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Abstract: Conspecific negative density dependence (CNDD) may vary by tree mycorrhizal type.
However, whether arbuscular mycorrhizal (AM)-associated tree species suffer from stronger CNDD
than ectomycorrhizal (EcM) and ericoid mycorrhizal (ErM)-associated tree species at different tree life
stages, and whether EcM tree species can promote AM and ErM saplings and adults growth, remain
to be studied. Based on the subtropical evergreen broad-leaved forest data in eastern China, the
generalized linear mixed-effects model was used to analyze the effects of the conspecific density and
heterospecific density grouped by symbiont mycorrhizal type on different tree life stages of different
tree mycorrhizal types. The results showed that compared to other tree mycorrhizal types at the
same growth stage, EcM saplings and AM adults experienced stronger CNDD. Heterospecific EcM
density had a stronger positive effect on AM and ErM individuals. Species diversity and average
relative growth rate (RGR) first increased and then decreased with increasing basal area (BA) ratios
of EcM to AM tree species. These results suggested that the stronger CNDD of EcM saplings and
AM adults favored local species diversity over other tree mycorrhizal types. The EcM tree species
better facilitated the growth of AM and ErM tree species in the neighborhood, increasing the forest
carbon sink rate. Interestingly, species diversity and average RGR decreased when EcM or AM tree
species predominated. Therefore, our study highlights that manipulating the BA ratio of EcM to AM
tree species will play a nonnegligible role in maintaining biodiversity and increasing forest carbon
sink rates.

Keywords: conspecific negative density dependence; tree mycorrhizal types; heterospecific
mycorrhizal tree neighbors; species diversity; relative growth rate; forest carbon sink rates

1. Introduction

Biodiversity is rapidly decreasing due to human impacts [1–4]. The release of large
amounts of CO2 exacerbates the greenhouse effect and further accelerates the extinction of
certain species [5–8]. As important ecosystems on earth, forests play an important role in
maintaining species diversity and carbon sequestration and storage. However, research
finds that forest productivity declines as species diversity declines [9–11]. Therefore, in
the context of global change, protecting and improving tree species diversity is crucial in
increasing the forest productivity and slowing down the rate of species extinction.

Ecologists have proposed a plethora of theories and hypotheses to explain the mecha-
nisms by which species diversity is maintained [12–16]. Among them, conspecific negative
density dependence (CNDD) is an ecological process in which individuals have increased
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mortality and slowed growth rates surrounded by high-density conspecific neighbors
due to the accumulation of host-specific natural enemies, thus promoting the coexistence
of diverse species [17–20]. Research shows that symbiotic fungi that form mycorrhizae
with plant roots and soil-borne pathogens that cause plant disease can play important but
distinct roles in CNDD [21–24].

Mycorrhizal fungi play an important role in maintaining plant diversity and improving
ecosystem function [24,25]. These symbiotic fungi provide up to 80% of the plant's needs
for nitrogen and phosphorus to the host plant in exchange for carbohydrates [26,27].
Almost all woody plants form symbiotic relationships with arbuscular mycorrhizal (AM),
ectomycorrhizal (EcM), or ericoid mycorrhizal (ErM) fungi [28], which we refer to as AM,
EcM, or ErM tree species. Previous studies have found that symbiotic fungi attenuate
the strength of CNDD and improve individual survival by promoting plant nutrient
acquisition and resistance to soil-borne pathogens [29,30]. Furthermore, trees associated
with different mycorrhizal fungi have different capacities for plant nutrient uptake and
pathogen defense [27,31–33]. Therefore, different tree mycorrhizal types can play different
roles in regulating species diversity and regulating forest carbon sink rates.

Since AM tree species usually experience stronger CNDD than EcM tree species,
species diversity around AM tree species is usually higher [34,35], while EcM tree species
generally maintain low-diversity, monodominant forests [36,37]. However, Qin et al. [38]
found that AM saplings had stronger CNDD than EcM saplings, while AM juveniles had
the same CNDD as EcM juveniles. This means that the CNDD of different tree mycorrhizal
types varies with tree life stage. However, it is unclear whether this variation affects
species diversity.

Unlike the negative effects of conspecific individuals, the existence of heterospecific
neighbors alleviates the strength of CNDD and promotes the survival of focal individuals
due to herd immunity effects [39–41]. Since the strength and direction of impacts vary
by tree-mycorrhizal-type neighbors, mixing all heterospecific individuals together would
overlook the different effects of these heterospecific mycorrhizal tree neighbors [34,42,43].
Therefore, it is necessary to group heterospecific species according to mycorrhizal sym-
bionts. While neighborhood EcM tree species can improve seedling survival compared to
AM tree species [29], it is unclear how different heterospecific mycorrhizal tree neighbors
affect the growth of saplings and adults, and whether this influence will affect the forest
carbon sink rate.

Exploring the differences in CNDD among AM, EcM and ErM tree species at sapling
and adult stages will help to reveal the role of mycorrhizal associations in maintaining
species diversity and regulating forest carbon sink rates. Here, we obtained two census
data from a 9 ha (300 m × 300 m) subtropical forest dynamic plot in Wuyanling National
Nature Reserve, Zhejiang Province, eastern China, to study the effects of neighborhood
factors (conspecific density and heterospecific density grouped by symbiont mycorrhizal
types) on the survival and growth of different tree mycorrhizal types along tree life stages.
We aimed to explore the following questions: (1) Do AM tree species suffer from stronger
CNDD than EcM or ErM tree species along tree life stages? (2) Do neighborhood EcM tree
species promote the growth and survival of different tree mycorrhizal types at different tree
life stages? (3) How does the variance in the strength of CNDD in different tree mycorrhizal
types affect species diversity and forest carbon sink rates?

2. Methods
2.1. Study Site

This study was conducted in Wuyanling National Natural Reserve (119◦37′08′′–
119◦50′00′′ E, 27◦20′52′′–27◦48′39′′ N), Taishun County, Zhejiang Province, eastern China.
The reserve is approximately 18,861.5 ha. The mean annual temperature is 15.2 ◦C. The
mean annual precipitation is 2195.8 mm, mostly between May and June. According to the
records of the Shangfengxiang Meteorological Station (1040 m above sea level) near the
study site, the mean annual temperature in the nearby area is 14.0 ◦C, with the lowest mean
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monthly temperature in January (4.0 ◦C) and the highest in July (23.0 ◦C), and the extreme
lowest temperature is −8.9 °C. The frost period begins in early October and ends in early
April of the following year. Frost-free days are about 210 days, and the sunshine rate is
38% [44].

In 2013, we established a 9 ha (300 m × 300 m) forest dynamic plot (119◦40′13.73′′ E,
27◦42′20.27′′ N) in an evergreen broad-leaved forest in the reserve (Figure 1). All trees with
diameter at breast height (DBH, 1.3 m) ≥ 1 cm were tagged, identified to the species level,
mapped and measured according to standard CTFS-ForestGEO protocols [45]. The second
census was completed in 2018. The plot is 869 m to 1144 m above sea level. According to the
second census, there were 63,158 free-standing woody plant individuals with DBH ≥ 1 cm
in the plot, belonging to 52 families, 94 genera and 192 species. The dominant canopy
species are Castanopsis eyrei (Fagaceae), Cyclobalanopsis stewardiana (Fagaceae) and Schima
superba (Theaceae).

Figure 1. Location and contour map of the 9 ha forest dynamic plot in Wuyanling National Natural
Reserve, eastern China.

2.2. Focal Species and Mycorrhizal Associations

We assigned each individual to one of two life stages (saplings or adults) according
to LaManna et al. [46], Liu et al. [47] and Pu and Jin [48] in subtropical forests. Saplings
were defined as individuals with 1 cm ≤ DBH < 2 cm for shrubs, 1 cm ≤ DBH < 5 cm for
understory tree species, and 1 cm ≤ DBH < 10 cm for canopy tree species. Individuals with
DBH larger than a sapling were defined as adults. The life forms of these species were
classified according to the Flora of China [49] and the Flora of Zhejiang [50] (Table S1). For
this study, we focused on the census between 2013 and 2018. Survival information was
recorded as 1 if the individual was alive and 0 if the individual was dead. We calculated
the relative growth rate (RGR) for each individual in the 5-year census interval from 2013
to 2018. RGR was calculated as (log(BAt+∆t) − log(BAt))/∆t, where BA indicates the sum
of the basal area (BA) of an individual at successive time steps t.

Mycorrhizal types of plant species were determined according to published literature
and the FungalRoot data set [51]. In the absence of information on the mycorrhizal type of
a given species, we referred to the mycorrhizal type of its congeners (Table S1) [52]. In total,
we obtained 146 arbuscular mycorrhizal (AM) species, 24 ectomycorrhizal (EcM) species
and 9 ericoid mycorrhizal (ErM) species (Table 1).
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Table 1. Summary information on species mycorrhizal types.

Mycorrhizal
Types Richness No.

Saplings
No.

Adults
Survival

Rate
Relative

Abundance
Relative

Basal Area

AM 146 21,623 9932 85.26% 68.78% 49.06%
EcM 24 2721 3104 84.22% 12.70% 44.34%
ErM 9 6667 1836 92.07% 18.53% 6.60%

2.3. Neighborhood Factors

Four neighborhood factors (NF) were calculated for each focal individual: density
of conspecific neighbors (Con), density of heterospecific AM neighbors (HetAM), density
of heterospecific EcM neighbors (HetEcM), density of heterospecific ErM neighbors (Het-
ErM). NF was defined as the distance-weighted (Dist) sum of the BAs of conspecific or
heterospecific neighbors found within a certain radius (r) of each focal individual, divided
by the circular area (πr2). To account for the potentially nonlinear nature of local biotic
interactions, we introduced the exponent c as Equation (20) in Detto et al. [53] to calculate
NF, where we set 10 c from 0.1 to 1, and selected the c value with the maximum likelihood
value (Figures S1 and S2 and Table S2). NF was calculated as:

NFi =

(
1
πr2

n

∑
j=1

BAj

Distij

)c

(1)

where n is the number of neighbors within radius r, BAj is the basal area of neighbor j, Distij
is the distance between focal individual i and its neighbor j.

2.4. Statistical Analyses

We used generalized linear mixed-effects models (GLMMs) [54] with a binomial error
distribution to quantify the effect of local neighbors on individual survival probability.
We used linear mixed-effects models (LMMs) [55] to assess the influence of neighborhood
density on individual RGR. The fixed effects of models included log-transformed individual
size (i.e., DBH measured during the first census) and four scale-dependent neighborhood
factors (Con, HetAM, HetEcM, and HetErM). To account for spatial autocorrelation and
interspecific differences, quadrat (20 m × 20 m subplots) and species identity of focal
individuals were considered as random effects in the model [56]. Since different species
have different growth rates and may exhibit different relationships between size and
survival, we allowed the effect of initial size to vary by species (i.e., random slopes) [41].
The model was summarized as follows:

Survivalij ~ Binomial(pij) (2)

RGRij ~ N(λij, σ2
λ) (3)

Logit (pij) or λji = β0j + β1j × DBHij +β2 × Conij + β3 × HetAMij +
β4 × HetEcMij + β5 × HetErMijj + Φk

(4)

where pij is the predicted survival probability for each individual i from species j, and λij is
the RGR for each individual i from species j. The parameter β0j represents the intercept, β1j
represents the effect of the plant initial size (DBH); β2, β3, β4 and β5 represent the effect of
four scale-dependent neighborhood factors; Φk represents the random effect of the quadrat.

We chose 5 m as the minimum neighborhood radius and 30 m as the maximum
neighborhood radius based on previous studies [57–59]. We ran the model with 26 different
neighborhood radii with a spatial resolution of 1 m (i.e., 5, 6, 7, ..., 30 m from the focal
individual). The Akaike’s Information Criterion (AIC) value was used to select the best-fit
model across a neighborhood radius of 5 to 30 m [60]. The models with the lowest AIC
values were given in the main text, and models with a neighborhood radius of 5 to 30 m
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are shown in Figures S3 and S4. To account for boundary effects, we excluded trees within
30 m of the plot boundary.

From the data of 255 quadrats (20 m × 20 m subplot) in this 9 ha plot, we calculated
the ratio of BA of EcM species to BA of AM species (REA), Shannon–Weiner index (H),
average RGR, total BA and increment of total BA. Generalized least squares (GLS) models
with certain spatial correlation structures were used to eliminate possible influences of
spatial autocorrelation [61]. Due to the relatively small proportion of ErM species in the
community total BA, we mainly analyzed the effects of AM and EcM tree species on
species diversity and average RGR. Due to the nonlinear effect of REA on species diversity
and average RGR, a nonlinear fitting method was used in the GLS model (Figure S5 and
Table S3).

All analyses were conducted in R 4.1.3 [62] using the lme4 [63], lmerTest [64] and nlme
packages [65].

3. Results
3.1. Neighbor Effects on All Individuals across Tree Life Stages

We found that CNDD had significant effects on both sapling survival and RGR. The
negative effects of conspecific neighbors decreased with increasing tree life stage, turning
into positive effects on the survival of adults. Different mycorrhizal neighbors showed
quite similar positive effects on individual survival at both the sapling and adult stages.
Specifically, compared to other heterospecific neighbors, HetAM showed a greater positive
effect on adults and HetEcM showed a greater positive effect on saplings (Figure 2a).
However, these heterospecific neighborhood factors had a greater negative impact on the
RGR of individuals (Figure 2b). Both HetAM and HetErM negatively affected the RGR of
individuals at the sapling and adult stages. Whereas HetEcM showed a positive effect on
saplings, but a non-significant positive effect on adults.

Figure 2. Coefficient estimates (±2SE) of neighborhood factors on survival (a) and RGR (b) of all
individuals at the sapling and adult tree life stages. Solid circles indicate significant effects (p < 0.05),
while open circles indicate non-significant effects. RGR, relative growth rates; Con, conspecific density;
HetAM, heterospecific AM density; HetEcM, heterospecific EcM density; HetErM, heterospecific
ErM density.

3.2. Neighbor Effects on Different Tree Mycorrhizal Types

At the sapling stage, the survival of different tree mycorrhizal types experienced
strong CNDD (Figure 3a). The CNDD of EcM saplings was the strongest, followed by
ErM saplings, and the CNDD of AM saplings was relatively weak. AM and ErM saplings
were positively affected by HetEcM. Furthermore, AM and EcM saplings were positively
affected by HetErM, while EcM saplings were negatively affected by HetEcM (Figure 3a).
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Compared with individual survival, the neighbor effect had a certain difference in the
RGR of individuals. AM and ErM saplings were still negatively affected by Con while
positively affected by HetEcM. These mycorrhizal saplings were all negatively affected by
heterospecific neighbors with the same mycorrhizal type. Furthermore, ErM saplings were
also negatively affected by HetAM (Figure 3b).

Figure 3. Estimated effects (±2SE) of neighborhood factors on survival and RGR of species mycor-
rhizal types at the sapling and adult tree life stages. Solid circles indicate significant effects (p < 0.05),
while open circles indicate non-significant effects. RGR, relative growth rates; Con, conspecific den-
sity; HetAM, heterospecific AM density; HetEcM, heterospecific EcM density; HetErM, heterospecific
ErM density.

During the adult stage, many neighbor effects showed positive effects on the survival
of different tree mycorrhizal types. Specifically, Con shifted to positive effects on EcM
and ErM adults. HetAM, HetEcM and HetErM positively affected AM and EcM adults
(Figure 3c). The neighbor effect of AM adults RGR was quite similar to that of saplings, with
only HetErM having a significant negative effect on AM adults. EcM adults were negatively
affected by HetAM, HetEcM and HetErM, whereas ErM adults were only positively affected
by HetEcM (Figure 3d).

3.3. Relationships between REA and Species Diversity and Average RGR

There was a nonlinearity along the square root of REA for species diversity and average
RGR (Table S4). Species diversity increased rapidly as the square root of REA fell below the
threshold (REA = 0.7652 = 0.585; Figure 4a) and turned to decrease above the threshold. The
average RGR had the same pattern as species diversity, but it changed relatively slowly
compared to species diversity (threshold REA = 1.0932 = 1.195; Figure 4b), while both total
BA and the increment of total BA increased with the square root of REA (Figure 4c,d).
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Figure 4. Correlations between the square root of REA with species diversity (H, Shannon–Weiner
index) (a), average RGR (b), total BA (c) and increment of total BA (d). RGR, relative growth rates;
BA, basal area; REA, the ratio of BA of EcM to BA of AM tree species.

4. Discussion

CNDD varied widely with tree mycorrhizal types and tree life stages. Due to the large
variances in ecological characteristics among species, the impact of different neighbors on
the survival and growth of focal individuals can be complicated. The results of this study
showed that separating heterospecific neighbors into distinct heterospecific mycorrhizal
tree neighbors has important implications for further understanding of density-dependent
effects on individuals along tree life stages. In addition, compared with other tree myc-
orrhizal types, the stronger CNDD of EcM tree species at the sapling stage and AM tree
species at the adult stage was beneficial to the increase of species diversity. This allowed
species diversity to be highest when EcM tree species had a lower proportion of BA and AM
tree species had a higher proportion of BA. The EcM tree species significantly improved the
survival and growth of AM and ErM tree species, which, in turn, contributed to the increase
in the average RGR and total BA of the neighborhood individuals. However, when AM
or EcM tree species dominated at the local scale, it reduced species diversity and average
RGR. Therefore, manipulating the appropriate BA ratio of EcM to AM tree species will play
an important role in maintaining biodiversity and increasing the forest carbon sink rate.
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4.1. The Strength of CNDD Varied among Tree Mycorrhizal Types

Similar to previous studies, in the analysis of all individuals or different tree mycor-
rhizal types, the CNDD of sapling survival was much stronger than that of adults [56,66].
This reflected variations in CNDD along the life history. Previous studies have suggested
that AM tree species usually suffer from stronger CNDD than EcM tree species [67–69].
Unexpectedly, the survival of EcM saplings was more negatively affected by conspecific
density compared with AM and ErM saplings (Figure 3a). This may be related to the
accumulation of soil pathogens [70]. In this study, the abundance of 24 EcM species only
accounted for 12.70% of the entire community, but the total BA of EcM species accounted
for 44.34% of the entire community, and more than half of the EcM individuals were adult
trees (Table 1). This means that, compared with AM and ErM species, EcM species have
a higher proportion of large trees, which may accumulate more specific pathogens and
lead to higher mortality of EcM saplings. This makes it hard for EcM species to recruit
saplings. The death of EcM saplings leaves space for the growth of AM and ErM saplings,
thus improving species diversity. However, since surviving EcM saplings may have grown
in locations with fewer pathogens, their growth was not significantly affected by CNDD.

In addition, the impacts of conspecifics on the survival and growth of AM adults
tended to be more negative compared with EcM and ErM tree species (Figure 3c,d). This
may be due to the lower host specificity of AM fungi, which are less able to obtain resources
and resist disease than the more host-specific EcM and ErM fungi [71,72]. Since EcM and
ErM adults were less likely to die from CPDD (Figure 3c), species diversity decreased with
increasing EcM and ErM densities. In contrast, although the survival probability of AM
adults was not affected by CNDD, the growth of AM adults decreased with increasing
conspecific density. The slow growth rate of AM adults provides opportunities for the
growth of EcM and ErM tree species, thereby increasing species diversity. The CNDD
of EcM saplings and AM adults was stronger than that of species associated with other
mycorrhizal types at the same tree life stage, indicating that tree mycorrhizal types have
different contributions in maintaining species diversity along tree life stages.

4.2. The Different Effects of Heterospecific Mycorrhizal Type Neighbors

Consistent with most previous studies, the effect of heterospecific mycorrhizal on
species, especially saplings, was weaker than that of conspecific density (Figure 2) [73].
However, different from previous studies, when the heterospecific densities were divided
into different tree mycorrhizal types, the effects of these types on individual survival and
growth were quite different. The positive effect of EcM density on the survival and growth
of individuals of other mycorrhizal types was significantly greater than that of AM and ErM
densities (Figure 3). The mantle and Hartig nets formed by EcM fungi in roots and antibiotic
compounds produced by EcM fungi protect roots from soil-borne pathogens [34,42,74].
The existence of EcM neighbors hindered the accumulation of soil-borne pathogens in the
environment, which, in turn, promoted the growth and survival of AM or ErM tree species.
Previous studies have suggested that EcM tree species reduce species diversity with weak
CNDD [38,75], but paid little attention to the role of EcM tree species in shaping community
composition and increasing forest carbon sink rates by promoting the growth and survival
of other species.

In addition, heterospecific mycorrhizal tree neighbors can promote the survival of
focal individuals, while heterospecific AM and ErM neighbors hamper individual growth
(Figure 2). While heterospecific AM and ErM neighbors attenuate the impact of natu-
ral enemies and increase the survival of focal individuals through herd immunity ef-
fects [39–41], these individuals also compete for resources with focal individuals, thereby
slowing their growth.

Except for ErM adults, the growth of both saplings and adults of other tree mycorrhizal
types was significantly inhibited by heterospecific neighbors associated with the same
mycorrhizal fungus type (Figure 3b,d). Allsopp and Stock [76] also found that, with the
increase of conspecific density, the mass of mycorrhizal plants decreased more rapidly
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than that of non-mycorrhizal plants. There are three possible reasons. First, the same
mycorrhizal tree species obtain resources in a similar way through mycorrhiza [77], and
competition for resources slows down its growth. Second, since the proportion of colonized
root length increases with density of the same mycorrhizal tree species, more carbohydrates
are transporting from the host plant to mycorrhizal fungi, which slows the growth rate of
the host plant [78–80]. Third, there are common pathogens that infest species related to the
same mycorrhizal type [21,67,81]. When the stem density of the same mycorrhizal species
increased, the content of such pathogens in the neighborhood also gradually accumulated,
which affected the growth of focal individuals.

4.3. The REA Affects Species Diversity and Forest Carbon Sink Rates

These tree mycorrhizal types play different roles in the process of community assembly.
This study found that species diversity was lower when AM or EcM tree species predom-
inated. Species diversity reached its highest value only when REA reached 0.585 (this
number may vary by region or time) (Figure 4a). Compared with EcM tree species, AM tree
species can indeed maintain higher species diversity at larger BA ratios. This is partially
consistent with the previous studies [38,69]. This may be related to the stronger CNDD
effect on AM adults and more species in AM tree types. However, the diversity decreased
when the BA of AM or EcM tree species continued to increase. Carteron et al. [82] also
found relatively low species diversity in forests dominated by AM or EcM tree species
in the U.S. Since adults occupy more space, an increase in adults that are more likely to
survive with weaker CNDD will reduce the total number of individuals in the area, leading
to a reduction in species diversity.

Similar to the above results, the average RGR reached the highest value when the
REA was 1.195 (Figure 4b). The results indicated that EcM tree species had a greater ability
to promote the growth of surrounding individuals than AM tree species, so EcM tree
species were more conducive to the improvement of forest carbon sink rates. Van Der
Heijden and Horton [72] found that the EcM mycorrhizal network exchanged resources
more efficiently, so EcM fungi were more able to promote seedling growth than AM fungi.
However, the average RGR decreased when the BA of EcM tree species was too high. This
is consistent with the above results of this study (Figure 3b,d). The RGR of EcM species
decreased with increasing heterospecific EcM neighbors. When the BA of EcM tree species
is higher, EcM individuals with slower RGR will reduce the average RGR of all individuals.
However, we found that total BA and the increment of total BA increased with increasing
REA (Figure 4c,d). This means that EcM species play a relatively important role in the
increment of forest carbon sink, especially in the acceleration of forest carbon sink rates.
Since there were great differences in the effects of EcM and AM tree species on species
diversity or average RGR, finding the optimal proportion of EcM and AM tree species for
local-scale assemblages will be important for biodiversity conservation and the increment
of forest carbon sink rates.

5. Conclusions

The strength of CNDD varied with tree mycorrhizal types, which had different reg-
ulatory effects on species diversity at different tree life stages. EcM species significantly
increased the survival and growth of AM and ErM tree species, as well as the growth and
total BA of surrounding individuals. However, when AM or EcM tree species predomi-
nated, species diversity is suppressed and forest carbon sink rates are lowered. Therefore,
in the context of global change, manipulating the appropriate BA ratios of AM and EcM
tree species will play an important role in maintaining species diversity and increasing
forest carbon sink rates. However, due to environmental differences, the optimal BA ratio
of AM and EcM tree species will vary with latitude or forest type, and further exploration
and research are needed.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11182340/s1, Figure S1: Log-likelihood as a function of
exponent c at 5–30 m across all individuals at sapling and adult life stages; Figure S2: Log-likelihood
as a function of exponent c at 5–30 m in different tree mycorrhizal types at sapling and adult life stages;
Figure S3: Estimates (±2SE) of neighborhood factors on survival (a) and RGR (b) of all individuals
at sapling and adult life stages at 5–30 m; Figure S4: Estimated effects (±2SE) of neighborhood
factors on survival and RGR of tree mycorrhizal types at sapling and adult life stages at 5–30 m;
Figure S5: Correlations between BA of EcM species (BAEcM) and BA of AM species (BAAM) with
species diversity (H, Shannon–Weiner index) (a and e), average RGR (b and f), total BA (c and g) and
increment of total BA (d and h); Table S1: 179 focal species used in the analysis of neighborhood
effects on survival and growth; Table S2: Optimal scales and c for survival and relative growth rate
(RGR) of all individuals and tree mycorrhizal types at sapling and adult life stages at 5–30 m; Table S3:
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