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Abstract: Overweight and obesity are associated with chronic low-grade inflammation and represent
risk factors for various diseases, including COVID-19. However, most published studies on COVID-19
defined obesity by the body mass index (BMI), which does not encounter adipose tissue distribution,
thus neglecting immunometabolic high-risk patterns. Therefore, we comprehensively analyzed
baseline anthropometry (BMI, waist-to-height-ratio (WtHR), visceral (VAT), epicardial (EAT), subcu-
taneous (SAT) adipose tissue masses and liver fat, inflammation markers (CRP, ferritin, interleukin-6),
and immunonutritional scores (CRP-to-albumin ratio (CAR), modified Glasgow prognostic score,
neutrophile-to-lymphocyte ratio, prognostic nutritional index)) in 58 consecutive COVID-19 patients
of the early pandemic phase with regard to the necessity of invasive mechanical ventilation (IMV).
Here, metabolically high-risk adipose tissues represented by increased VAT, liver fat, and WtHR
strongly correlated with higher levels of inflammation, pathologic immunonutritional scores, and
the need for IMV. In contrast, the prognostic value of BMI was inferior and absent with regard to
SAT. Multivariable logistic regression analysis identified an optimized IMV risk prediction model
employing liver fat, WtHR, and CAR. In summary, we suggest an immunometabolically risk-adjusted
model to predict COVID-19-induced respiratory failure better than BMI-based stratification, which
warrants prospective validation.

Keywords: COVID-19; obesity; metaflammation; invasive mechanical ventilation; body composition;
immunonutritional scores

1. Introduction

The high prevalence and increasing incidence rates of overweight and obesity are
major public health problems in Western societies due to their association with pathologies
such as diabetes, cardiovascular diseases, and cancer [1–4]. On the other hand, overweight
and obesity are also risk factors for a number of infectious diseases [5] and are associated
with higher frequencies of nosocomial infections, including respiratory tract infections and
pneumonia, as again recently discussed for COVID-19 patients [5–7]. Generally, an excess of
visceral adipose tissue negatively affects lung functions and ventilation via mechanical and
immunologic mechanisms, leading to obstructive and restrictive dysfunctions and more
hypoventilated lung tissue [5,7]. Moreover, increased adipose tissue masses, especially in
the visceral compartment, are associated with systemic chronic low-grade inflammation,
termed metaflammation, which is maintained by a constant elevation of adipokines and
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cytokines, such as tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) [7–12]. As a
consequence, due to metaflammation, obese patients can suffer from ineffective immune
responses without sufficient clearance of the causative pathogen [13,14].

In COVID-19 patients, these obesity-associated immunologic changes have recently
been suggested to enhance hyperinflammatory immune responses [7]. However, most
published studies on COVID-19 patients define obesity solely based on body mass index
(BMI). In other earlier reports on patients with cardiovascular diseases, BMI was already
identified as an inferior predictor of obesity-associated pathologies compared with other
anthropometric measures, such as waist-to-height or -hip ratios [15]. As BMI cannot
assess distinct adipose tissue distribution patterns, immunometabolic high-risk patients are
thereby ill-characterized. Here, visceral adipose tissue (VAT) has been extensively described
as a major contributor to metaflammation and its consecutive cardiovascular and metabolic
pathologies [16–18]. The role of subcutaneous adipose tissue (SAT) is still controversial due
to heterogeneous effects on systemic inflammation and metabolic pathologies [19]. Similar
to VAT, epicardial adipose tissue (EAT) is of special interest with respect to the development
of cardiovascular diseases, and its thickness has been described as a surrogate for visceral
fat deposition [20]. Given EAT’s anatomical proximity to the heart, direct interactions
with cardiac structures and the release of proinflammatory and fibrotic mediators can
additionally drive cardiovascular pathomechanisms [20,21]. Finally, fat accumulation
within the liver has been described not only as a risk factor for liver dysfunction and
fibrosis but also as associated with cardiometabolic diseases [22].

Another way to depict an individual’s nutritional and inflammatory status is the use of
immunonutritional scores such as the modified Glasgow prognostic score (mGPS) [23], the
prognostic nutritional index (PNI) [24], and the neutrophile-to-lymphocyte ratio (NLR) [25].
These scores were originally developed to predict the outcome of cancer patients and are
calculated based on serum levels of inflammatory markers, mostly including albumin as a
marker of patient nutritional status and CRP reflecting the inflammatory component [26].
CRP, being part of immunonutritional scores, including mGPS and the Prognostic Index [27],
was repeatedly shown to be an independent prognostic marker for COVID-19 disease
severity [28–30]; it gradually increases with the size of pneumonic infiltrates [31] and is an
inherent part of the inflammatory cascade caused by COVID-19 infection [32]. Recently, in
the context of COVID-19 infections, immunonutritional scores showed a prognostic value
for adverse outcomes [33]. Overall, NLR showed the highest potential as a prognostic
marker for COVID-19 patients. In addition, albumin-based scores such as the CRP-to-
albumin ratio (CAR) and PNI were also good predictors of COVID-19 disease severity.

In most studies, the effects of anthropometric measures, body composition, and
immunonutritional scores on the outcomes of COVID-19 patients were investigated isolated
from each other. Therefore, we aimed to perform a comprehensive analysis highlighting
interactions within immunometabolic host factors in the context of COVID-19 disease by
performing a retrospective analysis of a single-center COVID-19 cohort.

2. Methods
2.1. Patients

We performed a retrospective chart review of all patients with symptomatic confirmed
COVID-19 who were hospitalized at the LMU University Hospital in Munich, Germany,
between 29 February 2020 and the date of data cutoff on 6 May 2020. A confirmed case of
COVID-19 was defined as a positive result on real-time reverse transcriptase polymerase
chain reaction (RT-PCR) assay of nasal and pharyngeal swab specimens. Only laboratory-
confirmed cases were included in the analysis. Patients without thoracic CT scans were
excluded from the study. A total of 58 out of 75 patients who were admitted during this
time period met these study criteria (Suppl. Figure S1). Clinical characteristics included pre-
existing comorbidities (hypertension, diabetes, chronic kidney injury, chronic obstructive
pulmonary disease (COPD)), laboratory parameters at the time of admission (c-reactive
protein (CRP), ferritin, IL-6, albumin, differential blood count, troponin, creatinine), and
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patient clinical and demographic data, which were extracted from the clinical records.
The overall patient cohort was split according to invasive mechanical ventilation (IMV)
requirement. These criteria were chosen as analogues to previous studies assessing the
severity of similar serious infectious diseases, such as H7N9 infection [34]. COVID-19
patients who did not require IMV were admitted to normal wards, where they were treated
with oxygen supply via nasal cannula if needed. Within this study cohort, there was no case
in which a patient was denied ICU admission due to medical circumstances or a shortage of
ICU capacities. Patients are part of the COVID-19 Registry of the LMU University Hospital
Munich (CORKUM, Trial ID: DRKS00021225). Patient data were anonymized for analysis,
and the study was approved by the institutional review board (No: 20-767).

2.2. Assessment of Body Composition and Immunonutritional Scores

For body composition analyses, we used chest computer tomography (CT) scans taken
on the day of admission or between 2 weeks before or after the diagnosis of COVID-19,
depending on which was closest to the day of hospitalization. Segmentation analyses
of a single CT slice at thoracic spine 12 (TH12)—as the most caudal common reference
point—were performed to quantify SAT, VAT, and waist circumference as well as the fat
contents of both the liver and spleen (Figure 1A,B). Adipose tissue discrimination was
based on predefined Hounsfield unit (HU) ranges (−190 to −30 HU for SAT [35], −150 to
−50 HU for VAT [35], and −190 to −30 HU [36] for EAT). EAT content was measured at the
bottom, middle (the 4-chamber view), and top (left main coronary artery view) of the heart,
and the mean of these three areas was calculated (Figure 1B). Organ fat content of the liver
and spleen were determined by analysis of the HU values in randomly selected regions of
interest (ROI; liver: 7 ROI; spleen: 3 ROI) in a single CT slice at TH12. A lower attenuation
of the liver indicates a higher level of hepatic fat involvement. The mean HU values of
the spleen were used as a control. Cross-sectional areas of respective tissues were also
computed for each image. Segmentation analyses were performed Slice-O-Matic software
package (version 5.0, Tomovision, Magog, Quebec, Canada). Abdominal circumference was
measured with ImageJ software (version 2.0.0, U.S. National Institutes of Health, Bethesda,
MD, USA).

We further calculated the following immunonutritional scores based on the labora-
tory values at the time point of admission: modified Glasgow prognostic score (mGPS),
prognostic index (PI), prognostic nutritional index (PNI), CRP-to-albumin ratio (CAR), and
neutrophile-to-lymphocyte ratio (NLR). Scoring systems and calculations are summarized
in Suppl. Table S1.

2.3. Statistics

Patient characteristics, body composition, and serum parameter analyses were com-
pared using the Mann–Whitney test for continuous variables and the Fisher’s exact test and
Chi-squared test for categorical variables. Continuous variables are reported as median and
interquartile range (IQR) if not stated otherwise. To measure the relationship between two
continuous variables, Spearman correlation analyses were used. The area under the curve
(AUC) and the 95% confidence interval (95% CI) of the receiver operating characteristic
(ROC) analysis were computed using the predicted probability of the need for IMV. Optimal
discriminatory thresholds were determined by optimizing the respective Youden J statistic.
Logistic regression analyses were used to calculate univariate odds ratios (OR). Multivari-
able analysis was performed as both-directional stepwise binary logistic regression for
the outcome of IMV requirement. The model included body composition parameters and
immunonutritional scores with an AUC > 0.74 in ROC analyses. Significance was defined
as p < 0.05. Statistical analysis was performed using GraphPad Prism v9.0 (GraphPad
Software, Inc., San Diego, CA, USA) and R statistical software v4.1.0.



Nutrients 2022, 14, 4280 4 of 16Nutrients 2022, 14, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. Study overview and adipose tissue quantification. (A) Analyses of adipose tissue distri-
bution, anthropometric parameters and immunonutritional scores were performed on COVID-19 
patients. (B) Examples for adipose tissue quantification at TH12 vertebrae level for visceral (green) 
and subcutaneous (red) adipose tissue as well as liver fat (blue spots). Epicardial adipose tissue was 
quantified at top, middle and bottom view of the heart (blue). Abbreviations: CAR = CRP-to-albu-
min ratio, mGPS = modified Glasgow Prognostic Score, NLR = Neutrophile-to-Lymphocyte-Ratio, 
PI = Prognostic Index, PNI = Prognostic Nutrtitional Index. 
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Figure 1. Study overview and adipose tissue quantification. (A) Analyses of adipose tissue distri-
bution, anthropometric parameters and immunonutritional scores were performed on COVID-19
patients. (B) Examples for adipose tissue quantification at TH12 vertebrae level for visceral (green)
and subcutaneous (red) adipose tissue as well as liver fat (blue spots). Epicardial adipose tissue
was quantified at top, middle and bottom view of the heart (blue). Abbreviations: CAR = CRP-to-
albumin ratio, mGPS = modified Glasgow Prognostic Score, NLR = Neutrophile-to-Lymphocyte-Ratio,
PI = Prognostic Index, PNI = Prognostic Nutrtitional Index.

3. Results
3.1. Patient Characteristics

We screened the clinical records of 75 patients consecutively admitted to our medical
center between February to May 2020. Based on data availability and completeness, 58 pa-
tient records were included in the analysis of anthropometric measures, body composition,
and immunonutritional scores (Figure 1 and Suppl. Figure S1). Depending on the need for
IMV, we subdivided the entire cohort into two groups (Table 1). All but one of the patients
needed IMV due to COVID-19-associated ARDS (mild: 3, moderate: 6, severe: 5, cardiac
decompensation: 1; Suppl. Table S2). The median age of the entire patient cohort was
63 years (range 32–91 years) without relevant differences between patients with IMV and
without IMV. A total of 27.6% of all patients were female. A higher proportion of patients
among the COVID-19 patients without IMV were female (non-IMV: 32.6% vs. IMV: 13.3%,
p = 0.19). Within the entire patient cohort, 56.9% had none of the considered comorbidities,
31% had one, and 12% had at least a combination of two or more of the considered comor-
bidities. The number of comorbidities was similarly distributed between patients with and
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without the need for IMV (p = 0.39). Although diabetes was more prevalent in COVID-19
patients with IMV (IMV: 26.7% vs. non-IMV: 14%), the overall distribution of pre-existing
comorbidities was similar between groups (p = 0.75). As laboratory surrogates for the
considered pre-existing comorbidities, we compared creatinine and high-sensitive troponin
levels. We found increased levels of creatinine and troponin in the serum of COVID-19
patients who needed IMV (creatinine: IMV: 1.1 (0.8–2.1) mg/dLvs. Non-IMV: 0.9 (0.4–6.0)
mg/dL; troponin: IMV: 0.02 (0–0.04) ng/mL vs. non-IMV: 0 (0–0.18) ng/mL). However,
median levels of creatinine were still within normal ranges (creatinine < 1.2 mg/dL), and,
for troponin, barely past our institutional upper limits (troponin < 0.018 ng/mL).

Table 1. Baseline Patient Characteristics.

Characteristic

Invasive Mechanical Ventilation

p-ValuesAll Patients
(N = 58)

No
(N = 43)

Yes
(N = 15)

Age, median
(range) [years] 63 (32–91) 61 (31–91) 64 (47–82) 0.66

30–50 years 13 (22.4) 12 (27.9) 1 (6.7)
0.1351–70 years 27 (46.6) 17 (39.5) 10 (66.7)

>71 years 18 (31) 14 (32.6) 4 (26.7)
Female 16 (27.6) 14 (32.6) 2 (13.3) 0.19
Comorbidities
None 33 (56.9) 24 (55.8) 9 (60)

0.391 comorbidity 18 (31) 15 (34.9) 3 (20)
≥2 comorbidities 7 (12) 4 (9.3) 3 (20)
Diabetes 10 (27.2) 6 (14) 4 (26.7)

0.75
Coronary heart disease 13 (22.4) 10 (23.3) 3 (20)
COPD 5 (8.6) 4 (9.3) 1 (6.7)
Chronic kidney disease 5 (8.6) 4 (9.3) 1 (6.7)
Serum parameters
Creatinine, median
(range) [mg/dL] 0.95 (0.4–6.0) 0.9 (0.4–6.0) 1.1 (0.8–2.1) 0.006

Troponin, median
(range) [ng/mL] 0 (0–0.18) 0 (0–0.18) 0.02 (0–0.04) 0.002

All values are shown in number (percent) if not stated otherwise. Abbreviations: COPD = chronic obstructive
pulmonary disease.

3.2. Patients with the Need for IMV Have More Adipose Tissue and Adverse Immunonutritional
Scores

Analysis of anthropometric parameters revealed a median BMI of 25.7 kg/m2 for the
entire cohort, with increased numbers of obese patients within the IMV group (IMV: 6
(40%) vs. non-IMV: 7 (16.7%); Table 2). Accordingly, COVID-19 patients with IMV had
a higher median BMI (IMV: 27.8 (20.4–45.8) kg/m2 vs. non-IMV: 24.8 (17.7–38.5) kg/m2,
p = 0.03). Besides BMI differences, waist circumference (IMV: 111.2 (103.2–150.4) cm vs.
non-IMV: 103.4 (77.7–134) cm, p = 0.003) and WtHR (WtHR, IMV: 0.66 (0.57–0.8) vs. non-
IMV: 0.59 (0.47–0.71), p = 0.0006) were both significantly higher in patients who required
IMV. Analysis of adipose distribution patterns from body composition analyses further
displayed that the differences in anthropometric data were predominantly based on the
visceral adipose depot. Here, patients who required IMV displayed a significantly higher
amount of VAT compared with patients who did not need IMV (IMV: 133.4 (64.7–300.3)
cm2 vs. non-IMV: 84.6 (7–237.2) cm2, p = 0.005), whereas SAT and EAT were increased
without reaching significance level (Table 2). In addition, the IMV cohort also had higher
amounts of hepatic fat as indicated by a lower attenuation in the computer tomography
with significantly lower HU values (IMV: 45 (28.6–57) HU vs. non-IMV: 48.6 (31.3–61.2)
HU, p = 0.004). As a control, we also analyzed splenic tissue attenuation, which showed no
differences between the two groups (Table 2).
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Table 2. Distribution of Anthropometric and Body Composition Parameters and Immunonutritional
Scores Between COVID-19 Cohorts Based on IMV Requirement.

Characteristic

Invasive Mechanical Ventilation

p-ValuesAll Patients
(N = 58)

No
(N = 43)

Yes
(N = 15)

Anthropometric Parameters
BMI [kg/m2] 25.7 (17.7–45.8) 24.8 (17.7–38.5) 27.8 (20.4–45.8) 0.03
BMI ≥ 30, number
(percent) [kg/m2] 13 (22.8%) 7 (16.7%) 6 (40%)

Waist circumference
[cm] 107.5 (77.7–150.4) 103.4 (77.7–134) 111.2 (103.2–150.4) 0.003

WtHR [rel.] 0.61 (0.47–0.8) 0.59 (0.47–0.71) 0.66 (0.57–0.8) 0.0006
Adipose Tissue Distribution
SAT [cm2] 97 (8.5–383.6) 92.9 (8.5–383.6) 118 (40.8–343.7) 0.07
VAT [cm2] 88.9 (7–300.3) 84.6 (7–237.2) 133.4 (64.7–300.3) 0.005
EAT [cm2] 12.3 (3.4–32.3) 11.9 (3.4–30.7) 13.2 (5.9–32.3) 0.08
Liver Fat [HU] 46.7 (28.6–61.2) 48.6 (31.3–61.2) 45 (28.6–57) 0.0044
Spleen [HU] 44.4 (29–55.1) 44.4 (29–55.1) 45.7 (31.2–54.8) 0.984
Immunonutritional Scores
NLR [rel.] 4.3 (0.9–20.4) 3.5 (0.9–19.1) 5.8 (2.5–20.4) 0.06
PNI [rel.] 42.6 (27.1–54.8) 43.1 (36.4–54.8) 36.6 (27.1–46.7) <0.0001
CAR [rel.] 0.8 (0–9.8) 0.5 (0–9.8) 2.6 (0.6–4.9) 0.0007
mGPS

– 0 45 35 10 0.007
– 1 6 6 0
– 2 7 2 5

PI
– 0 43 35 8 0.09
– 1 12 6 6
– 2 3 2 1

Abbreviations: BMI = body mass index, CAR = CRP-to-albumin ratio, mGPS = modified Glasgow Prognostic
Score, NLR = Neutrophile-to-Lymphocyte-Ratio, PI = Prognostic Index, PNI = Prognostic Nutritional Index,
Waist = waist circumference, WtHR = waist-to-height-ratio, S/V/EAT = subcutaneous/visceral/epicardial adi-
pose tissue.

Next to body composition, we found significant differences in immunonutritional
scores between the two cohorts. In particular, the scores including serum albumin levels
showed adverse values in the IMV cohort (PNI: IMV 36.6 (27.1–46.7) vs. non-IMV 43.1
(36.4–54.8), p = < 0.0001; CAR: IMV 2.6 (0.6–4.9) vs. non-IMV 0.5 (0–9.8), p = 0.0007), whereas
the scores NLR and PI, focusing on combinations of leukocyte subsets, showed a nonsignif-
icant trend (Table 2). Results for single inflammatory markers (CRP, ferritin, interleukin-6,
albumin, leukocytes) were similar and in accordance with previous publications (Suppl.
Table S3).

3.3. ROC Analyses Identify WtHR, VAT, Liver Fat, and Immunonutritional Scores as Risk Factors
for the Requirement of IMV

To evaluate the prognostic value of the body composition parameters and immunonu-
tritional scores for the requirement of IMV, we performed ROC analyses (Figure 2). The
scores mGPS and PI were excluded from these analyses due to their categorial distribution.
Regarding the anthropometric parameters, ROC analyses revealed that waist circumference
and WtHR were superior to BMI as measured by AUC (BMI: AUC 0.69 (0.53–0.85), p = 0.03;
waist: AUC: 0.76 (0.63–0.88); WtHR: AUC 0.79 (0.67–0.91), p = 0.0009; Table 3). Similarly,
ROC of VAT and liver fat resulted in an AUC of 0.74 (VAT: p = 0.006; liver fat: 0.005),
whereas AUC of SAT and EAT reached maximal values of 0.66 (Table 3). Accordingly,
WtHR, VAT, and liver fat showed the strongest effects in univariate logistic regression.
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Figure 2. Receiver Operating Characteristic (ROC) curves for prediction of IMV need in COVID-19
patients based on anthropometric data, adipose tissue distribution and immunonutritional scores.
(A) ROC curves for BMI, waist and WtHR. (B) ROC curves for liver fat, SAT, VAT and EAT. (C) ROC
curves for CAR, PNI and NLR. Abbreviations: BMI = body mass index, CAR = CRP-to-albumin ratio,
NLR = Neutrophile-to-Lymphocyte-Ratio, PNI = Prognostic Nutritional Index, Waist = waist circum-
ference, WtHR = waist-to-height-ratio, S/V/EAT = subcutaneous/visceral/epicardial adipose tissue.

Regarding the immunonutritional scores, CAR (AUC 0.79 (0.67–0.91), p = 0.001) and
PNI (AUC 0.84 (0.7–0.99), p = 0.0002) showed a good prognostic value for IMV requirement
in ROC analyses, whereas NLR did not reach significance level. In univariate logistic
regression, PNI and NLR remained prognostic factors for the requirement of IMV (Table 3).
Single inflammatory parameters reached similar or better AUCs, which was particularly
true for IL-6 (Suppl. Figure S2, Suppl. Table S4).
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Table 3. Results of ROC Analyses and Odds Ratios for Anthropometric Parameters, Adipose Tissue
Distribution and Immunonutritional Scores.

AUC (95%CI) p Value
AUC

Discriminatory
Value

OR
(95%CI)

p-Value
OR

Anthropometric Parameters
BMI 0.69 (0.53–0.85) 0.03 26.1 kg/m2 1.13 (1.01–1.29) 0.04
Waist 0.76 (0.63–0.88) 0.003 109.3 cm 1.09 (1.03–1.16) 0.009
WtHR 0.79 (0.67–0.91) 0.0009 0.635 cm/m2 1.21 (1.09–1.4) 0.002
Adipose Tissue Distribution
SAT 0.66 (0.5– 0.82) 0.07 86.7 cm2 1.01 (1–1.01) 0.16
VAT 0.74 (0.6–0.88) 0.006 67.4 cm2 1.01 (1.01–1.02) 0.006
EAT 0.65 (0.49–0.81) 0.08 9.7 cm2 1.09 (1–1.2) 0.048
Liver fat 0.74 (0.6–0.89) 0.005 46.2 HU 0.88 (0.79–0.97) 0.01
Inflammation Scores
CAR 0.79 (0.67–0.91) 0.001 0.7 1.28 (0.97–1.76) 0.1
PNI 0.84 (0.7–0.99) 0.0002 38.7 1.15 (1.02–1.32) 0.03
NLR 0.71 (0.51–0.9) 0.057 4.75 1.17 (1.05–1.43) 0.01

Abbreviations: 95% CI = 95% confidence interval, AUC = area under the curve, BMI = body mass index, CAR
= CRP-to-albumin ratio, HU = Hounsfield unit, NLR = Neutrophile-to-Lymphocyte-Ratio, OR = Odds Ratio,
PNI = Prognostic Nutritional Index, Waist = waist circumference, WtHR = waist-to-height-ratio, S/V/EAT =
subcutaneous/visceral/epicardial adipose tissue.

3.4. Metabolically High-Risk Adipose Tissue Sites Correlate with Inflammatory Parameters and
Immunonutritional Scores

To further investigate whether obesity-associated metaflammation contributes to the
differences in the COVID-19 cohorts, we correlated body composition parameters with
inflammatory markers and immunonutritional scores (Figure 3). We found that the body
composition parameters with the biggest differences between IMV and non-IMV patients
also displayed the strongest correlations with inflammatory markers and immunonutri-
tional scores. For instance, among the anthropometric parameters, WtHR significantly
correlated with ferritin, IL-6, and albumin levels (WtHR/ferritin: r = 0.39, p = < 0.01;
WtHR/IL-6: r = 0.29, p = 0.03; WtHR/albumin: r = −0.31, p = 0.03) and showed correlation
trends with CRP and CAR. In contrast, BMI only correlated with ferritin (BMI/ferritin:
r = 0.31, p = 0.02). Regarding adipose tissue distribution, similar correlations were noticed
for VAT and liver fat, with the latter displaying the strongest effects overall. Notably, SAT
did not show any correlations or trends. Overall, correlations were generally stronger for
CRP, ferritin, and IL-6 compared with albumin and were stronger between body composi-
tion parameters with single inflammatory markers compared to immunonutritional scores.
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WtHR > 0.635 5.6 1.11–35.5 0.07
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Figure 3. Metabolically high-risk adipose tissue compartments correlate inflammatory serum markers
and immunonutritional scores. Each of the anthropometric parameters (BMI, Waist, WtHR) and
adipose tissue compartments (SAT, VAT, EAT, Liver Fat) were correlated with inflammatory markers
(CRP, ferritin, interleukin-6, albumin) and immunonutritional scores (CAR, NLR, PNI). (A) Heatmap
displays Spearman correlation coefficient from -1 (blue) to 1 (red). (B) Matrix shows the respective
p-values to correlations shown in A. Yellow cells = p-value between 0.1 and 0.05, red cells = p-value
below 0.05. Abbreviations: BMI = body mass index, CAR = CRP-to-albumin ratio, NLR = Neutrophile-
to-Lymphocyte-Ratio, PNI = Prognostic Nutritional Index, Waist = waist circumference, WtHR =
waist-to-height-ratio, S/V/EAT = subcutaneous/visceral/epicardial adipose tissue.

3.5. Stepwise Multivariable Logistic Regression Identifies an Optimal Model for IMV Requirement
including Liver Fat, WtHR, and CAR

Since body composition parameters correlated with inflammatory markers and im-
munonutritional scores, we next wanted to evaluate these parameters in a multivariable
model for the prediction of IMV requirement. For the base model, we included all parame-
ters with an AUC > 0.74 based on the ROC results, and we dichotomized variables based on
discriminatory thresholds calculated by Youden statistics (Table 3). Due to multicollinearity
of waist circumference and WtHR, only WtHR was retained in the base model, which finally
included the parameters WtHR, VAT, liver fat, CAR, and PNI. Because of the small study
cohort, we performed a stepwise both-directional multivariable logistic regression analysis
resulting in a final model that included liver fat (OR 5.6 (1.03–38.3), p = 0.02), WtHR (OR
5.6 (1.11–35.5), p = 0.07), and the immunonutritional score CAR (OR 22.3 (3–496.1), p = 0.03)
(Table 4). Thus, in our modeling approach, body composition parameters and immunonu-
tritional scores are independently associated with IMV requirement in COVID-19 patients.

Table 4. Step-wise Multivariable Logistic Regression Analysis Identifies an Optimal Model Including
Liver Fat, WtHR and CAR for the Prediction of IMV Requirement.

Parameter Discriminatory Threshold Odds Ratio 95%CI p-Value

Liver Fat < 46.2 HU 5.6 1.03–38.3 0.02
WtHR > 0.635 5.6 1.11–35.5 0.07
CAR > 0.7 22.3 3.01–496.1 0.03

Abbreviations: 95%CI = 95% confidence interval, CAR = CRP-to-albumin ratio, HU = Hounsfield unit,
WtHR = Waist-to-Height-Ratio.
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4. Discussion

Obesity has been described as a risk factor for developing severe COVID-19 and respi-
ratory failure. However, most published studies employed only BMI-based determination
of overweight and obesity. In this study, we aimed to perform a comprehensive analysis
of immunometabolic host features, including body composition and laboratory-based
inflammation and nutrition status, with regard to their impact on the risk for respiratory
failure and invasive ventilation in hospitalized COVID-19 patients of the early pandemic
phase. Our results suggest that the assessment of immunometabolically active—especially
visceral—adipose tissue sites is superior to the widely used BMI, which neglects body
composition and tissue distribution patterns. Moreover, in this cohort, we demonstrate
that the combination of adipose tissue quantification with immunonutritional scores based
on standard laboratory data added further value to identify patients at the highest risk for
the need for IMV.

We found increased waist circumference, WtHR, VAT mass, and liver fat contents
to be strongly associated with IMV requirement. From the anthropometric measures, an
increased waist circumference or WtHR was a stronger predictor for IMV than a BMI-based
assessment of obesity. This is in line with data from the pre-COVID-19 era. Here, a large
meta-analysis demonstrated the superiority of WtHR compared with BMI in assessing the
risk for cardiometabolic diseases [15]. In addition, waist circumference as a measure of
visceral obesity was also associated with higher risks of influenza in adults and children
compared with BMI measures [37,38]. Similarly, in our cohort, adipose tissue distribution
patterns confirmed the high immunometabolic risk derived from visceral fat depots com-
pared with subcutaneous and epicardial adipose tissue sites, which is displayed by the
increased risk of COVID-19 patients for IMV. Previous reports on COVID-19 patients have
shown similar results [39–43]. In addition to the published literature on body composition
analyses in COVID-19 patients, this study additionally investigated CT-derived liver fat
content based on radiologic signal attenuation within the liver. With this approach, we
found significantly lower liver signals in the IMV cohort, indicating a higher liver fat
involvement in those patients. An increased liver fat content was a strong prognostic
factor for IMV risk and comparable to visceral adipose tissue mass. As a control, spleen
attenuation was neither significantly associated with invasive mechanical ventilation nor
did it correlate with laboratory inflammation indicators. The strong effects exerted by liver
fat in our cohort might reflect the transformation from a metabolically low-risk state to
a metabolically high-risk state of obesity, as discussed previously [44], and matches the
findings of other cohorts, in which nonalcoholic/metabolic associated fatty liver disease
(N/MAFLD) is associated with a worse outcome for COVID-19 patients [45]. However,
whether MAFLD displays an independent risk factor or is rather a byproduct of visceral
obesity remains controversial [46–48]. To conclude, our study adds further information
that overweight and obesity play a crucial role in COVID-19 and highlights that the widely
accepted single use of BMI as a measure of excess adipose tissue is insufficient and might
not display the effective risk.

To comprehensively assess the immunometabolic status of the present cohort, we
complemented body composition analyses with calculations of immunonutritional scores.
Here, we employed established scores that include serum albumin levels in combination
with several immunological parameters, such as CRP, lymphocyte, or neutrophil numbers.
Originally developed as prognostic scores in solid cancer patients, the use of these scores
was also validated in other diseases, such as postoperative infections [49–52], cardiovascular
diseases [53] and rheumatologic diseases [54–56]. Particularly in the context of COVID-19,
NLR, CAR, and PNI have been described as prognostic markers for disease severity and
survival. In our cohort, mGPS, PNI, and CAR had the strongest correlation with IMV needs,
whereas PI and NLR were less strongly associated. This strengthens previous data that
found albumin-based immunonutritional scores such as PNI have a high prognostic value
for COVID-19 disease severity [33,57,58]. Taken together, immunonutritional scores seem
to reflect an adverse metabolic and inflammatory status in COVID-19 patients, but more
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studies are needed to clarify whether their use is superior to the single factors they are
composed of.

Since the beginning of the COVID-19 pandemic, several studies have analyzed poten-
tial underlying mechanisms mediating obesity-associated risks for COVID-19 patients. In
this regard, the following mechanisms were discussed: an adipocyte-associated increase
in thrombogenic material within the blood, pulmonary microvascular dysfunction, and
functional impairment of the alveolar-capillary unit mediated by obesity-associated lung
inflammation and obesity-associated impaired lung physiology [59]. Moreover, the interac-
tion of SARS-COV-2 with the renin–angiotensin system (RAAS) via angiotensin-converting
enzyme 2 (ACE2) has attracted widespread attention as a mechanism [60,61]. SARS-COV-2
predominantly binds to ACE2-expressing tissues, which leads to a disbalance in the RAAS
cascade, resulting in increased cytokine release [60]. Since adipose tissue abundantly ex-
presses ACE2 [62,63], it was hypothesized that it might serve as a viral reservoir enabling
viral shedding, immune activation, and cytokine amplification, predisposing obese COVID-
19 patients to a severe course of the disease [60]. However, data on obesity-associated ACE2
expression patterns are still in part conflicting; thus, further studies are needed in this
regard [64]. Moreover, the role of adipokines was evaluated in the context of COVID-19,
showing that adiponectin as an anti-inflammatory cytokine is decreased in COVID-19
patients [65]. Regarding the proinflammatory adipokine leptin, results are yet inconclu-
sive [66,67]. In addition to these mechanisms, obesity-associated low-grade inflammation
(i.e., metaflammation) was suspected of contributing to worse outcomes in overweight and
obese patients [7,59,68]. To further investigate metaflammation as a mechanism, we corre-
lated body composition parameters with inflammatory markers and immunonutritional
scores. Notably, among the quantified adipose tissue sites, known metabolically active
deposits like VAT and liver fat showed strong correlations with inflammatory markers such
as IL-6, ferritin, and albumin in our cohort, whereas the metabolically rather inactive SAT
did not correlate with any of the inflammatory markers. Similarly, anthropometric features
reflecting visceral obesity such as waist and WtHR showed stronger correlations than BMI.
The association between increased VAT/MAFLD measures and chronic inflammation has
already been well described [69,70] as a consequence of adipose tissue infiltrating activated
immune cells [71]. Although these clinical analyses are not sufficient to dissect mechanistic
causalities, our findings point toward an active part of metabolically high-risk adipose
tissue sites for systemic inflammatory processes and add further evidence for the role of
metaflammation in COVID-19 and infectious diseases.

Limitations of this study include its retrospective and single-center design, as well
as the overall small sample size and the differences between group sizes. In addition,
subgroup analyses of male and female patients that would have been of high interest in the
light of sex-specific body composition patterns and different degrees of metaflammation
could not be performed due to the fact that males were the dominating cohort. Various
differences in innate and adaptive immune responses between men and women have
already been described. As an example, in women, macrophages and neutrophils show
higher phagocytic and degranulation activities, dendritic cells present antigens to T cells
more efficiently, and B cells are more abundant compared to men. In contrast, men have
more natural killer cells, and upon stimulation, CD4-positive T cells more often mount an
IL-17-polarized response compared with TH1-type and interferon-γ polarized responses
in women [72]. In addition, adipose distribution patterns also differ between males and
females, with males tending to develop higher amounts of VAT, whereas, in women,
subcutaneous adipose tissue plays an important role [16]. Since sex impacts both immune
system functionality and adipose tissue distribution patterns, larger patient cohorts are
needed to evaluate the impact of sex disparities on the proposed immunometabolically
risk-adapted model for COVID-19 outcomes. Finally, since our cohort represents the early
pandemic phase and the patients were presumably infected with the SARS-CoV-2 wild-
type strain only, our results need to be validated for later SARS-CoV-2 variants that are
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characterized by specific mutations within the viral core and spike proteins, which impact
their virulence and immunogenicity [73,74].

Still, these present findings are hypothesis-generating, and further clinical and trans-
lational investigation is warranted. If confirmed prospectively, we see useful clinical
applications. First, our results highlight the potential impact of overweight and obesity on
infectious diseases, which becomes more important as incidence rates of overweight and
obesity in (emerging) industrialized countries are rapidly increasing [75]. This is specif-
ically important in the context of the simultaneously increasing distribution of resistant
pathogens [76]. Therefore, public diet- and exercise-based interventions might be useful
to not only reduce the risk of cardiovascular diseases and cancer but also to diminish
the risk of developing severe infectious diseases, finally leading to lower hospitalization
rates and public health costs. Second, the present study shows that routinely performed
thoracic CT scans in respiratory diseases might comprise additional diagnostic value for the
assessment of body composition. Since CT scans can be used to directly measure adipose
tissue areas or volumes, it is considered a reference method for the quantification of adipose
deposits. In comparison to magnetic resonance imaging, CT-based quantification is less
likely to be affected by breathing artifacts [77]. Whereas body composition is typically
assessed on the L3 vertebrae level [77], we implemented an analysis algorithm measuring
on the level of the 12th thoracic spine as the most common caudal spine of the present
cohort. Similar analyses have been described as robust and valid direct measurements of
adipose tissue in patients after lung transplantation [78]. Thus, in patients with respiratory
infections, body composition might be easily assessed by low-dose CT scans at TH12 to
evaluate metabolically high-risk adipose tissue sites without the need for further diagnostic
procedures.

5. Conclusions

The present study suggests that CT-derived assessments of anthropometric measures
such as WtHR and of metabolically high-risk adipose tissue distributions including liver
fat in combination with immunonutritional scores are superior to BMI in predicting the
necessity for IMV in COVID-19 patients. Body composition measurements can easily be
performed by segmentation analysis of caudal thoracic CT images and do not require
additional diagnostic procedures or larger CT areas. Moreover, the link between metaboli-
cally high-risk adipose tissue compartments, immunonutritional scores, and inflammatory
markers indicate that obesity-associated metaflammation might play a critical role in
SARS-CoV-2-triggered hyperinflammatory responses and ARDS development.
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