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Abstract

Background: Usually, next generation sequencing (NGS) technology has the property of ultra-high throughput but
the read length is remarkably short compared to conventional Sanger sequencing. Paired-end NGS could
computationally extend the read length but with a lot of practical inconvenience because of the inherent gaps.
Now that Illumina paired-end sequencing has the ability of read both ends from 600 bp or even 800 bp DNA
fragments, how to fill in the gaps between paired ends to produce accurate long reads is intriguing but
challenging.

Results: We have developed a new technology, referred to as pseudo-Sanger (PS) sequencing. It tries to fill in the
gaps between paired ends and could generate near error-free sequences equivalent to the conventional Sanger
reads in length but with the high throughput of the Next Generation Sequencing. The major novelty of PS method
lies on that the gap filling is based on local assembly of paired-end reads which have overlaps with at either end.
Thus, we are able to fill in the gaps in repetitive genomic region correctly. The PS sequencing starts with short
reads from NGS platforms, using a series of paired-end libraries of stepwise decreasing insert sizes. A computational
method is introduced to transform these special paired-end reads into long and near error-free PS sequences,
which correspond in length to those with the largest insert sizes. The PS construction has 3 advantages over
untransformed reads: gap filling, error correction and heterozygote tolerance. Among the many applications of the
PS construction is de novo genome assembly, which we tested in this study. Assembly of PS reads from a
non-isogenic strain of Drosophila melanogaster yields an N50 contig of 190 kb, a 5 fold improvement over the
existing de novo assembly methods and a 3 fold advantage over the assembly of long reads from 454 sequencing.

Conclusions: Our method generated near error-free long reads from NGS paired-end sequencing. We
demonstrated that de novo assembly could benefit a lot from these Sanger-like reads. Besides, the characteristic of
the long reads could be applied to such applications as structural variations detection and metagenomics.
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Background
The next generation sequencing (NGS) technology has
scaled up DNA sequence acquisition by several orders of
magnitude [1,2]. However, the short read sequences
(SRS) from NGS, generally 100 bp or so in length, have
only limited uses without further bioinformatic process-
ing [3,4]. Sequences obtained by the conventional Sanger
sequencing methods, generally >600 bp in length, are
much more useful but the throughput is too low and the
cost is too high. Therefore, an efficient method for
increasing the read length from NGS should be valuable.
A major advance in NGS is the development of

paired-end (PE) library construction, which generates
two short reads from a single DNA fragment separated
by an insert of a known size. In principle, longer se-
quences could be produced post-hoc, if the gap between
the paired-ends could be filled correctly. Several at-
tempts have been made to extend the length of short
reads by merging the paired-end reads from small frag-
ments into longer single end reads [5-7] and proved the
advantages of longer reads in metagenomics and genome
assembly. However, due to the requirement of library in-
sert size less than twice of read length, merging of over-
lapped reads could only increase the read length by a
small fraction. The merged reads are often less than
doubling the read length. GapFiller tried to fill the gaps
but not repetitive sequences within a longer insert based
on ‘seed-and-extend’ strategy in bacteria genomes [8], but
its performance in large genomes might decrease due to
the largely existing repetitive sequences. ALLPATHS [9] is

a standalone genome assembler. It efficiently utilized
paired-end information by filling the inner gaps using
extension, but also suffered much from extensions from
one end to the other end of paired-end reads in global
graph of reads overlaps. Successive multiple libraries were
used in the long march [10] and SubAssembly [11]. They
used the paradigm of clustering and local assembly, to
avoid the repetitive sequences and computing complex in
overlap extension. In general, read pairs from the same
DNA fragment were indexed with sophisticated unique
tags so that they could be locally assembled. However,
the application of these methods to large genomes has
two major limitations. First, the experiments are com-
plex and cannot be consistently executed. For ex-
ample, SubAssembly requires the dilution of DNA to
obtain a desired number of DNA molecules, but the
amount obtained may vary by orders of magnitude.
Second, the sequencing costs are equivalent to 454
sequencing, which produces long reads directly with-
out a complicated third-parity library preparation.
The goal of this study is to fill in the gap between
paired-end reads from large DNA fragments (600 or
800 bp), and produce sequences like Sanger reads
even when the sequence of gaps is repetitive.
We have now developed a new computational ap-

proach, referred to as pseudo-Sanger (PS) sequencing
(Figure 1), which can generate long reads from paired-
end SRS. Unlike previous methods, we sequence succes-
sive multiple libraries prepared with standard protocols,
take two reads in a pair of large-insert PE reads as a tag,

Figure 1 Construction of pseudo-Sanger sequences. Genomic DNA (a) is randomly sheared into fragments (b) of a wide range of sizes.
Libraries are constructed for each band with a step size of ~100 bp and subjected to Illumina paired-end sequencing (c). Anchor reads (ARs)
come from the library with the largest fragments. The rest are supporting reads (SRs). Each AR is aligned with all SRs that are likely to fill in its
internal gap (d). Local assembly is then performed on of the AR plus the associated SRs to construct a pseudo-Sanger sequence. The resulting
pseudo-Sanger sequences cover the entire genome much like other WGS reads (e).
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cluster other PE reads that have one end overlapped
with it as local reads group, and locally assemble them
to fill in the inner gap of the large-insert PE reads. The
nested set of libraries are composed of paired-end reads
with decreasing insert sizes (e.g. 600 bp, 400 bp, 300 bp,
and 200 bp) (Additional file 1: Note S1). The paired-end
reads from the library with the largest inserts serve as
anchor reads (ARs, Figure 1c). The nested reads with
shorter inserts are referred to as supporting reads (SRs,
Figure 1c) and are local assembled to fill the gap be-
tween the two ARs to create contiguous PS sequences.
Because SRs are strongly associated with their AR, the
advantage of PS method lies in its local assembly which
is less impeded by repetitive sequences. Another advan-
tage of the PS method lies in its operational simplicity
and low cost, both only marginally higher than the
current practices in generating SRS.
The PS approach is a general computational method

that provides the insert sequence between paired-end or
mate-pair reads. Since the current end sequences are
roughly 100 bp in length, the resulting filled-in se-
quences happen to approach the length of the conven-
tional Sanger reads. As the paired short reads increase in
size, the insert between them can be increased corres-
pondingly and the pseudo-Sanger sequences can be
expected to greatly exceed the Sanger reads in length
(super-Sanger reads). Besides the increase in read
length, PS sequencing corrects most of sequencing
errors and tolerates heterozygous sites. With these
advantages, PS sequencing can have applications for
many problems requiring long and error-free DNA
sequences. For example, PS sequences are sufficiently
long for the detection of chromosomal structural vari-
ations at the base-pair resolution. Furthermore, the
analysis of metagenomic diversity by NGS is often
hampered by the paucity of species markers due to
the absence of long reads, which PS sequencing can
rectify. Finally, an obvious application and a stringent
test of PS sequencing is whole-genome de novo as-
sembly, which will be reported below.

Results
Algorithm for constructing pseudo-Sanger sequences
Our method, implemented in the new software package
anytag, utilizes a nested set of paired-end libraries with
decreasing insert sizes (Figure 1). Three steps are used
to construct a pseudo-Sanger sequence for each AR.
First, we align ARs against all SRs to obtain candidate
SRs located within the span of every AR. Second, we
perform a local assembly using these candidate SRs. In
general, the local assembly utilizes an overlap-layout-
consensus (OLC) approach but with the constraint that
the two ends of the layout come from an AR. We refer
to the resulting segment as a primitive pseudo-Sanger

sequence. Finally, we identify all SRs, both reads of
which are located inside the primitive pseudo-Sanger se-
quence, to call the consensus sequence (pseudo-Sanger
sequence).
We have also introduced a module to verify that both

reads in an AR are not repetitive sequences. If either
read of an AR is deemed to be repetitive, we do not con-
struct a pseudo-Sanger sequence from it.
To efficiently align ARs against SRs, we use block

spaced seeds to index the reads of SRs, and scan the AR
base by base. When an AR and a SR share the same seed
sequence, they are considered a potential match, and the
sequence is extended without gaps. If the extension fails
due to excessive mismatches, the Smith-Waterman algo-
rithm is used to perform a gap alignment. Otherwise,
the result of the simple extension is used as an align-
ment. If a SR read overlaps with an AR on the same
strand (forward overlap), the partners of the SR pair and
the AR pair will also have the same orientation. Because
we are only concerned with filling the gap between the
two members of an AR pair and the distance between
any SR pair will always be shorter than the distance be-
tween an AR pair, only forward overlapping SR reads
and their partners are used in our search. We, therefore,
create a localized cluster of SR pairs with the same
orientation as the first read of each AR pair, greatly re-
ducing the complexity of the following local assembly.
Our local assembly uses a modified layout step that

ensures the final contig starts from one read of AR and
ends at the other read. An overlap graph is built with
reads as nodes and overlaps as edges. We traverse the
graph between the two ends of an AR and try to find a
path that connects them. For each end of the AR, a heap
table is used to find the path to the other end with the
maximum number of overlapped bases. When two tra-
versals meet, we check whether the length of the layout
is within the insert range of the AR library.
To improve the quality of the pseudo-Sanger se-

quences, we add inner SRs (those that map within the
span of the AR rather than to the AR) and call the con-
sensus sequence again. To reduce the computing time,
we query primitive pseudo-Sanger sequence against all
SRs without using gap alignments. If one end of a SR
matches, the other end is aligned to the primitive
pseudo-Sanger sequence by the Smith-Waterman
algorithm.
We calculate the expected number of SRs aligned to a

given AR using the formula:

2� L� Oþ 1ð Þ � D� L

where L is the length of each read, O is the minimum
overlap, and D is the sequence depth. ARs with 1.5 times
this expected value are considered repetitive sequence
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and pseudo-Sanger sequences are not constructed for
them. To account for potential missing sequence in re-
gions where an AR has been labeled as repetitive se-
quence and excluded, we iteratively use the next largest
insert size library’s paired-end reads as ARs to construct
pseudo-Sanger sequences. Additionally, reads that are
not used in the local assembly are kept for possible use
in closing gaps in the subsequent assembly.

Construction of pseudo-Sanger sequences from
simulated data
The sequenced genome of Drosophila melanogaster and
Human chromosome 1 were used in our simulation. For
each dataset, we simulated 60X genomic coverage with
paired-end short reads with a sequencing error of 0.005
and heterozygosity of 0.001. The simulated datasets are
composed of four libraries (15× each for the 200 bp,
300 bp, 400 bp and 600 bp libraries).
We used our software anytag to convert the simulated

paired-end short reads into pseudo-Sanger sequences. In
the simulation of D. melanogaster, anytag generated 22X
long sequences, of which the mean length was 614.68 bp.
The error rate was reduced from 0.5% to 0.0084%, and
was uniformly distributed across the pseudo-Sanger se-
quences (Additional file 1: Figure S1). In the simulation of
Human chromosome 1, anytag generated 19X long se-
quences, of which the mean length was 610.13 bp. The
error rate was reduced from 0.5% to 0.021%, and was also
uniformly distributed.

Comparison of genome assemblies from simulated data
Once the pseudo-Sanger sequences were constructed, the
Newbler program [12] and minimus2 from the AMOS
package [13] were used to assemble them into contigs. To

compare the effectiveness and accuracy of our method
against other current de novo short read algorithms, we
chose four general de novo assemblers, velvet, SOAP-
denovo, ABySS andMSR-CA to directly assemble the same
simulated paired-end reads. Each of the four programs
can output scaffolds for paired-end short reads, and we
treated the continuous sequences (those with no arbitrary
bases) in these scaffolds as contigs. To explore the best
assemblies for those three programs, we ran them with
different parameters and selected the assembly with the
largest N50 contig (Additional file 1: Tables S1-S2). The
evaluation program from GAGE [14] was used to assess
the mis-assemblies.
Overall, anytag performed substantially better than the

other programs (Table 1). Anytag always ranked best in
N50 contig size (197 k and 106 k), N90 contig size (43 k
and 27 k) and mean contig size (66 k and 49 k), for Dros-
ophila and human, respectively. For human chromosome
1, which has a larger genome size and is more repetitive,
the contig sizes from anytag were about three times
greater than the best of the other assemblies. MSR-CA
performed better than the other assemblers (excluding
anytag). Both anytag and MSR-CA convert short reads
into long sequences, and utilize overlap-layout-consensus
(OLC) assemblers to finish the assembly, whereas the
other assemblers assemble the short reads using de Bruijn
graphs. The OLC approach appears to be superior to the
de Bruijn graph approach in creating longer contigs.
We evaluated the large mis-assemblies (inversion,

relocation and translocation) of all assemblies using
evaluator from GAGE. Anytag introduced a bit more
large mis-assemblies than short reads assemblers based
on De Bruijn graph. MSR-CA got worst performance in
evaluation. Both those two assemblers lies on third-party

Table 1 Statistics of contigs assembled from simulated data

Dataset a Program Total length (bp) Mean (bp) N50 (bp) N90 (bp) Error b

D. melanogaster (simulation) anytag c 113,166,478 66,141 197,693 43,974 109

ABySS d 116,966,148 5,795 177,493 33,254 89

MSR-CA 116,924,670 48,396 163,131 34,562 346

soap d 113,971,825 16,208 56,061 13,361 90

velvet d 114,719,611 16,573 104,879 23,729 330

Human Chr1 (simulation) anytag 216,049,114 49,360 106,803 27,723 189

ABySS 221,070,068 1,578 9,362 1,332 122

MSR-CA 218,489,997 16,398 37,472 9,204 1,785

soap 221,093,414 4,002 21,237 5,295 46

velvet Out of memory e

aAll programs use the same simulated raw data. Our dataset was generated into four libraries, with insert sizes at 200 bp, 300 bp, 400 bp and 600 bp. Sequencing
error was simulated at 0.005 and randomly distributed on the reads. The diploid heterozygosity is set at 0.001.
bError = Inversion + Relocation + Translocation. The evaluation was completed by the evaluator from GAGE.
canytag constructed pseudo-Sanger sequences, Newbler and minimus2 were used to assemble pseudo-Sanger sequences.
dkmer size was iteratively set to 21, 25, 31, 41, 51 for ABySS, SOAPdenovo and velvet. The assembly with the largest N50 contig was showed.
eOur memory limit is 450 G bytes.
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OLC assemblers. However, it is expected to validate and
revise the contigs by paired-end reads mapping in gen-
ome assembly.

Comparison of the pseudo-Sanger approach with other
methods in assembling the drosophila genome from
experimental data
We applied the pseudo-Sanger approach to the genome
of the w1118 strain of Drosophila melanogaster. Unlike
the reference strain ISO-1 [15], this line is not isogenic
and has an estimated heterozygosity of 0.328% per site
in our sequencing data. This level of heterozygosity is
less than half of the population genetic diversity of the
species [16,17]. As shown in Figure 1, the genomic DNA
was randomly sheared into a series of decreasing frag-
ment sizes and was used to create a nested set of paired-
end libraries with insert sizes of 200 bp, 300 bp, 400 bp
and 600 bp. All libraries were subjected to Illumina
paired-end sequencing.
In total, 165.4 million 100 bp paired-end short reads

were produced. Running anytag with 8 threads for
37.5 hours, we were able to construct 15.1 million (sum
up to 8.8 G bases) pseudo-Sanger sequences with an aver-
age length of 581.41 bp. These long sequences cover the
D. melanogaster genome at a depth of 55×. The assembly
of pseudo-Sanger sequences yielded 2,307 contigs greater
than 100 bp in length, and the N50 contig length was
190,040 bp.
We also investigated the best assembler using the w1118

dataset. In almost every category in Table 2, the pseudo-
Sanger assembly performed substantially better than other
methods. The pseudo-Sanger method produced similarly
sized contigs on both the simulated and real datasets, but
the performances of other assemblers often dropped
sharply on the real data. In addition to comparing methods
based on the same SRS platform, we also compared
methods for a different data platform. For that purpose,
we downloaded three 454 datasets from the Sequence
Read Archive (SRA, SRX015853 ~3.4 G bases, SRX01-
5856 ~3.0 G bases and SRX015861 ~3.0 G bases) of the
Drosophila Genetic Reference Panel (DGRP) (http://dgrp.

gnets.ncsu.edu). All 3 datasets are based on isogenic lines.
The whole genome coverage is 19-21X, which is quite
enough for isogenic genomes. Although the 454 platform
generates long reads (> 400 bp) directly, the PS method
compensates for its extra step by its error-correction and
rare homo-polymer errors. It is also worth noting that 454
data costs much more to generate.
In Table 2, 454 sequences were assembled using

Newbler. The longest N50 contig length from the 454
data is 75,801 bp, much shorter than that from the
pseudo-Sanger method. The mean contig length and
N90 contig length are also both shorter by the 454 data.
20× PS reads were randomly selected and assembled to
generate an equal coverage of 454 dataset. The reduced
dataset produced N50 contig size of 104,623 bp.

Evaluating the pseudo-Sanger approach on a large
genome
Assembly of large genomes (such as the human genome)
poses additional challenges. First, an assembler needs to
handle billions of short reads in memory. Second, the in-
creased computing time can become an important issue.
Repetitive sequences also become a bigger concern in
larger genomes. For example, ABySS performed surpris-
ingly worse with our simulated human chromosome 1
dataset than with the Drosophila one.
The Naked Mole Rat (NMR) genome is about 2.74

Gb, and was firstly assembled using SOAPdenovo [18].
The NMR assembly project generated nested libraries
with insert sizes of 170 bp, 350 bp, and 500 bp with
some long inserts of up to 20 kb. Although such paired-
end libraries are not ideal for the pseudo-Sanger method,
they may still provide a crude glimpse of its effectiveness
in assembling large genomes. We downloaded 1,199
mil-lion 100 bp paired-end reads from three libraries
(170 bp, 350 bp and 500 bp). The raw Illumina reads
cover the NMR genome with a depth of 12.0X, 14.9 ×,
and 16.9×, respectively. Our program, anytag, ran for
62 hours on 8 cores and constructed 122.3 million
pseudo-Sanger sequences with a mean length of 442 bp.
Using Newbler and minimus2-blat [13] to assemble the

Table 2 Statistics of contigs assembled from the experiment data from D. melanogaster

Dataset Program Total length Mean N50 N90

Illumina paired-end short reads from the
nonisogenic w1118 line

anytag 127,234,490 55,151 190,040 31,389

ABySS 140,898,203 2,848 35,179 3,958

MSR-CA 150,524,058 4,421 17,210 2,055

soap 132,954,582 1,270 4,705 536

velvet Out of memory

454 long reads from 3 isogenic lines a Newbler 123,157,508 ~ 128,620,384 5,197 ~ 6,896 33,241 ~ 75,801 2,367 ~ 5,621

20X PS reads b anytag 121,492,910 29,698 104,623 16,587
aNCBI SRA accessions: SRX015853, SRX015856 and SRX015861.
b20X PS reads were randomly selected to fit the coverage of 454 long reads.
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long sequences, we obtained the initial contigs with a
mean of 12.3 kb, an N50 of 23.3 kb, and an N90 of
6.2 kb. We also tried other assemblers on the same
dataset, but only SOAPdenovo finish the assembly.
ABySS ran out of 450G memory. MSR-CA ran out of
time (two weeks’ limit). SOAPdenovo obtained the best
assembly under k-mer size of 31, its N50 contig size was
14,441 bp, N90 contig size was 3,016 bp. Please note
that we did not perform either scaffolding with the long
jump libraries or filling gaps (which always increases the
contig length largely), but our contigs are even better
than the published NMR assembly [18] with long jump
libraries (N50 = 19.3 k, N90 = 4.7 k).

Discussion
We presented the Pseudo-Sanger sequencing (PS) method
to produce long and near error-free sequences with high
throughput by filling the gaps between the paired-end
short reads produced by NGS platforms. Compare to
other gap-filling method, the PS method presented advan-
tages on the aspects of read accuracy and repeat tolerance.
One obvious advantage of the PS method is that the

error rate of the produced long sequences is extremely
low. By local assembly of highly redundant reads, almost
all the errors in the original short reads were corrected
with very few remained in constructed long reads, and
the allele of heterozygote with relatively higher fre-
quency is kept as reference allele. In our simulation, the
assembly of less repetitive genome was improved signifi-
cantly due to error correction and heterozygote merge.
Another advantage of pseudo-Sanger method is that

the structure of repetitive elements shorter than the in-
sert size of anchor reads (~600 bp in the case) can be
solved spontaneously. We used both end of anchor reads
as a tag, supporting reads have one end match the tag
are clustered to do local assembly. This strategy is like
SubAssembly [11], which uses one of paired-end reads
as tag, and local assembly of the other ends to build a
contig of long DNA fragment. Nevertheless, our two
short reads tag has more sensitivity and specificity over
SubAssembly’s 17-base single end tag. Even when our
two paired reads tag are repetitive, we are able to cor-
rectly recover full-length sequences theoretically by care-
fully examining the multiple paths connecting two ends
of AR. However, when both ends of AR lie in highly
repetitive regions, there will be too many SRs involved
in the local assembly process, which makes local assem-
bly extremely slow and it is difficult to distinguish the
correct PS sequences from thousands of possible paths.
In practice, we calculate the repetitiveness of ARs and
refuse to do local assembly on highly repetitive regions.
In comparison with other methods of long read construc-

tion [5-8], the PS method takes advantages of the length
space of the genomic fragments and generates long reads

about five times longer than the original short reads, which
outperforms the existing methods. For example, SHERA
[5], FLASH [6] and COPE [7] could at most double the
length of single short reads by identifying the overlapped
part of paired reads sequenced from short DNA fragments.
Although GapFiller produces long reads up to 3.5 kb in size
[8], it can hardly resolve repeats, which largely restricts its
application in large eukaryotic genomes.
Continuous insert sizes libraries are upmost ideal for

pseudo-sanger method. However, the cost of library con-
struction should be in consideration. For small genomes,
at least two libraries must be provided (Additional file 1:
Note S1).
The potential applications of the PS method are exten-

sive. Because of the possibility of routine usage, most
problems that require long and error-free sequences in
high throughput can benefit from this method. We chose
de novo genome assembly for a demonstration. Although
next generation sequencing (NGS) techniques have been
used successfully to assemble large genomes [19], the dir-
ect de novo assembly of SRS often leaves many gaps in the
scaffolds and assemblies of questionable quality [3]. By
first converting short reads into pseudo-Sanger sequences,
we show that whole genome assembly using NGS sequen-
cing platforms can be done efficiently. The contigs gener-
ated from the PS sequences are much longer than from
SRS directly (Table 2). It can be reasoned that longer
contigs would generate longer scaffolds if given long jump
reads, and thus contribute to better genome assembly.
Interestingly, our results were at least as good, if not
slightly better, than assemblies based on 454 sequencing
but come at a fraction of the cost.
The pseudo-Sanger method is a general approach that

fills in the sequence between paired-end or mated-pair
reads. Because the expected number of SRs for one AR
is linearly correlated with read length times sequencing
depth, PS sequences longer than the Sanger-sequence
length have not been practical to obtain. Now that
paired reads are becoming much longer, the distance be-
tween the pairs can be increased correspondingly. The
resulting pseudo-Sanger (or super-Sanger) sequences of
a few kb with errors corrected may greatly expand the
general utility of NGS sequencing.

Conclusions
By paired-end sequencing of a series of stepwise insert size
libraries, we are able to recover the full length sequences of
the largest DNA fragments using computational method.
Smaller DNA fragments are aligned to the largest DNA
fragments by one of their two-ends. Thus, the other ends
can be used to fill the un-sequenced regions in the largest
DNA fragments. Our local assembly enable to remove par-
tial matched DNA fragments (small repeats), correct se-
quencing errors, and tolerate heterozygote. By recovering
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full length sequences of paired-end sequencing, de novo as-
sembly can be improved significantly. Besides, PS sequences
can be applied for many other problems requiring long
DNA sequences, such as the detection of structural varia-
tions and the analysis of metagenomics diversity.

Methods
Evaluation of pseudo-Sanger sequencing
We performed pseudo-Sanger sequencing on both simu-
lated and experimental data. In the simulations, a series
of libraries with stepwise decreasing insert size were
generated using a modified version of wgsim (https://
github.com/lh3/wgsim). We then employed a two-step
process: 1) assembly of pseudo-Sanger sequences using
our software anytag and 2) whole genome assembly into
contigs using a long reads assembler. As a proof of con-
cept, we also sequenced the Drosophila melanogaster
line w1118. Comparisons of contigs were carried out be-
tween the pseudo-Sanger method and other software
and sequencing platforms. For short read assembly, we
tested against velvet [20], ABySS [21], MSR-CA (ftp://ftp.
genome.umd.edu/pub/MSR-CA/) and SOAPdenovo [22]
using the same dataset. For long read assembly, we used
publicly available 454 reads in our comparisons. Besides
basic contig statistics (total length, mean, N50, and
N90), we also evaluated the accuracy of the contigs. We
also evaluated the performance of pseudo-Sanger se-
quencing on a large genome (2.74 Gb), the Naked Mole
Rat genome. A detailed evaluation can be found in the
supplementary material (Additional file 1).

Simulation of reads
wgsim from Samtools [23] was modified to simulate data
with a wide-range of insert sizes and various levels of
heterozygosity (http://sourceforge.net/projects/anytag/
files/). The simulated reads contained random sequen-
cing error uniformly distributed across the read. We did
not simulate genomic coverage bias or chimeric reads.

Pseudo-Sanger assembly
A series of paired-end read libraries with stepwise de-
creasing insert sizes were indexed using blocked spaced
seeds. The paired reads from the largest insert size li-
brary (ARs) were then used to query the spaced seed
index to find all possible overlapping SRs from the
smaller insert size libraries. For each AR, a localized
group of SRs were found. Next, a local assembly was
performed to build a consensus sequence for each AR.

Long reads assembly
Pseudo-Sanger sequences and 454 reads were assembled
using Newbler. The general parameters used in this study
were “-large –m –nobig –noace –cou 16”. “-het” was
added in assembly of both the simulated data and the

short read of the non-isogentic line w1118. If pseudo-
Sanger sequences cover the genome at greater than 20X
coverage, we shuffle the pseudo-Sanger sequences into
multiple groups (each about 8X). Newbler was then used
to assemble the small parts into contig sets. Minimus2
was used to get the consensus contigs. When the genome
size is big, such as with human chromosome1 or Naked
Mole Rat, minimus2-blat was used instead of minimus2.

Short sequence reads assembly
MSR-CA was executed with default parameters except
the JF_SIZE value was set to be large enough for jelly-
fish. For ABySS, velvet and SOAPdenovo, the k-mer size
was iteratively selected from 21, 25, 31, 41, and 51. The
special parameters in velvet were “-exp_cov 60 –
cov_cutoff auto”. The special parameters in SOAPdenovo
were “-M 3 -d 2 -D 2 -R -F”. We used substring scaffolds
without any N (the arbitrary base) as contigs.

Library construction
Here we outline the experimental procedures. Genomic
DNA was extracted using Phenol-Chloroform from
freshly frozen Drosophila melanogaster of the line w1118

and subsequently sonicated to create fragments ranging
from 200–600 bp in size. Multiple size selections were
performed using electrophoresis, and bands correspond-
ing to sizes of 200, 300, 400, and 600 bp were excised
and purified from a single continuous DNA smear. Each
group of size-selected fragments was then blunted, A-
tailed, and ligated to Illumina Paired-End adaptors. A
second round of size selection was performed on each
group of adaptor-ligated libraries, and target fragments
with the added adaptors were chosen. 9–12 cycles of
PCR amplification were then performed with standard
Illumina primers on each group of libraries. After PCR
amplification, a third round of size selection was con-
ducted to extract amplified target segments and remove
redundant fragments such as PCR primers. After PCR
amplification, each sub-library was then quantified using
Qubit qPCR and subsequently size-validated using
Agilent Bioanalyzer 2100.

Illumina sequencing
Each of the libraries in the series of insert sizes was
treated as a standard library, and their respective sizes
were used for calculating the molar mass needed for
cluster generation. 100 × 100 bp paired-end reads were
generated using an Illumina HiSeq2000 instrument
according to the manufacturer’s standard specifications.

Sequencing error estimation
The alignment program BWA [24] was used to directly
map the short reads while BWA-SW [25] was used to
map the longer pseudo-Sanger and Sanger reads back to
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the reference genome dm3, using default parameters.
SAM files from bwa or bwasw were then processed by
SAMtools [23] for further analysis.

Estimation of w1118’s heterozygosity
SAMtools was used to pileup sequences along the re-
ference genome dm3. The variants calling parameter
from the short reads alignment was set as “samtools
mpileup –C50 –E –u” to generate a BCF file. Then
“vcfutils.pl varFilter –D200” was run to generate a VCF
file of final variants. A SNP dataset called from the short
reads was regarded as w1118’s germline polymorphisms.
The heterozygosity of the w1118 line was also estimated
using this information.

Evaluation of contigs
Contigs were evaluated by evaluator from GAGE [14].
Large mis-assemblies including Inversions, relocations
and translocations were summed as assembly errors.

Availability of supporting data
The raw Illumina sequence reads used in this study have
been submitted to the NCBI Short Reads Archive (http://
www.ncbi.nlm.nih.gov/sra) under accession number SRA
101397. The raw Illumina sequence reads, pseudo-Sanger
sequences, 454 reads, and genome assemblies are also
freely available at a public FTP server ftp://ftp.big.ac.cn/
pub/pseudo-sanger-demo/. Software implemented for this
approach is available at http://sourceforge.net/projects/
anytag/files/.

Additional file

Additional file 1: Note S1. How to prepare libraries for Pseudo-Sanger.
Note S2. Assembling pseudo-sanger sequences by Newbler and
minimus2. Table S1. Statistics on the assembly of Drosophila
melanogaster genome using simulated reads. Table S2. Statistics on the
assembly of human chromosome 1 using simulated reads. Table S3.
Statistics on the assembly of D. melanogaster w1118 using experimental
data. Table S4. Statistics on the assembly of Naked Mole Rat using read
data. Figure S1. Base error rate distribution along the positions on short
and pseudo-Sanger reads. Figure S2. Electrophoresis image for fragment
lengths. Figure S3. Library insert sizes inferred from mapping results.
Figure S4. Tests of various library inserts sequenced in a single lane.
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