unconfirmed hsa-mir-346 confirmed unconfirmed
hsa-mir-138-5p confirmed unconfirmed hsa-mir-100-5p confirmed unconfirmed
hsa-mir-29a-5p confirmed unconfirmed hsa-mir-590-5p confirmed unconfirmed
hsa-let-7g-5p confirmed unconfirmed hsa-mir-361-5p confirmed unconfirmed
hsa-mir-30b-5p confirmed confirmed hsa-mir-421 confirmed unconfirmed
hsa-mir-503-5p confirmed unconfirmed hsa-mir-320b confirmed unconfirmed
hsa-mir-24-3p confirmed unconfirmed hsa-mir-7-5p confirmed unconfirmed
hsa-mir-125b-5p confirmed unconfirmed hsa-mir-149-5p confirmed confirmed
hsa-mir-374a-5p confirmed unconfirmed hsa-mir-32-5p confirmed unconfirmed
hsa-mir-326 confirmed unconfirmed hsa-mir-216b-5p confirmed unconfirmed
hsa-mir-134-5p confirmed unconfirmed hsa-mir-129-5p confirmed unconfirmed
hsa-mir-136-5p confirmed unconfirmed hsa-let-7i-5p confirmed unconfirmed
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4. Conclusion

With the development of bioinformatics, more and more pre-
dictors of potential associations have been proposed, and these
methods have greatly promoted the development of biomedicine.
However, they focus only on the association network of research
content, and methods based on the entire biological network are
scarce. Therefore, it is necessary to develop a biological network-
based computational method to identify the association between
potential miRNAs and diseases. In this paper, we propose a novel
computational method based on a complex biological network
composed of nine associations called iMDA-BN to predict the
potential association between potential miRNAs and disease. From
the experimental results, it is better than other most advanced
methods, and it can predict the association between miRNA and
disease that does not exist in the network. In addition, we also
demonstrated the excellent ability of iMDA-BN to predict potential
associations through three case studies, and achieved 90%, 98% and
98% accuracy. The reliability of iMDA-BN can be achieved mainly
for three reasons: I) It uses a new method to describe disease
and miRNA characteristics which analyzes node representation
information for disease and miRNA from the perspective of biolog-
ical networks. II) Accurate description of miRNA characteristics
from biological properties based on high-throughput sequence
information. III) It can predict unproven associations even if miR-
NAs and diseases do not appear in the biological network.
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