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Abstract

A combined ligand and structure-based drug design approach provides a synergistic advantage over either methods
performed individually. Present work bestows a good assembly of ligand and structure-based pharmacophore generation
concept. Ligand-oriented study was accomplished by employing the HypoGen module of Catalyst in which we have
translated the experimental findings into 3-D pharmacophore models by identifying key features (four point
pharmacophore) necessary for interaction of the inhibitors with the active site of HIV-1 protease enzyme using a training
set of 33 compounds belonging to the cyclic cyanoguanidines and cyclic urea derivatives. The most predictive
pharmacophore model (hypothesis 1), consisting of four features, namely, two hydrogen bond acceptors and two
hydrophobic, showed a correlation (r) of 0.90 and a root mean square of 0.71 and cost difference of 56.59 bits between null
cost and fixed cost. The model was validated using CatScramble technique, internal and external test set prediction. In the
second phase of our study, a structure-based five feature pharmacophore hypothesis was generated which signifies the
importance of hydrogen bond donor, hydrogen bond acceptors and hydrophobic interaction between the HIV-1 protease
enzyme and its inhibitors. This work has taken a significant step towards the full integration of ligand and structure-based
drug design methodologies as pharmacophoric features retrieved from structure-based strategy complemented the
features from ligand-based study hence proving the accuracy of the developed models. The ligand-based pharmacophore
model was used in virtual screening of Maybridge and NCI compound database resulting in the identification of four
structurally diverse druggable compounds with nM activities.
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Introduction

The pandemic spread of human immunodeficiency virus-1

(HIV-1), the etiologic agent of AIDS, has promoted an unending

scientific effort to understand and control this disease. The

resultant understanding of HIV-1 life cycle has defined many

different targets for potential drug intervention. New recommen-

dations of the International Antiviral Society- USA (IAS-USA)

point towards the health benefits of early antiretroviral treatment

(ART) [1]. The virally encoded homodimeric aspartyl protease

(HIV Pr) enzyme is currently one of the most promising

therapeutic targets for the treatment of AIDS due to its critical

role in the virus maturation and replication. Protease-mediated

maturation of HIV-1 virus particles is essential for virus infectivity

[2]. The HIV-1 protease enzyme has a homodimeric C-2

symmetric structure and each monomer contributes one catalytic

aspartic residue and flexible flap, which is able to bind the

substrates and inhibitors [3]. In addition, a characteristic bound

water molecule forms an hydrogen bonding network between the

flaps and bond substrates creating a tetrahedral transition-state

intermediate. These drugs target HIV-protease enzyme which is a

proteolytic enzyme responsible for cleaving large polyprotein

precursor into biologically active protein products. HIV poly-

protein precursor is encoded by the gag and gag-pol genes. These

genes encode the precursor with HIV structural core proteins and

various viral enzymes, including the reverse transcriptase, the

integrase, the RNAse H and the protease. The pol gene of the

human immunodeficiency virus type 1 (HIV-1) encodes for the

aspartic protease which mediates proteolytic processing of the gag

and the gag-pol viral gene products liberating functional enzymes

and structural proteins which are essential for the formation of the

mature, infectious virus. The entire processing of gag and gag-pol

precursors is finely coordinated and regulated by the activity of

retroviral protease [4,5]. Inactivation of the aspartic protease leads

to the formation of noninfectious virions. Protease inhibitors

represent a valid option in first line therapy of HIV-infected

patients [6] and even their monotherapy has been shown to be

effective in maintaining long-term viral suppression in a majority

of patients [7]. Recently, many different classes of HIV-1 protease

inhibitors have been developed, showing excellent antiviral profiles

[8–13].

Two different approaches have been taken in the design of

protease inhibitors, one involving targets which are peptidic in

nature and another one employs non-peptidal character. Howev-

er, peptidal protease inhibitors have shown low bioavailability and

poor pharmacokinetics and normally possess multiple stereocen-
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tres [14]. Some have also reported artherogenic dyslipidemia [15]

peripheral lipodystropy [16]. Hence, efforts have increasingly

focused upon identifying non-peptidic HIV-1 protease inhibitors.

Currently, licensed non-peptidal protease inhibitors include

indinavir, ritonavir, saquinavir, and neflinavir. Some newer

inhibitors with nonpeptide structure have also been developed,

such as lopinavir, the cyclic urea mozinavir, atazanavir, tipranavir

and the C2-symmetric protease inhibitor L-mannaric acid. In spite

of having such a diversity of drugs available for treatment of HIV

infections, millions of dollars are being spent on AIDS research for

developing new drugs. Drug-related side effects, toxicity, and the

development of drug-resistant HIV strains is a compelling reason

for more efforts to develop newer inhibitors [17]. Resistance arises

from mutations in the viral genome, specifically in the regions that

encode the molecular targets of therapy, i.e. HIV-1 protease

enzymes. These mutations alter the viral enzymes in such a way

that the drug no longer inhibits the enzyme functions and the virus

restores its free replication power. Moreover, the rate at which the

virus reproduces and the high number of errors made in the viral

replication process creates a large amount of mutated viral strains

[18]. Thus, resistance toward the marketed HIV-1 protease

inhibitors is a serious threat to efficient HIV treatment. Moreover,

many of the HIV-1 protease inhibitors in the market suffer from

poor pharmacokinetic properties due to poor aqueous solubility,

low metabolic stability, high protein binding, and poor membrane

permeability. The development of new HIV-1 protease inhibitors

addressing these issues is therefore of high importance. Hence, a

computational analysis that includes ligand and target based drug

design approach has been used to identify new lead compounds

with high potency.

A pharmacophore represents the 3D arrangements of structural

or chemical features of a drug (small organic compounds, peptides,

peptidomimetics, etc.) that may be essential for interaction with

the target/optimum binding. These pharmacophores can be used

in different ways in drug design programs: (1) as a 3D query tool in

virtual screening to identify potential new compounds from 3D

databases of ‘‘drug-like’’ molecules with patentable structures

different from those already discovered; (2) to predict the activities

of a set of new compounds yet to be synthesized; (3) to understand

the possible mechanism of action [19,20].

The aim of the reported endeavor was to generate pharmaco-

phore models for HIV-1 protease inhibitors through analog-based

pharmacophore generation process (HypoGen algorithm) which

employed a set of cyclic cyanoguanidines and cyclic urea ligands

that have been experimentally observed to interact with a HIV-1

protease enzyme and also to compare these models with those

obtained in a structure-based approach to identify novel structural

characteristics and scaffolds for HIV-1 protease.

The aspired aim was achieved by development of validated,

robust and highly predictive pharmacophore models from both

ligand and structure based approaches. The validity of the

pharmacophore models was established by Fischer’s randomiza-

tion test, internal and external test set predictions. The comple-

mentary nature of ligand and structure-based model has

augmented the statistical findings of both the pharmacophores.

The significance of the present study is clearly reflected by the

identification of four highly potent lead compounds as protease

inhibitors.

Materials and Methods

Ligand Based 3D Pharmacophore Generation
All molecular modeling calculations were performed on recent

software package Catalyst [21] which has an in-build pharmaco-

phore generation facility. Catalyst is an integrated commercially

available software package that generates pharmacophores,

commonly referred to as hypotheses. It enables the use of structure

and activity data for a set of lead compounds to create a

hypothesis, thus characterizing the activity of the lead set [22].

HypoGen algorithm in Catalyst allows identification of hypotheses

that are common to the ‘‘active’’ molecules in the training set but

at the same time not present in the ‘‘inactives’’ [23].

A series of 47 compounds belonging to the cyclic cyanoguani-

dines and cyclic urea derivatives and their corresponding

biological data represented as Ki values in nM reported by

Jadhav et al. [24] (structures reported in Figure 1 and Table 1)

were employed for the present pharmacophore generation study in

view of the following reasons: (1) pharmacophore modeling studies

have not been performed on this series, (2) series under

consideration exhibit well defined biological activities of its

compounds, (3) the compound in the series has large variation

in biological activity for small change in the structure, (4)

maximum variation in the biological activity (i.e. their order of

magnitude was more than 4), and (5) diversity in the structures

[25]. All the molecules under consideration were randomly split

into training and test set. Training and test set were comprised of

33 and 14 compounds respectively. Energy minimization was

carried using CHARMM force field. The Catalyst software

reconfigure the generated structures at the minimum potential

energy form using CHARMM force field. The CHARMM

program in Catalyst allows generation and analysis of a wide

range of molecular simulations [26].

The Catalyst model treats the molecular structures as templates

comprising chemical functions localized in space that will bind

effectively with complementary functions on the respective binding

proteins. The most relevant chemical features are extracted from a

small set of compounds that cover a broad range of activity.

Molecular flexibility is taken into account by considering each

compound as an ensemble of conformers representing different

accessible areas in 3D space. The conformation is of great

importance for the mode of drug action since it relies on the easy

accessibility of the reactive groups. Conformations for all

molecules under study were generated using the ‘‘best’’ option

(the program has the ability to modify the conformations of

molecules during execution to provide a more precise database/

spreadsheet search; the best algorithm finds the best fit among

conformations, permitting no conformer’s energy to rise by more

than the default value) with an energy cut-off of 20 kcal/mol. The

maximum number of conformations to be generated for any

molecule was set to 250. This is because Catalyst considers only

the first 250 conformations in hypothesis generation [25]. Catalyst

generates random conformations (using a ‘‘polling’’ algorithm) to

maximally span the accessible conformational space of a molecule

and not necessarily only the local minima. In this light, the

conformational models of the compounds will include some

higher-energy structures that may be meaningful for receptor

binding, since potentially favorable interactions (e.g., hydrogen

bonding) with the latter will then compensate for the excessive

conformational energy [27].

Generation of Pharmacophores
All molecules in the training set along with their conformations

were used for hypothesis (pharmacophore) generation within

Catalyst, which aims to identify the best 3-dimensional arrange-

ment of chemical functions explaining the activity variations

among the compounds in the training set. HypoGen tries to find

hypotheses that are common among the active compounds of the

training set but do not reflect the inactive ones [28]. Instead of

Identification of Novel HIV 1- Protease Inhibitors
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using just the lowest energy conformation of each compound, all

the conformational models for molecules in each training set were

used for pharmacophore hypothesis generation. During the

hypothesis generation exercise, it was observed that four features,

i.e., two hydrogen bond acceptor-lipid (HBA) and two hydropho-

bic (HY) features, dominated in most of the useful hypotheses

generated by the Catalyst software. Therefore, these four features

were used to generate 10 pharmacophore hypotheses with top

ranking scores from the training set, using a default uncertainty

value D (an uncertainty D value in the Catalyst paradigm indicates

an activity value lying somewhere in the interval from ‘‘activity

divided by D’’ to ‘‘activity multiplied by D’’) of 3 and MinPoints

and MinSubsetPoints values of 4 (default value). The MinPoints

parameter controls the minimum number of location constraints

required for any hypothesis. The MinSubsetPoint parameter

defines the number of chemical features that a hypothesis must

match in all the compounds set [29]. HypoGen process returned

ten pharmacophore models with top ranking scores. The quality of

the generated pharmacophore models was evaluated using a cost

function analysis, Fisher’s randomization test, internal and

external test set prediction.

Evaluation of the HypoGen Model
1. Cost function analysis. The evaluation of the quality of

the generated pharmacophoric hypothesis was carried out on the

basis of cost value (total cost) which consists of three components

namely, the weight cost, the error cost and the configuration cost.

The weight component increases in a Gaussian form as the feature

weight deviates from the idealized value of 2.0. The error cost

increases as the RMS distance between the estimated and the

measured activities for the training set increases. The configura-

tion cost represents the complexity or the entropy of the hypothesis

space being optimized and is constant for a given data set. It

depends on the complexity of the pharmacophore hypothesis

space. Any value higher than 17 may indicate that the correlation

from any of the generated hypothesis is most likely due to chance,

so either some attention has to be given in the selection of training

set molecules or the entropy cost should be reduced by limiting the

minimum and maximum features. Generated pharmacophore was

also tested by another two important cost calculations i.e. fixed

cost and the null cost, the former represents the simplest model

that perfectly fits the data and the latter i.e. null cost is the cost of a

pharmacophore without any feature where the calculated activity

data of each molecule in the training set is the average value of all

activities. In Catalyst software the differences between the cost of

the generated and the null hypothesis should be as large as

possible; a value of 40–60 bits difference may indicate that there is

only 75–90% chance of representing a true correlation in the data

set used. The total cost of any hypothesis should be nearer to the

value of the fixed cost for any meaningful model. The rms

deviation represents the quality of the correlations between the

estimated and the actual data [30].

2. CatScramble validation. An additional validation tech-

nique, known as CatScramble which is based on Fischer’s

randomization test was applied. In this test, the biological data

and the corresponding structures are scrambled several times and

the software is challenged to generate pharmacophoric models

from the randomized data. The confidence in the parent

hypotheses (i.e., generated from unscrambled data) is lowered

proportional to the number of times the software succeeds in

generating binding hypotheses from scrambled data of apparently

better cost criteria than the parent hypotheses. The statistical

significance is given by the equation.

Significance~ 1{ 1zxð Þ=y½ �|10 ð1Þ

where x = total number of hypotheses having a total cost lower

than best significant hypothesis and y = number (HypoGen runs

initial+random runs). To obtain a 95% confidence level, 19

random spreadsheets are generated (y = 20) and every generated

spreadsheet is submitted to HypoGen using the same experimental

conditions (functions and parameters) as the initial run [31]. The

pharmacophore hypothesis generated for present HIV-1 protease

inhibitors included in the training set were evaluated for their

statistical significance using the aforesaid CatScramble program.

3. Internal test set prediction. The ability of the models to

predict the biological activity of compounds outside the model

development procedure is a common method of validation. An

internal test set comprising of 14 compounds was employed to

assess statistical significance of the developed model. Here in this

Figure 1. Chemical structures of protease inhibitors. (A) Cyclic cyanoguanides. (B) Cyclic urea derivatives.
doi:10.1371/journal.pone.0048942.g001
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Table 1. Cyclic cyanoguanides and cyclic urea derivatives with various substitutions at P2/P29 positions and their biological
activity data utilized for present work.

Compound name P2/P2’ Biological Activity Ki (nM) values

8b allyl 37

8c n-propyl 14

8d n-butyl 2.7

8e 3,3-dimethylallyl 30

8f 3-methylbutyl 3.8

8g cyclopropylmethyl 22

8h cyclobutylmethyl 2

8i cyclopentylmethyl 1.5

8j cyclohexylmethyl 5.7

8k benzyl 20

8l 3-nitrobenzyl 89

8m 4-nitrobenzyl 67

8n 3-aminobenzyl 7.4

8o 4-aminobenzyl 25

8p 3-cyanobenzyl 27

8q 4-cyanobenzyl 128

8r 3-hydroxybenzyl 0.72

8s 4-hydroxybenzyl 2.6

8t 3-(benzyloxy)benzyl 1370

8u 4-(benzyloxy)benzyl 900

8v 3-(hydroxymethyl)benzyl 1.7

8w 4-(hydroxymethyl)benzyl 11

8x 2-naphthylmethyl 22

9a H 267

9b allyl 5.2

9c n-propyl 8

9d n-butyl 1.4

9e 3,3-dimethylallyl 1.6

9f 3-methylbutyl 12

9g cyclopropylmethyl 2.1

9h cyclobutylmethyl 1.3

9i cyclopentylmethyl 4.3

9j cyclohexylmethyl 37

9k benzyl 3

9l 3-nitrobenzyl 2.8

9m 4-nitrobenzyl 32

9n 3-aminobenzyl 0.28

9o 4-aminobenzyl 1.1

9p 3-cyanobenzyl 3

9q 4-cyanobenzyl 52

9r 3-hydroxybenzyl 0.12

9s 4-hydroxybenzyl 0.12

9t 3-(benzyloxy)benzyl 340

9u 4-(benzyloxy)benzyl 542

9v 3-(hydroxymethyl)benzyl 0.14

9w 4-(hydroxymethyl)benzyl 0.34

9x 2-naphthylmethyl 0.31

doi:10.1371/journal.pone.0048942.t001
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case test set prediction was measured in terms of squared

correlation coefficient (r2). All the selected derivatives were

mapped onto the generated pharmacophoric model and thus

prediction of the desired activity was made. The best mapped

compound was estimated and compared to those with least

mapped features. The Catalyst program fits each compound to a

hypothesis and reports back a series of ‘Fit’ scores. The fit function

does not depend only on the mapping of the feature but also

possess a distance term measuring the distance between the feature

on the molecule and the centroid of the hypothesis feature, and

both these terms are used in the calculation of geometric fitness

[32]. A relationship between log (activities) and the corresponding

fit-values for all test set molecules was computed using linear

regression after mapping of each molecule to the hypothesis.

4. External test set validation. In order to access the

predictive power of the resulting HypoGen pharmacophoric

model, an external test set comprising of similar (cyclic urea

analogs) and different (market drugs which were non cyclic ureas)

structural types was used to validate the four-feature pharmaco-

phore. Out of fifteen molecules from external test set, first five

molecules are market drugs (saquinavir, indinavir, nelfinavir,

ritonavir and 141W94 ) having diverse structure (non cyclic ureas),

while another ten molecules were cyclic urea analogs which were

selected on the basis of two most active molecules from five

different published literature. Ki values for all external test set

candidates have been determined in the same laboratory as that of

training and internal test set compounds, using comparable

biological assays. These fifteen external test set molecules were

mapped onto the HypoGen pharmacophore and their mapping

fashion were analyzed and the pharmacophore also predicted their

biological activities which were compared with their actual

activities.

Structure Based 3D Pharmacophore Generation
When the three-dimensional (3D) structure of the enzyme/

target is available, structure-based pharmacophore techniques can

also be applied to improve the drug design process. In this study, a

structure-based pharmacophore identification approach was em-

ployed to augment the findings of ligand based pharmacophore.

Methodology
The three-dimensional structure of HIV-1 protease enzyme

complexed with inhibitor L-700,417 was used to develop a

pharmacophore model. 47 compounds from same series of HIV-1

Figure 2. Pharmacophoric features identified from best
hypothesis 1.
doi:10.1371/journal.pone.0048942.g002

Figure 3. A plot of actual versus estimated biological activity for training set compounds.
doi:10.1371/journal.pone.0048942.g003
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protease inhibitor analogs belonging to the cyclic cyanoguanidines

and cyclic urea derivatives which were employed for ligand based

study were used as a validation set for mapping onto the developed

pharmacophore to uncover the putative binding site and structural

requirement of the protease inhibitors.

Defining Active Site and Interaction Generation
X-ray crystal structure of the HIV-1 protease complex (obtained

from protein data bank with PDB entry 4PHV) with inhibitor

named L-700,417, which is a HIV-1 protease inhibitor with

Pseudo C2 Symmetry, was used for structure based pharmaco-

phore generation [33]. The protein structure was monitored for

valence and the missing hydrogen were added, the structure was

further checked using protein health check tool for any structural

error. The cleaned enzyme structure was subjected to active site

identification. The receptor active site was identified using a

sphere whose location and radius was adjusted to 9.0 Å, so as to

include the active site and the key residues of the protein involved

in interaction with ligands. Keeping the density of lipophilic sites

and density of polar sites parameter value to 10, the interaction

map was generated [34].

Creating Pharmacophore Model Based on the
Interactions and Searching Compound Library

The interaction map often displays a large number of features,

especially when the receptor is capable of binding a variety of

ligands and has a number of different binding modes. Thus,

deriving pharmacophore models directly from the interaction map

can be quite complicated. To overcome this problem, neighboring

features of the same type were grouped to the same cluster. The

feature closest to the geometric center of the cluster was selected to

represent the cluster, whereas the rest of the features were omitted.

However, even after clustering the numbers of the features were

still too high to use all of them in a single query. A query composed

of all the features may fail to retrieve any hits from the database/

compound library. Therefore, multiple 3D queries, composed of

fewer numbers of features, were generated from the interaction

map by considering all the possible combinations. The final model

constructed was subjected to non feature atoms exclusion. The

exclusion constraint feature is an object that represents an

excluded volume in space, within a given radius. The excluded

volumes were placed on regions of space that are occupied by the

inactive molecules but not the active molecules. A pharmacophore

with an excluded volume only matches if no atoms penetrate the

excluded area [35]. The final hypothesis contained five features:

one hydrogen bond donors and two hydrogen bond acceptors and

two hydrophobic groups (with additional 10 excluded volumes)

describing the interactions between the protein HIV-1 protease

and the ligand L-700,417.

In order to validate the hypothesis, different conformations for

47 HIV-1 protease inhibitor analogs belonging to the cyclic

cyanoguanidines and cyclic ureas were used as validation data set.

All the compounds and their conformations were mapped onto the

developed five-feature pharmacophore. Moreover, 15 external test

set molecules which were used to validate the pharmacophore

developed from ligand-based methodology were also used as a

validation set and were screened on the five-feature structure-

based pharmacophore and their mapping fashion were analyzed.

Table 2. Performance of top ten pharmacophoric hypotheses generated.

Hypo. No. Total cost Correlation (r) RMS Weight Configuration Features r2 (training) r2 (test)

1 143.96 0.90 0.71 1.96 15.42 2 HBA, 2 HY 0.80 0.77

2 150.34 0.85 0.83 1.97 15.42 2 HBA, 2 HY 0.79 0.76

3 153.88 0.82 0.86 1.99 15.42 2 HBA, 2 HY 0.79 0.75

4 155.55 0.81 0.87 1.93 15.42 2 HBA, 2 HY 0.75 0.73

5 156.22 0.81 0.89 2.47 15.42 2 HBA, 2 HY 0.77 0.64

6 156.64 0.82 0.88 2.64 15.42 2 HBA, 2 HY 0.76 0.13

7 156.74 0.80 0.98 1.03 15.42 2 HBA, 2 HY 0.71 0.45

8 157.24 0.80 0.99 1.99 15.42 2 HBA, 2 HY 0.72 0.46

9 157.27 0.79 1.01 1.96 15.42 2 HBA, 2 HY 0.74 0.14

10 157.31 0.80 1.03 2.79 15.42 2 HBA, 2 HY 0.76 0.64

doi:10.1371/journal.pone.0048942.t002

Table 3. Pharmacophoric features and corresponding weights, tolerances, and 3D coordinates of successful model.

Chemical Features

Model definitions HBA Lipid (1) HBA Lipid (2) HY (1) HY (2)

Hypothesis 1 weights 2.34 2.34 2.34 2.34

tolerances 1.60 2.20 1.60 2.20 1.60 1.60

coordinates X –1.24 –3.37 2.89 3.62 1.18 –4.22

Y 0.24 –0.19 0.39 –2.54 –4.76 2.84

Z 2.72 4.84 –0.76 –0.95 0.88 1.40

doi:10.1371/journal.pone.0048942.t003
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Database Screening
Catalyst-generated best pharmacophore model comprising of

best selected chemical features were used as query for searching

the chemical 3D databases (Maybridge and NCI) [36]. Virtual

screening of such databases can serve two main purposes: first,

validating the quality of the generated pharmacophore models by

selective detection of compounds with known inhibitory activity,

and, second, finding novel, potential leads suitable for further

development [37]. Thus, with the purpose of identifying novel lead

compounds, the four-feature pharmacophore model obtained

from HypoGen analysis was used as a three-dimensional query for

database search. As a result of this search, 399 lead compounds

were obtained from the 3D query and their activities were

estimated, out of which 4 candidates emerged as potential ligands

exhibiting a good perfect four feature fit. To explore the

druggability of the molecules, ADME (absorption, distribution,

metabolism, and excretion) properties were checked by applying

Lipinski’s rule on all the four compounds obtained from database

screening. Violation in number of HBD (hydrogen bond donor),

HBA (hydrogen bond acceptor), molecular weight, and LogP were

detected [38].

As an additional validation setup, all the four identified lead

compounds were mapped onto the structure-based pharmaco-

phore. The mapping pattern was observed to augment the

confidence in identified novel lead structures.

Table 4. Actual and estimated Ki (nM) values of training set molecules based on model hypothesis 1.

Name
Actual Ki
(nM) values

Estimated Ki
(nM) values

Activity scale
(Actual)

Activity scale
(Estimated) Error Fit value Mapped Feature

HBA 1 HBA 2 HY 1 HY 2

9r 0.12 0.404 +++ +++ 3.3 8.86 1 1 1 1

9s 0.12 0.485 +++ +++ 3.9 8.79 1 1 1 1

9v 0.14 0.27 +++ +++ 2 9.04 1 1 1 1

9n 0.28 0.379 +++ +++ 1.4 8.89 1 1 1 1

9x 0.31 0.244 +++ +++ 1.3 9.09 1 1 1 1

9w 0.34 0.429 +++ +++ 1.2 8.84 1 1 1 1

8r 0.72 1.495 +++ +++ 2.1 8.29 1 1 1 1

9o 1.1 0.505 +++ +++ 2.3 8.77 1 1 1 1

9h 1.3 0.863 +++ +++ 1.5 8.54 1 1 1 1

9d 1.4 1.231 +++ +++ 1.1 8.38 1 1 1 1

9e 1.6 2.916 +++ +++ 2.1 7.99 1 1 1 1

9g 2.1 3.981 +++ +++ 1.6 7.88 1 1 1 1

9l 2.8 2.886 +++ +++ 1 8.01 1 1 1 1

9k 3 1.452 +++ +++ 2.1 8.31 1 1 1 1

9p 3 0.881 +++ +++ 3.2 8.53 1 1 1 1

9i 4.3 2.214 +++ +++ 1.8 8.12 1 1 1 1

8j 5.7 5.987 ++ ++ 1.1 7.70 1 1 1 1

8n 7.4 10.84 ++ ++ 1.5 7.46 1 1 1 1

9c 8 16.455 ++ ++ 2 7.25 1 1 1 1

8k 20 44.099 ++ ++ 2.2 6.83 – 1 1 1

8g 22 33.971 ++ ++ 1.5 6.94 – 1 1 1

8x 22 43.845 ++ ++ 2 6.83 – 1 1 1

8o 25 51.857 ++ ++ 2.1 6.75 – 1 1 1

8p 27 44.839 ++ ++ 1.6 6.82 – 1 1 1

8e 30 60.96 ++ ++ 2.1 6.68 – 1 1 1

9m 32 127.027 ++ + 4 6.37 1 1 1 -

8b 37 54.725 ++ ++ 1.5 6.78 – 1 1 1

8m 67 76.781 ++ ++ 1.1 6. 83 – 1 1 1

8l 89 74.638 + ++ 1.2 6.59 – 1 1 1

8q 128 70.787 + ++ 1.8 6.67 – 1 1 1

9a 267 79.729 + ++ 3.4 6.59 – 1 1 1

8u 900 43.025 + ++ 21 6.87 – 1 1 1

8t 1370 37.937 + ++ 35 6.89 – 1 1 1

doi:10.1371/journal.pone.0048942.t004
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Results and Discussion

Ligand Based 3D Pharmacophore Generation
The HypoGen algorithm of Catalyst applied on the training set

of 33 compounds with anti HIV-1 protease inhibitory activity

(Table 1) resulted in the generation of 10 pharmacophore

hypothesis. The quality of the generated pharmacophore hypoth-

eses was evaluated by considering the cost functions represented in

bits unit calculated by HypoGen module during pharmacophore

generation. The fixed cost of the 10 top-scored hypotheses was

137.4 bits, well separated from the null hypothesis cost of 200.49

bits. The cost values, correlation coefficients (r), RMSD, and

features for the top ten hypotheses are listed in Table 2. The total

hypothesis cost, expressed in bits, of the 10 best hypotheses varies

from 143.9 to 157.3. Such a range, covering only 14 bits, suggests

that the set of the generated hypothesis is homogeneous and that

the selected training set is adequate for pharmacophore design.

Figure 4. A plot of actual versus estimated biological activity for test set compounds.
doi:10.1371/journal.pone.0048942.g004

Table 5. Actual and estimated Ki (nM) values of test set molecules based on model hypothesis 1.

Name
Actual Ki (nM)
values

Estimated Ki
(nM) values

Activity scale
(Actual)

Activity scale
(Estimated) Fit value Mapped Feature

HBA 1 HBA 2 HY 1 HY 2

8i 1.5 44.102 +++ ++ 6.826 – 1 1 1

8v 1.7 29.233 +++ ++ 7.004 1 1 1 1

8h 2 50.647 +++ ++ 6.765 – 1 1 1

8s 2.6 38.188 +++ +++ 6.888 – 1 1 1

8d 2.7 40.345 +++ +++ 6.864 - 1 1 1

8f 3.8 63.964 +++ +++ 6.664 - 1 1 1

9b 5.2 18.108 ++ ++ 7.212 1 1 1 1

8w 11 35.758 ++ ++ 6.917 - 1 1 1

9f 12 3.568 ++ ++ 7.918 1 1 1 1

8c 14 55.755 ++ +++ 6.724 - 1 1 1

9j 37 4.463 ++ ++ 7.82 1 1 1 1

9q 52 0.531 ++ ++ 8.745 1 1 1 1

9t 340 0.457 + ++ 8.81 1 1 1 1

9u 542 0.62 + ++ 8.677 1 1 1 1

doi:10.1371/journal.pone.0048942.t005
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From the table we can see all the 10 hypotheses including the best

hypothesis 1 have the same four features, viz., two hydrogen bond

acceptor lipid (HBA) and two hydrophobic (HY) features.

Pharmacophore features, ranking scores, and statistical parameters

associated with the generated hypotheses are listed in Table 3. The

top-ranked pharmacophore model (hypothesis 1) was marked by

best predictive power and statistical significance as described by

the high correlation coefficient of r = 0.90, r2 = 0.81, low root

mean-square deviation, rmsd = 0.71, weight = 1.96, error

cost = 126.58 and cost difference = 56.59, satisfying the acceptable

range recommended in the cost analysis of the Catalyst procedure

[39]. The configuration cost was 15.42, indicating that all

generated models have been thoroughly analyzed. In the standard

HypoGen mode, the configuration cost should not exceed a

maximum value of 17 (corresponds to a number of 217

pharmacophore models) because high values may lead to chance

correlation of the generated hypothesis, since Catalyst cannot

consider more than 217 models in the optimization phase, and so

the rest are left out of the process. The cost difference between

total and fixed costs for the best hypothesis was only 6.5 bits,

indicating the high probability of the true correlation of the data.

Lower the cost difference between the total and fixed costs, the

higher the probability is for the true correlation of the data. Thus,

hypothesis 1 was retained for further analysis as the best

pharmacophore model for HIV-1 protease inhibitory activity with

four features, viz., two hydrogen bond acceptor lipid (HBA) and

two hydrophobic (HY) features, is statistically the most relevant

model (Fig. 2). Green and blue color is represented by HBA and

HY features respectively. Once hypothesis 1 was identified as the

best-ranked model, it was subjected to further evaluation for its

predictive ability. The hypothesis 1 model was utilized to predict

the activities of all 33 training compounds. Hypothesis 1 has

estimated the activity of the training set molecules accurately. In

this study all compounds were classified by their activity as highly

Figure 5. Graph of 99% catscrambled cost data. None of the outcome hypotheses had a lower cost score than the initial (best) hypothesis.
doi:10.1371/journal.pone.0048942.g005

Figure 6. Graph of 99% catscrambled correlation data. None of the outcome hypotheses had a higher correlation score than the initial (best)
hypothesis.
doi:10.1371/journal.pone.0048942.g006
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active (,5 nM, +++), moderately active (5–70 nM, ++) and

inactive (.80 nM, +). The scored estimated activities of training

set using hypothesis 1 along with their corresponding error values

are shown in Table 4. A plot between the observed versus

estimated activity demonstrated a good correlation coefficient (r2

training = 0.80) for training set molecules within the range of

uncertainty 3, indicating the high predictive ability of the

pharmacophore (Fig. 3).

Model Validation
Following validation approaches were adopted and their results

were checked to ensure the accuracy of the model.

1. Internal test set validation. The purpose of the

pharmacophore hypothesis generation is not just to predict the

Table 6. Table summarizing the results of external set molecules used as a validation tool.

S. No. Name of external test set molecule Actual Ki (nM) values Estimated Ki (nM) values Fit Value Reference

1. Saquinavir (non-cyclic ureas) 0.15 0.301 7.566 [45]

2. Indinavir (non-cyclic ureas) 0.14 0.221 7.524 [45]

3. Nelfinavir (non-cyclic ureas) 0.28 0.312 8.441 [45]

4. 141W94 (non-cyclic ureas) 0.11 0.477 8.527 [45]

5. Ritonavir (non-cyclic ureas) 0.17 0.213 7.815 [45]

6. 8 (cyclic ureas) 0.014 0.234 8.461 [46]

7. 42 (cyclic ureas) 0.016 0.204 8.864 [46]

8. 5 (cyclic ureas) 0.016 0.253 9.018 [47]

9. SD 146 (cyclic ureas) 0.024 0.749 8.449 [47]

10. 1(cyclic ureas) 0.018 0.474 8.302 [48]

11. 7 (cyclic ureas) 0.018 0.122 8.994 [48]

12. 5b (cyclic ureas) 0.016 0.329 8.846 [49]

13. XN 975 (cyclic ureas) 0.027 0.231 8.597 [49]

14. 15 (cyclic ureas) 0.012 0.271 9.124 [50]

15. 13 (cyclic ureas) 0.016 0.499 8.432 [50]

doi:10.1371/journal.pone.0048942.t006

Figure 7. Mapping of most active compound 9r (cyclic urea
derivative) onto the generated pharmacophore model (hy-
pothesis 1).
doi:10.1371/journal.pone.0048942.g007

Figure 8. Mapping of another most active compound 9s (cyclic
urea derivative) onto the generated pharmacophore model
(hypothesis 1).
doi:10.1371/journal.pone.0048942.g008
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activity of the training set compounds accurately but also to verify

whether the pharmacophore models are capable of predicting the

activities of compounds not included in the training set. A test set

consisting of 14 ligands was subjected to phramcophore mapping

analysis using the developed model. Objective of test set prediction

was to verify whether generated pharmacophore models are

capable of predicting the activities and classifying them correctly as

actives or inactives. All molecules in the test set were built,

minimized and subjected to conformational analysis like the

molecules in the training set. Finally the compounds were mapped

onto the best hypothesis using the best fit and a conformational

energy constraint of 10 kcal mol21. The scored estimated activities

of test set compounds using hypothesis 1 as the pharmacophore

are shown in Table 5. A correlation coefficient of 0.77 generated

using the test set compounds shown in Fig. 4 indicates a good

correlation between the actual and estimated activities, which

means the hypothesis 1 is convictive.

2. CatScramble validation. To further evaluate the statis-

tical relevance of the model, the Fischer validation method at the

confidence level of 99% was applied to the developed HypoGen

model and thus 99 spreadsheets were generated. These random

spreadsheets were used to generate hypotheses employing exactly

the same features as used in generating the initial hypothesis. The

experimental activities in the training set were scrambled

randomly using CatScramble program, and the resulting training

set was used for a HypoGen run. In this manner all parameters

were taken from the initial HypoGen calculation. None of the

outcome hypotheses had a lower cost score than the initial

hypothesis (Fig. 5) which verifies that the hypothesis 1 was not

obtained by chance. The data of cross validation clearly indicates

that all values generated after randomization produced hypotheses

with no significant value. Out of 99 runs, all trials had a

correlation value less than 0.90 (Fig. 6), and also RMS deviation

and total cost were very high, which is not desirable for a good

hypothesis. Thus, validation method adopted provided strong

confidence on the pharmacophore hypothesis 1.

3. External test set validation. In order to finally validate

our pharmacophore hypothesis, we used an external test set

consisted of 15 molecules with Ki activity having similar and

different structural information. The test set molecules were

mapped onto the best pharmacophore hypothesis 1 and the actual

activity versus estimated activity are shown in Table 6. All the

external test set candidates exhibited a perfect four-feature

mapping with good fit values. It would be very interesting to

Figure 9. Mapping of compound 8r (cyclic cyanoguanidine
derivative) onto the generated pharmacophore model (hy-
pothesis 1).
doi:10.1371/journal.pone.0048942.g009

Figure 10. Mapping of least active compound 8t (cyclic
cyanoguanidine derivative) onto the generated pharmaco-
phore model (hypothesis 1).
doi:10.1371/journal.pone.0048942.g010

Figure 11. Mapping of another least active compound 8u
(cyclic cyanoguanidine derivative) onto the generated phar-
macophore model (hypothesis 1).
doi:10.1371/journal.pone.0048942.g011
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mention that estimated biological activities of market drugs such as

saquinavir, indinavir, nelfinavir, ritonavir and 141W94 were very

close to their corresponding actual activities. Hence, this proves

the predictability of our developed pharmacophore.

Pharmacophore Description
Since, we have used two analogous nucleus i.e. cyclic

cyanoguanides (15 compounds) and cyclic urea (18 compounds)

bearing various substitutions at P2/P29 groups, a thorough

analysis of fitting of these molecules into hypothesis 1 revealed

quite interesting results. Pharmacophore model was visually

inspected by fitting most active compounds from both series, i.e.

cyclic urea series (9r, 9s) as well as from cyclic cyanoguanides

series (8r) in the training set on each generated model to

investigate recurrent features.

The most active compounds 9r and 9s (from cyclic urea series)

mapped perfectly well to all the four features of hypothesis 1.

Compound 9r (one of the most active compound) mapped with

both the hydrophobic (HY 1 and HY 2) features of hypothesis 1 at

Figure 12. Proposed model for the interaction of symmetrical P2/P29 cyclic urea with developed pharmacophore.
doi:10.1371/journal.pone.0048942.g012

Figure 13. Structure of the ligand L-700,417 (N,N-bis(2-hydroxy-
1-indanyl)-2,6-diphenylmethyl-4- hydroxy-1,7-heptandiamide).
doi:10.1371/journal.pone.0048942.g013
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the two benzene rings of 3-hydroxybenzyl groups at P2/P29

positions. One of the two hydrogen bond acceptor lipid (HBA 1)

feature was occupied by oxygen of the cyclic urea carbonyl group.

Second hydrogen-bond acceptor lipid feature (HBA 2) was

mapped onto one of the two symmetrical hydroxyl groups

attached on the cyclic urea ring (or cyclic guanidine ring as

applicable) (Fig. 7). This fact is also supported from the findings

reported earlier that oxygen of the cyclic urea carbonyl group act

as a hydrogen bond acceptor for backbone amides of flap residues

Ile50/Ile509 and hydroxyl groups attached on the cyclic urea ring

behaves as hydrogen bond acceptor for carboxylate group of

Asp25/Asp259 (active site of HIV-1 protease is shared by both

aspartyl subunits) [24,40]. Similar trend of alignment of all the

four features was also observed when another most active

compound 9s belonging to cyclic urea series was mapped into

the pharmacophore derived from hypothesis 1 (Fig. 8). The two

benzene rings of 4-hydroxybenzyl groups at P2/P29 positions were

exactly aligned towards both the two hydrophobic (HY 1 and HY

2) features of hypothesis 1. Oxygen of the cyclic urea carbonyl

group occupied the first hydrogen bond acceptor lipid (HBA 1)

feature and second hydrogen-bond acceptor lipid feature (HBA 2)

of the selected pharmacophore was mapped onto one of the two

symmetrical hydroxyl groups attached on the cyclic urea ring.

Out of 18 molecules from cyclic urea derivatives in training set,

only two compounds namely 9a and 9m exhibited three features

fit, rest all 16 compounds showed a perfect four feature fit proving

the accuracy of the developed pharmacophore model for cyclic

urea derivatives (Table 4).

Comparable mapping fashion was spotted out when 8r (most

active compound from cyclic cyanoguanides series) was mapped

onto the developed pharmacophore. Four feature mapping was

observed in which two hydrophobic (HY 1 and HY 2) features and

second hydrogen-bond acceptor lipid feature (HBA 2) were

associated at same position as that of 9r (most active compound

from cyclic urea series) i.e. at the two benzene rings of 3-

hydroxybenzyl groups at P2/P29 positions and one of the two

symmetrical hydroxyl groups attached on the cyclic cyanoguanide

ring at respectively. Another hydrogen bond acceptor lipid (HBA

1) feature of the hypothesis 1 was aligned towards exocyclic

guanidine nitrogen of cyanoguanide ring (Fig. 9).

The mapping of pharmacophore obtained from hypothesis 1

onto inactive compounds assisted in clarifying the possible

structural reasons for their inactivity which was demonstrated

experimentally by these compounds, since the best ‘‘function

Figure 14. Pharmacophoric features retrieved through struc-
ture-based strategy.
doi:10.1371/journal.pone.0048942.g014

Figure 15. Pharmacophoric interaction of most active com-
pound 9s onto the pharmacophore obtained from structure-
based approach.
doi:10.1371/journal.pone.0048942.g015

Figure 16. Pharmacophoric interaction of least active com-
pound 8t onto the pharmacophore obtained from structure-
based approach.
doi:10.1371/journal.pone.0048942.g016
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mapping’’ covered three of the pharmacophoric features out of

four features. Mapping of two least active molecules from training

set namely 8t and 8u (belonging to cyclic cyanoguanides series)

exhibited three feature mapping (Fig. 10 and 11 respectively),

because the first hydrogen bond acceptor lipid (HBA 1) feature

was missing due to orientation of exocyclic guanidine nitrogen in

three dimensional space, which made it impossible to map onto

the HBA 1 feature of the pharmacophore thus rendering them

inactive. The same trend that HBA 1 feature could not effectively

map exocyclic guanidine nitrogen was also seen with most of the

candidates from cyanoguanides series. Therefore, we may draw a

conclusion that oxygen of the cyclic urea carbonyl group will act as

better hydrogen bond acceptor for backbone amides of flap

residues Ile50/Ile509 than exocyclic guanidine nitrogen, which is

also supported by the earlier reports [24].

A proposed model for the interaction of symmetrical P2/P29

cyclic urea with developed pharmacophore is shown in Fig. 12.

From the figure, it is evident that while designing newer HIV-1

protease ligands, one must emphasize upon symmetrical cyclic

urea derivatives (as oxygen of the cyclic urea carbonyl group act as

hydrogen bond acceptor for backbone amides of flap residues

Ile50/Ile509) over cyclic cyanoguanides and also substitute the

cyclic urea ring with lipophilic groups at P2/P29 positions as

evident from two hydrophobic (HY 1 and HY 2) features which

were mapped accurately at P2/P29 positions in all the candidates

of data set. This observation is also augmented by report on X-

Ray study performed by Bone et al. According to their findings,

desirable features in an HIV-1 protease inhibitor would include

hydrophobic substituents to project into the specific pockets of the

enzyme and hydrogen-bond acceptor to interact with the

carboxylate oxygens of both Asp 25 (active site is shared by both

aspartyl subunits), which projects up from the floor of the active

site from each subunit [33].

Lam et al. also enlightened the most important advantage of

cyclic urea derivatives that the three-dimensional structure of the

HIV PR complexes with other acyclic inhibitors revealed a unique

structural water molecule which connects the inhibitor to the flap

through hydrogen bonding interactions. The cyclic urea classes of

inhibitors were able to displace this unique structural water

molecule. A fundamental feature of these inhibitors is the cyclic

urea carbonyl oxygen that mimics the hydrogen-bonding features

of a key structural water molecule [41].

Recently, Sivan and Manga also emphasized on the importance

of hydrogen bond interactions with the active site amino acids,

carboxylate of Asp25 and amine of Ile50 [42]. Another study

based on molecular dynamics simulation and binding free energy

Figure 17. Mapping of the most active compounds from external validation set. Most active non-cyclic urea derivative (141W94) mapped
onto: (A) hypothesis 1(four feature mapping) and (B) structure based pharmacophore (five feature mapping). Most active cyclic urea derivative (15)
mapped onto: (C) hypothesis 1 (four feature mapping) and (D) structure based pharmacophore (five feature mapping).
doi:10.1371/journal.pone.0048942.g017
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decomposition [43], suggested that the residues that make

significant contributions to the binding are all hydrophobic amino

acids.

Structure Based 3D Pharmacophore Generation
Pharmacophore description and its comparison with

pharmacophore obtained from ligand-Based study. An

attractive application of receptor-based pharmacophore model is

to discover interaction spots so as to guide the improvement of

binding affinity and/or maximizing selectivity. The three-dimen-

sional structure of HIV-1 protease enzyme complexed with

inhibitor L-700,417 (Fig. 13) was exploited to develop a

pharmacophore model. Active site of HIV-1 protease was

identified and highlighted by sphere of 9.0 Å. The pharmacophore

generated from 3D structure of protease enzyme contained five

features: one hydrogen bond donor (HBD) and two hydrogen

bond acceptors (HBA) and two hydrophobic groups (HY) (Fig. 14).

Green, blue and magenta colors are represented by hydrogen

bond acceptor, hydrophobic and hydrogen bond donors features

respectively.

The comparison of pharmacophoric features obtained from

structure-based and ligand-based study revealed that both the

pharmacophores have four common points i.e. two hydrogen

bond acceptors (HBA) and two hydrophobic groups (HY). The

pharmacophore obtained from structure-based study exhibited

one additional feature i.e. hydrogen bond donors (HBD). This

observation revealed that along with HBA and HY features, HBD

feature can also contribute an additional interaction site at HIV-1

protease. All the 47 compounds of the compound library were

mapped onto the generated structure-based pharmacophore. One

of the interesting outcome of the study was that out of different

conformations of 47 compounds, 351 (various conformations) hits

were obtained and 41 hits exhibited a five-feature mapping and

rest all showed a four-feature interaction. These hits presented the

chemical features and the shape suggested by the structure-based

pharmacophore model.

Most active compounds 9r and 9s displayed a perfect five-

feature fit. The thorough analysis of pharmacophoric interaction

of two most active compounds 9r and 9s (Fig. 15) revealed that

the oxygen of the cyclic urea carbonyl group involved in hydrogen

bonding (HBA 1) which seems to be essential for activity. Also,

hydroxyl group present at P2/P29 positions of ring acts as

hydrogen bond acceptor (HBA 2) for amino acids present at the

active site. The benzene ring at P2/P29 is essentially involved in

hydrophobic interaction with surrounding hydrophobic amino

acids (HY1 and HY2). These all above observations exactly

matched with the positions of all 4 (2 HBA and 2 HY) features

obtained through ligand-based analysis when mapped onto most

active compounds 9r and 9s confirming the accuracy of the

HypoGen pharmacophore. Another feature i.e. hydrogen bond

donor (HBD) which was additionally retrieved through receptor-

based approach was mapped onto the hydrogen of second

Figure 18. Chemical structures of hits obtained from Maybridge database. (A) BTB01434, (B) BTB14348, (C) BTB12395 and (D) BTB13591.
doi:10.1371/journal.pone.0048942.g018
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hydroxyl group at the ring. Mapping fashion of least active

compound 8t onto the structure-based pharmacophore was also

analyzed, which exhibited a four-feature fit in which hydrogen

bond acceptor (HBA 1) was missing due to absence of cyclic urea

carbonyl group (cyclic cyanoguanidine moiety) and hence resulted

in least biological activity (Fig. 16). Interestingly, comparison of

pharmacophoric interactions of both the pharmacophores (ob-

tained from ligand as well as structure based study) display

common binding mode and indicates the significance of hydrogen

bond acceptor, donor and hydrophobic functionalities in defining

the activities of compounds.

It is also interesting to note that the seventeen different

conformations of the compound 9s were obtained as hits, out of

seventeen conformations sixteen mapped to four features of the

input pharmacophore whereas one mapped to five features, i.e.

two hydrogen bond acceptors, two hydrophobes and one

hydrogen bond donor (Fig. 15). It seems that one out of seventeen

different conformers is able to adopt a orientation which can

interact with all five pharmacophoric features at HIV-1 protease

binding pocket due to conformational adjustment. Hence, the

model developed herein also highlights the importance of bioactive

conformation in eliciting the biological response.

Also, 15 external test set molecules which were used to validate

the pharmacophore developed from ligand-based methodology

were also used as a screening validation dataset on the five-feature

structure-based pharmacophore. All the 15 external test set

molecules exhibited good estimated activities and fit values (shown

in Table 6) explaining the accuracy of our developed pharmaco-

phore. The most active compounds of both non-cyclic and cyclic

urea derivatives showed the best fit values (Fig. 17 and Table 6).

Database Mining
The validated pharmacophore obtained from HypoGen anal-

ysis i.e. hypothesis 1 was used to screen molecules with similar

features from the Maybridge and NCI database to find other

Figure 19. Pharmacophore mapping of Maybridge hits onto hypothesis 1. (A) BTB01434, (B) BTB14348, (C) BTB12395 and (D) BTB13591.
doi:10.1371/journal.pone.0048942.g019
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structural motifs that fulfill the functional and spatial constraints of

the model. This method constitutes a powerful way for quickly

finding new potential lead compounds in a medicinal chemistry

project. As a result of this search, 399 lead compounds were

obtained from the first 3D query and their activities were

estimated, out of which 4 candidates namely BTB01434,

BTB14348, BTB12395 and BTB13591 (Fig. 18) turned out as

potential ligands exhibiting a good perfect four feature fit (fit value

being 8.568, 8.141, 8.005 and 7.944 respectively) from which one

lead BTB01434 exhibited quite good predictive activity of

0.798 nM (Table 7). The four features of the above pharmaco-

phore were mapped onto the best estimated compound BTB01434

(Fig. 19A) in the following manner: HBA 1 was occupied by

carbonyl oxygen from sulfonamide moiety and HBA 2 mapped

well onto oxygen belonging to nitro group. While first hydropho-

bic (HY 1) feature mapped onto benzene ring directly attached to

sulfonamide group and another hydrophobic (HY 2) feature took

its position towards the 4-methyl group attached with second

benzene ring. Pharmacophore mapping of all four Maybridge hits

onto hypothesis 1 is shown in Fig. 19.

Validation of Database Compounds
In order to validate the pharmacophoric pattern of above

mentioned four database compounds, their conformations were

generated and mapped onto the pharmacophore derived from

structure-based strategy. Out of different conformations of four

compounds, 19 (various conformations) hits were obtained and

three hits (each from BTB01434, BTB14348, and BTB13591)

exhibited a perfect five-feature mapping and rest all showed a

four-feature interaction. Analysis of the best five feature hit

exhibited by highest estimated compound BTB01434, revealed

that two HBA and two HY features were mapped exactly on the

same groups as that of mapping obtained onto the pharmacophore

obtained from HypoGen study. An additional feature i.e.

hydrogen bond donor (HBD) which was additionally retrieved

through receptor-based approach was mapped onto the –NH

group of suphonamide moiety. This similar pattern of accurate

mapping (common mapping fashion) was seen, when rest of three

database compounds were mapped onto the structure-based

pharmacophore, hence proving the precision of our predicted

database compounds. Therefore, on the basis of above validation

of these database compounds through mapping onto structure-

based pharmacophore, we conclude that these database com-

pounds would ensure good Ki values if experimentally synthesized

and pharmacologically evaluated for HIV-1 enzyme inhibitory

activity.

Lipinski’s ‘‘rule of five’’ is a heuristic approach for predicting

drug-likeness stating that molecules having molecular weight

.500, log P.5, hydrogen bond donors .5 and hydrogen bond

acceptors .10 have poor absorption or permeation [44]. The

parameters included in Lipinski’s rule of 5, were calculated for the

above four molecules retrieved from database search and are

summarized in Table 7 along with their fit value and estimated

activity. The results clearly indicate that there is no violation to

Lipinski’s rule and it is highly likely that all the designed

compounds will also have favorable pharmacokinetics profile.

Conclusions
In this study, we described the development of highly selective

pharmacophore models for inhibitors of HIV-1 protease. The

generated pharmacophore reflects the binding mode and the

important interactions of the ligands with certain amino acids in

the active site of HIV-1 protease enzyme. In our ligand-oriented

study, efforts were made to take multiple contributions of ligand

features to build a quantitative pharmacophore models from a

training set of 33 HIV-1 protease inhibitor analogs. The best

pharmacophore consisted of four pharmacophore features,

including two hydrogen bond acceptor and two hydrophobic

features, having a correlation coefficient of 0.90. Besides, this

hypothesis was further validated by an external test of 15

compounds. The type and spatial location of the chemical feature

agree perfectly with the pattern of enzyme inhibitor interactions

identified from crystallography. In our structure-oriented study,

another 3D pharmacophore model from HIV-1 protease enzyme

was developed and was used to screen compound library

comprising of for HIV-1 protease inhibitors as validation step.

The interaction shown by the compounds provides the insight into

the mechanism involved in the ligand-enzyme interaction. The

model developed herein also highlights the importance of bioactive

conformation in eliciting the biological response. As a result of

database mining four structurally diverse protease inhibitors were

identified.
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