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Abstract

Retroviruses are unique among virus families in having dimeric genomes. The RNA sequences and
structures that link the two RNA molecules vary, and these differences provide clues as to the role
of this feature in the viral lifecycles. This review draws upon examples from different retroviral
families. Differences and similarities in both secondary and tertiary structure are discussed. The
implication of varying roles for the dimer linkage in related viruses is considered.

Introduction

With relatively few genes compared to many other virus
families, the retroviridae have evolved over the millenia to
maximise the functions of their RNA genome. The
genome serves as a versatile template from which various
proteins can be translated by the use of splicing and by
translational flexibility wusing scanning, IRES and
frameshifting. It is also an RNA molecule capable of inter-
acting with itself, and cellular and viral proteins. By these
means, from an RNA around 7 - 12 kilobases long, the
retroviridae have evolved to infect a wide range of species
and cell types.

A unique characteristic of retroviral genomes is the fact
that they are dimeric. The reasons for this are as yet
unclear, and are discussed below. In brief, it is thought
that the diploid genome allows template switching during
reverse transcription and may be linked to recombination
in some viruses. It may also play a role in translation of
proteins and packaging of the RNA.

Much of the work on the nature, structure(s), and role of
the dimer linkage has been based on Human Immunode-

ficiency Virus Type 1, and this has been recently reviewed
([1] and Russell et al this issue [2]). Whether or not HIV-1
is a representative model for other retroviruses is open to
debate. However, there have been important contribu-
tions from investigators studying other retroviruses. They
have shown both similarities with the HIV-1 motifs, and
also, importantly, differences. The fact that distinct RNA
structures are used by different retroviruses to perform the
same purpose, namely to link their two RNA molecules,
tells us something very important. For these viruses, what-
ever organism or cell they are infecting it has been advan-
tageous to evolve to do so with a double complement of
genome in their virion particles. However, diploidy may
be used to benefit the virus in a number of ways and for
different viruses the priorities may vary. This review will
attempt to draw on several examples from viruses other
than HIV-1, whilst of necessity drawing comparisons with
the latter.

The dimeric genome

Retroviruses were discovered at the beginning of the 20th
century [3,4]. The unique nature of their genome was first
discovered in the 1960s [5,6] but the actual dimeric
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genomes were elucidated, and visualised by electron
microscopy, a decade later [7,8]. Bender and colleagues
extracted the RNA from several different retroviruses and
examined it by electron microscopy under denaturing
conditions. The RNA appeared to be joined at a discrete
point, termed the dimer linkage site (DLS). Using bro-
modU to label the RNA at one end, they were able to show
that the molecules were joined at their 5' ends [9,10].
Under less stringent conditions the genomes can be dem-
onstrated to interact along their lengths [11] and it is this
that probably contributes to confusing reports on the
exact location of the primary DLS in different viruses.

RNA dimerisation in the primate lentiviruses, predomi-
nantly HIV-1, has subsequently been extensively studied
[1], yet little has been published on this process in the
non-primate lentiviruses. Early studies of rapid harvest
virions of the prototype lentivirus, Maedi Visna virus
(MVV), identified viral RNA with a Svedberg coefficient of
35S immediately post-budding, which increased with
time to 708S. It is possible that weakly interacting dimers
formed during RNA encapsidation may have been dena-
tured during purification, however these observations are
supportive of a progression from monomeric to dimeric
RNA associated with viral maturation [12].

Since 1990 [13] it has been possible to study in vitro the
RNA elements involved in the dimer linkage first observed
by EM. It was shown that RNA transcripts comprising
sequences from the 5' end of the viral genome would
migrate as two species of RNA when subjected to electro-
phoresis. By this means many subsequent studies were
able to focus on isolating the elements and structures
involved in dimerisation, and to investigate the role of the
viral structural proteins in this process.

Multiple functions for the dimeric genome?

As yet investigators have not been able to agree on a dis-
tinct role for the dimer linkage. The fact that it is con-
served amongst the retroviridae does not guarantee that
its role will be the same in all retroviral families. The fol-
lowing section of the review will endeavour to explore
some of the proposed roles, and examine the evidence
from different retroviruses.

The dimeric linkage and recombination

Several studies have demonstrated that, in HIV-1 and
MLV, the dimer linkage serves as a "hotspot" for recombi-
nation [14,15]. It is an obvious hypothesis, that in viruses
which are known for their hypervariability, there exists the
capacity to jump from one RNA molecule to another.
Researchers have compared dimerising to non-dimerising
controls, and the frequency and distribution of template
switching. Templates containing the dimerisation site had
a 4-fold higher transfer efficiency than the non-dimerising
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control [14]. This result implies that recombination
would occur preferentially at the site where the RNA mol-
ecules were in close proximity. In the case of HIV-1, whilst
it has been shown that template switching is facilitated by
template homology [16], it has also been demonstrated
that recombination can occur between viruses of different
subtypes which might have different dimer initiation
sequences (DIS) [17]. Bearing in mind the fact that the
genome is linked at other sites besides the DIS [11], it
seems probable that other hot spots for recombination
exist.

Interestingly, it has been suggested that the nucleocapsid
protein (NC) promotes or stimulates the strand transfer
reaction. As will be discussed below, NC and the precursor
Gag protein both bind the RNA close to the DIS in HIV-1.
In addition, there is evidence that the presence of a dimer
in the virus particle facilitates the first strand-transfer reac-
tion of reverse transcription [18].

Work in our laboratory has shown that the Maedi Visna
Virus DIS is centred on a helix terminating in a GACG
tetraloop between positions 281 and 300 in the viral
genome; a region which is highly conserved between the
ovine and caprine lentiviruses (Monie, personal commu-
nication, see Figure 3d). Intriguingly, this structure shows
homology with structural motifs in the Alpha- and Gam-
maretroviruses, but not with DIS regions identified in the
primate lentiviruses. Within the Alpha- and Gammaretrovi-
ruses GACG tetraloops are involved in the packaging of
viral RNA [19,20] and whilst not a component of the core
M-MLV DIS motif [21], they may contribute to the process
of dimerisation and the stability of the resultant dimer
[22]. Importantly, it is possible to form heterodimers
between transcripts from these viruses containing the
GACG tetraloops and between MVV and M-MLV (per-
sonal observations). This raises parallels with recent stud-
ies of the dimerisation of murine leukaemia viruses and
Harvey Sarcoma virus in which GACG tetraloops were
found to regulate inter-species RNA heterodimerisation
[23], whilst other linkage elements were postulated to
mediate homodimerisation.

Recombination, and the genomic variability it confers
cannot be the sole function of the dimeric genome, since
retroviruses with highly conserved genomes and little
sequence variability such as HTLV-1 [24] are also dimeric.

Translation and packaging?

Another possible role is that of the dimer linkage acting as
a switch, its presence permitting or restricting the packag-
ing of RNA. In HIV-2 two regions were originally sug-
gested as dimer initiation sites, one analogous to the
palindromic sequence identified as the principal DIS in
HIV-1 (termed SL1), one close to the PBS [25-27].
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Structure of the HIV-2 leader region. la. Secondary structure model of the HIV-2 leader region based on mfold predictions.
Indicated are the putative dimer linkage sites (in red). Also highlighted is the DM region defined as being critical for packaging
[28], in blue). Ib. The effect of the DM deletion on the SLI/DIS stem loop. The stem is truncated and the internal bulge altered

in approximately half the predicted structures.

Recently, a region upstream of SL1 (also called the DIS,
see Figure 1a) was identified as being critical for packaging
[28]. An extensive deletion analysis of the 5' leader of
HIV-2 was carried out, and removal of nucleotides 380-
404 (HIVpop), termed the DM region, rendered the virus
severely packaging deficient. The mutation had been

designed based on the mfold [29,30] prediction, that
removal of these sequences would disrupt the SL1 struc-
ture and hence dimerisation (Figure 1b). In vitro studies
using RNA transcripts comprising the leader region with
and without the DM deletion, reveal that it does, indeed,
render the viral RNA monomeric (personal observations).
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Figure 2

Structure of the key elements involved in HIV-1 RNA dimerisation. 2a. Secondary structure model of the packaging signal of
HIV-1,,; ([64] [65]), containing the principal DLS. 2b Proposed sequence of the RNA dimerisation process in HIV-I .. The ini-
tial kissing hairpin interaction (including loop B) followed by formation of the extended duplex ([1]). 2c. Loop B, one of the
critical elements in the dimer interaction. The flexibility of this internal loop allows the duplex to form ([44]).
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Dimer linkages of the retroviridae (excluding the lentiviruses). 3a. Loose and tight dimers ([51]). 3b. Imperfect repeats ([66]).
3c. Palindromes ([38]). 3d. GACG loops ([23]). 3e. CAG tri-loops (see Figure 4).
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g

Proposed tertiary structure of the HTLV-1 dimer linkage. 4a Stereoview of 3D molecular modelling of a potential structure of
the HTLV-1 DIS from nucleotide A730 to A744 using JUMNA ([61]). 4b. Close up of the terminal loop. Bases are coloured as
follows: adenine, grey; cytosine, yellow; guanine, orange; and uracil, cyan.

Using antisense oligonucleotides, another group have
demonstrated that this region may, in fact, play a role in
the dimerisation process itself [31]. By free energy mini-
misation this region is predicted to be unstructured, so it
is not clear how the RNAs would interact with one
another. In addition, whilst the SL1/DIS sequence is con-
served amongst HIV-2 and SIV sequences in the database,
that within the DM region is less so, and the substitutions
which exist would affect the auto-complementarity of the
sequence.

One of the key differences between HIV-1 and HIV-2 rep-
lication is their modes of packaging [32]. Whilst the Gag
protein of the former captures the genomic RNA in trans,
the latter uses predominantly a cis mechanism. One might
postulate therefore, that, if retroviruses must package a
dimeric genome, it is critical in the case of HIV-2 that the
genome is dimeric before interacting with the Gag poly-
protein. Hence, the effect of mutations in the DM region
may be to render the RNA monomeric and thus to
severely impair packaging.
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It is attractive to speculate that the reason packaging itself
is not affected by DIS mutations to the same degree in
HIV-1 [33] is this difference in protein:RNA interaction. If
the RNAs can interact at points other than the principal
DIS over time, then perhaps the trans mechanism is less
dependent on a high affinity dimer linkage?

Particle maturation and viral infectivity

A recurring observation amongst investigators is the fact
that mutation or deletion of dimer linkage sites causes
viral infectivity to be decreased [33]. One explanation for
this might be that a dimeric genome is a prerequisite for
maturation of virus particles. Certainly, immature HIV-1
particles are non-infectious, and viruses with their DLS
mutated have been demonstrated to form only immature
particles [34].

The DLS of Human T Cell Lymphotropic Virus Type 1
(HTLV-1) was identified as a 14-nucleotide sequence just
downstream of the splice donor [35]. Removal of this
region from the leader sequence rendered the RNA mon-
omeric in vitro [24,36]. When this deletion was introduced
into the wildtype genome sequence, the only viral replica-
tion defect that was observed, following transfection and
subsequent infection, was that of impaired infectivity
[37]. Likewise, a similar effect was observed when the DLS
of Human Foamy Virus was mutated [38].

Parent et al showed that if the RNA of Rous Sarcoma Virus
(RSV) was engineered so that it was monomeric, the virus
was non-infectious [39]. Interestingly, this group sug-
gested that it might be a difference in localisation of struc-
tural proteins and RNA affecting subsequent dimer
formation and viral infectivity [40]. This is an area that
has not been explored to any extent. Also working with
RSV, Bieth and colleagues found that, in an in vitro system,
dimer formation appeared to inhibit synthesis of the Gag
polyprotein precursor [41].

Structure of the dimer linkage

Undoubtedly the best defined dimerisation structure is
that involved in the dimer linkage of HIV-1. The discovery
of the sequences involved, the subsequent description of
the RNA:RNA interaction, and the elucidation of the terti-
ary interaction are described elsewhere [1]. The initial
interaction between the two RNAs appears to be a kissing
loop interaction (similar to that seen in the regulation of
plasmid replication, [42]) followed by annealing of the
two RNAs into an extended duplex (Figure 2b). The
sequences contained within the palindrome are remarka-
bly conserved. Using an in vitro selection system it has
been possible to demonstrate that the DIS has evolved to
satisfy both constraints for optimal dimerisation affinity,
and the potential to homodimerise [43]. The dimer link-
age is found at the terminal end of Stem Loop 1 (SL1)
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within the packaging signal region of HIV-1 (Figure 2a).
The tertiary structure of the whole SL1 RNA has been
determined [44,45] and the structures have helped to
determine exactly how the RNAs interact with one
another. A number of elements appear to be critical for
the dimer interaction: flanking purines and central nucle-
otides in the palindromic sequence [46] and loop B [47-
49]. The tertiary structure of the latter has been described
(Figure 2c¢), and there is some debate as to how flexible
this internal loop might be. However, work by Borer et al,
examining the interaction of NC with elements of the
packaging signal, of which loop B is one, showed that, in
fact, both structures might exist, the flexible one allowing
NC binding at high affinity [50]. There are similar link-
ages in other retroviruses. The Avian Leukosis Viruses also
interact firstly in a kissing hairpin manner, and then form
an extended duplex (Figure 3a, [51]).

Palindromes remain a theme throughout many of the
viruses investigated to-date. As already mentioned, the
DIS of HIV-2 is less well defined than that of HIV-1.
Whilst there is a palindromic sequence at the top of a stem
loop structure that closely resembles the HIV-1 DIS (see
Figure 1), there are other regions which have also been
demonstrated to be important for dimer formation
[25,26]. Other viruses with palindromic sequences as
their DLS include HFV (Figure 3c) and MoMLV. In the
case of MLV there are other sequences and structures
which may play a role in dimer formation, including the
GACG tetraloops mentioned previously [52]. The tertiary
structure of this stem loop is the only proposed dimer
linkage element yet to be determined in a retrovirus other
than HIV-1 (|53]). RSV and VL30, also have imperfect
repeat sequences in their dimer linkages [54,55] (Figure
3b).

Recent work by Monie and colleagues [36] describes the
potential tertiary structure of the HTLV-1 dimer linkage,
capped by a novel CAG tri-loop (Figure 3e and Figure 4).
This tri-loop is formed by an unusual C:synG base pair
closing the loop. Other similar loops have been described,
in the domain IIId terminal loop of the hepatitis C virus
internal ribosomal entry site (IRES) [56] and in stem
loops required for initiation of transcription within the
Bromoviridae [57]. Although sequence heterogeneity
between HTLV-1 isolates is rare, distinct mutations identi-
fying individual strains can be identified. Of 101 HTLV-1
sequences identified from the EMBL database, 90 showed
sequence homology with HTLV-1,, the strain used in the
study. The other 11 sequences comprised three different
variants. Eight contained a deletion of C736 (see Figure
4), two possessed the substitution A737G, and one pos-
sessed the substitution C733U. The substitution mutants
have minimal impact on regional secondary structure,
while the deletion may induce formation of a CAGG

Page 7 of 10

(page number not for citation purposes)



Retrovirology 2004, 1:22

tetraloop. Interestingly, the A737G mutation possesses
homology with 150 deposited HTLV-II sequences, sug-
gesting a conservation of the DIS between HTLV-I and -II.

Conclusions

The retroviral RNA genome structure does not stay static
during the course of transcription, translation and ulti-
mately packaging. Various investigators have suggested
that this constantly changing RNA structure plays an inti-
mate role in the viral replication [58-61]. It seems possible
that linkage of the two RNA molecules constituting the
genome is integral to the changes in RNA structure. As
described in the article above, the dimer also acts as a
mechanism for promoting recombination; may be a sig-
nal for packaging to occur; may be an inhibitory signal;
may direct processes to occur in specific cellular compart-
ments; and lastly, may be capable of interacting with cel-
lular proteins.

In vivo data has revealed just how important an intact dim-
mer linkage may be to a retrovirus. For instance, there are
intriguing differences in the effect of dimer mutations on
viral infectivity depending on the cell type being infected
[62]. What the significance of this might be in the context
of a viral infection is, as yet, unclear. The importance of
the dimer linkage is perhaps most clearly exemplified by
the observation that a patient infected with a viral isolate
having a defective DLS, had a low viral load. The subse-
quent switch in the predominant virus to that with a com-
petent DLS coincided with a rise in viral load [63]. One
can speculate that, at least in the case of HIV-1, only those
viruses with a whole, optimised dimer linkage are capable
of efficient infectivity. For the purposes of examining the
role of retroviral RNA dimer sequences in the context of
animal models, the non-human retroviruses, including
the non-primate lentiviruses will be of great importance.

To sum up, retroviral dimeric genomes are linked by a
variety of RNA structures, including kissing hairpins,
GACG tetraloops and unusual CAG-tri loops. The differ-
ences in these interactions, and when or where they occur,
may reflect different demands upon this unique feature,
and highlight the elasticity of the RNA genome.
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