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Abstract: Pioglitazone (PIO) is an insulin-sensitizing antidiabetic drug, which normalizes glucose
and lipid metabolism but may provoke heart and liver failure and chronic kidney diseases. Both
therapeutic and adverse effects of PIO can be accomplished through mitochondrial targets. Here,
we explored the capability of PIO to modulate the mitochondrial membrane potential (∆Ψm) and
the permeability transition pore (mPTP) opening in different models in vitro. ∆Ψm was measured
using tetraphenylphosphonium and the fluorescent dye rhodamine 123. The coupling of oxidative
phosphorylation was estimated polarographically. The transport of ions and solutes across mem-
branes was registered by potentiometric and spectral techniques. We found that PIO decreased
∆Ψm in isolated mitochondria and intact thymocytes and the efficiency of ADP phosphorylation,
particularly after the addition of Ca2+. The presence of the cytosolic fraction mitigated mitochon-
drial depolarization but made it sustained. Carboxyatractyloside diminished the PIO-dependent
depolarization. PIO activated proton transport in deenergized mitochondria but not in artificial
phospholipid vesicles. PIO had no effect on K+ and Ca2+ inward transport but drastically decreased
the mitochondrial Ca2+-retention capacity and protective effects of adenine nucleotides against mPTP
opening. Thus, PIO is a mild, partly ATP/ADP-translocase-dependent, uncoupler and a modulator of
ATP production and mPTP sensitivity to Ca2+ and adenine nucleotides. These properties contribute
to both therapeutic and adverse effects of PIO.

Keywords: permeability transition pore; unilamellar vesicles; adenine nucleotide translocase;
uncoupling protein; ATP production

1. Introduction

PIO is a member of the thiazolidinedione class of insulin-sensitizing drugs, which
are extensively used in the treatment of type 2 diabetes. Its impact on diabetes is linked
primarily to the binding and activation of the peroxisome proliferator-activated receptor-γ,
which regulates the expression of numerous insulin-responsive genes involved in the
control of glucose and lipid metabolism [1]. The results of recent meta-analyses of pop-
ulation studies indicate that PIO efficiently decreases the blood pressure, the level of
triglycerides, glycated hemoglobin, and blood glucose in fasting animals, as well as the risk
of hypoglycemia [2–4]. Besides, due to its anti-inflammatory, antioxidant, and, perhaps,
antibacterial and antifungal properties, PIO is now considered as a promising medicine for
the treatment of a range of pathologic states, including Alzheimer’s disease [5], depressive
disorder [6], non-alcoholic fatty liver disease [7], renal ischemia-reperfusion injury [8],
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Klebsiella pneumoniae infection [9], fibromyalgia-associated motor dysfunctions [10], respira-
tory infections (including Coronavirus disease 2019) [11,12], chronic obstructive pulmonary
disease [13], cryptococcal meningitis [14], and ischemic outcomes induced by mild trau-
matic brain injury [15]. The intake of PIO is associated with a decrease in carotid intima-
media thickness, a hallmark of atherosclerosis progression [2,16]. Although PIO decreases
the probability of myocardial infarction and stroke in patients with clinical manifestations
of cardiovascular disease, it does not reduce the all-cause mortality and increases the risk
of heart failure [17,18]. Furthermore, PIO significantly raises the frequency of peripheral
oedema [2], which may be due to fluid retention but not cardiac dysfunction [19]. What
is more, PIO augments the probability of a newly developed chronic kidney disease [20].
Liver dysfunctions, including hepatitis, deregulation of the level of hepatic enzymes, and
mixed hepatocellular-cholestatic liver injury, as well as liver failure with or without fatal
outcomes, have been reported to be associated with the intake of PIO [21]. Besides, PIO sig-
nificantly increases the risk of bladder cancer [22] but can display cytotoxic and cytostatic
effects on several cancer cell lines [23–26].

Several mechanisms were proposed to explain the cardioprotective effect of PIO: anti-
inflammatory effect [24,27], upregulation of mitochondrial antioxidant proteins [28,29],
activation of mitochondrial AТР-sensitive K+ channel [30], induction of peroxisome
proliferator-activated receptor gamma/peroxisome proliferator-activated receptor gamma
coactivator 1-alpha signaling pathway [29], activation of pro-survival signaling phospho-
inositide 3-kinases and P42/44 mitogen-activated protein kinases [31], cycloxygenase-2
and cytosolic phospholipase A2 [32], and inhibition of apoptosis [33]. The mechanisms
of the adverse effects of PIO are unclear. According to a recent study, thiazolidinediones
(including PIO) can induce toxicological molecular alterations via induction of cytochrome
p450s that synthesize cardiotoxic 20-hydroxyeicosatetraenoic acid [34]. However, some evi-
dence indicates that they are mitochondria-dependent and involve apoptosis, ferroptosis,
autophagy, and mPTP opening [23,24,33,35–37].

One of the mitochondrial PIO targets is CDGSH iron-sulfur domain-containing pro-
tein 1 (mitoNEET) in the outer membrane [38]. MitoNEET transfers the 2Fe-2S cluster to
cytosolic apoproteins, such as aconitase and apoferredoxin [39]. MitoNEET plays an impor-
tant role in the regulation of iron homeostasis [40,41], ferroptosis [41], and mitochondrial
biogenesis and network [35,42], oxidative capacity [43], reactive oxygen species production,
and autophagy [35,40,44,45]. MitoNEET can be involved in glucose and lipid metabolism
since the level of protein expression in pancreatic α- and β-cells regulates insulin secretion,
glucose tolerance, and mitophagy [46], while in adipocytes it controls lipid uptake and
storage [47,48]. It was shown that PIO stabilizes the 2Fe-2S cluster in mitoNEET [49] and
prevents its transfer to apoproteins and iron transport to the mitochondria [50].

Another potential target for PIO in the mitochondria is glyceraldehyde 3-phosphate
dehydrogenase (GAPDH), which is a proapoptotic regulator of mitochondrial membrane
permeabilization [51]. It was shown that, at high concentrations (>100 µM), PIO inhibits
the activity and decreases the expression of GAPDH [52].

The data on the direct effect of PIO on mitochondrial functions are limited. PIO was
reported to decrease ∆Ψm and uncouple the oxidative phosphorylation via the upregulation
of the uncoupling protein 2 [43,44] and the production of reactive oxygen and nitrogen
species [47]. Besides, it was found that PIO decreases state 3 mitochondrial respiration
due to the inhibition and disassembly of complex I [23,53] and the inhibition of complex
III [54,55]. Other studies did not confirm the uncoupling [54,56] and the inhibition of
complexes by PIO [57]. In mitochondria isolated from hepatocytes and human skeletal
muscles, PIO inhibited the ATP production [36,58], which may be connected with the
stimulation of mPTP opening [36]. Other researchers reported that PIO does not affect the
mPTP opening and ATP production [54].
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Thus, it is unclear whether PIO is capable of directly modulating mitochondrial functions.
At the same time, the structure of the PIO molecule allows reversible protonation (pKa 5.19) [59]
and incorporation into the lipid bilayer (octanol-water partition coefficient ~2.3). These proper-
ties are inherent in conventional protonophores, which can penetrate through membranes both
in neutral (protonated) and anionic forms [60]. Therefore, the aims of the present study were
to assess the protonophoric and uncoupling effects of PIO in mitochondria and artificial lipid
membranes and to clarify the effect of PIO on the mPTP opening in different models in vitro.

2. Results
2.1. PIO Acts as a Low-Efficient Uncoupler in Isolated Mitochondria

First, we examined the effect of PIO on ∆Ψm and oxidative phosphorylation (Figure 1).
As follows from the figure, PIO reduced the accumulation of rhodamine 123 in mitochon-
dria (Figure 1B) and induced a release of accumulated tetraphenylphosphonium (TPP+)
(Figure 1A), indicating a decrease in ∆Ψm. The determination of ∆Ψm in the presence
of PIO (Figure 1C,D) revealed a temporary dose-dependent decrease (up to 50 mV) in
membrane potential with a subsequent slow return to control values (Figure 1C). PIO was
a weaker proton gradient disrupter than carbonyl cyanide p-(trifluoromethoxy)phenyl-
hydrazone (FCCP) and 2,4-dinitrophenol (DNP) (by two to three orders of magnitude
and several times, respectively) (Figure 1C, insert). Besides, PIO strongly decreased ∆Ψm
in the presence of substrates of complex I compared to substrates of complex II. Even
at a low concentration (2.5–20 µM), PIO noticeably reduced the efficiency of oxidative
phosphorylation (Figure 1D and insert). It stimulated state 2 respiration and decreased the
respiratory control coefficient (RC) and, though only slightly, the rate of state 3 respiration.
Thus, PIO acts as a low-efficient protonophoric uncoupler, such as natural bile acids [61].
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Figure 1. Effect of PIO on ΔΨm and the coupling of mitochondria. (A,B) Assessment of the effect of PIO on ΔΨm using 
TPP+ (A) and rhodamine 123 (Rhod 123, (B)). (C,D) Effect of PIO on ΔΨm in mitochondria in the resting state (C) and 
during the ADP phosphorylation (D). (A) Rat liver mitochondria (RLM) (1 mg prot./mL) were placed in a standard incu-
bation medium supplemented with 5 mM K+-succinate, 1 mM EGTA, rotenone (2 µg/mL), and 1 µM TPP+. Arrows show 
the addition of 25 or 100 µM PIO and 500 nM FCCP. (B–D) A mitochondrial suspension (0.75 mg/mL) supplemented with 
respiratory substrates, 1 mM EGTA, and 330 nM rhodamine 123 was placed in wells with 1% dimethyl sulfoxide (DMSO) 
(vehicle control) or PIO at indicated concentrations (µM) (B–D), 500 nM FCCP, antimycin A (2.5 µg/ml), and valinomycin 

Figure 1. Effect of PIO on ∆Ψm and the coupling of mitochondria. (A,B) Assessment of the effect of PIO on ∆Ψm using TPP+

(A) and rhodamine 123 (Rhod 123, (B)). (C,D) Effect of PIO on ∆Ψm in mitochondria in the resting state (C) and during the
ADP phosphorylation (D). (A) Rat liver mitochondria (RLM) (1 mg prot./mL) were placed in a standard incubation
medium supplemented with 5 mM K+-succinate, 1 mM EGTA, rotenone (2 µg/mL), and 1 µM TPP+. Arrows show the
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addition of 25 or 100 µM PIO and 500 nM FCCP. (B–D) A mitochondrial suspension (0.75 mg/mL) supplemented with
respiratory substrates, 1 mM EGTA, and 330 nM rhodamine 123 was placed in wells with 1% dimethyl sulfoxide (DMSO)
(vehicle control) or PIO at indicated concentrations (µM) (B–D), 500 nM FCCP, antimycin A (2.5 µg/mL), and valinomycin
(25 ng/mL) (B), and 2 mM ADP (D) just before measurements. Everywhere, except the curve designated “M+P” (5 mM
malate + 5 mM pyruvate), the respiratory substrate was 5 mM K+-succinate with the addition of rotenone (2 µg/mL).
Numbers on curves are the means ±S.E.M. (n = 3) of one representative experiment of three identical experiments.
(B) Where indicated, 500 nM FCCP was added to wells with 50, 100, and 200 µM PIO to calibrate the signal. Insert in panel
(C) shows a shift in ∆Ψm caused by FCCP, DNP, and PIO after 5 min of incubation. Insert in panel (D) shows the effect of
PIO on the respiration rate in state 2 and state 3 and the respiratory control (RC) coefficient. In inserts, numbers on curves
are the means ±S.E.M. of three independent experiments (n = 9 (C) and 3 (D)).

2.2. PIO Modulates the Sensitivity of the Permeability Transition Pore to Regulators

It was reported that PIO stimulates the opening of mPTP [36]. However, mPTP
opening can disrupt the transmembrane proton gradient and uncouple the respiration
and oxidative phosphorylation. Therefore, we explored the effect of PIO on the mPTP
opening in the mitochondria in different experimental conditions. Figure 2 shows that PIO
(10–100 µM) neither induced the ionic permeability of the inner mitochondrial membrane
(IMM) in KCl-based medium (Figure 2A) nor markedly influenced the mPTP opening by
a single addition of Ca2+ (Figure 2A, insert). At the same time, PIO negligibly affected
the Ca2+ uptake rate (Figure 2D, insert) but drastically reduced the mitochondrial Ca2+

retention capacity (Figure 2D) (mitochondria were exposed to 30 µM pulses). Besides, PIO
noticeably weakened the inhibition of the mPTP opening by added ADP (Figure 2B) and
ATP (Figure 2C) (ADP and ATP are strong natural mPTP inhibitors, which can be present
in the cytosol of living cells at millimolar concentrations). Thus, PIO does not induce the
mPTP opening itself but can modulate the mitochondrial susceptibility to mPTP regulators,
Ca2+ and ATP/ADP, under certain conditions.
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Ca2+-retention capacity of mitochondria. (A–C) Mitochondrial suspension (0.75 mg prot./mL) supplemented with
5 mM K+-succinate (plus 2 µg/mL rotenone) and, where shown, 2 mM ADP (B) and 2 mM ATP (C) (pH 7.4) were
placed in wells with indicated additions: 1 mM EGTA, 1% DMSO, 10–100 µM PIO, and 10 µg/mL oligomycin (Oligo). The
arrow shows the addition of 50 µM Ca2+. Representative data of three similar experiments are shown. Points on traces
are the means ±S.E.M. (n = 3). (D) Ca2+-retention capacity equal to 100% corresponds to 210.9 ± 23.45 nmol Ca2+/mg
protein. Values in columns are means ±S.E.M. (n = 3) of three independent experiments. The asterisk shows the significant
difference from the vehicle control (p < 0.05). The insert shows the kinetics of accumulation of 30 µM Ca2+ in the absence
(Control) and in the presence of 100 µM PIO.

2.3. PIO Decreases the Capability of Mitochondria to Phosphorylate ADP in the Presence of Ca2+

Mitochondria within a living cell permanently exist in intermediate 3–4 metabolic
state and are exposed to repeating Ca2+ pulses from endoplasmic/sarcoplasmic reticulum
and the extracellular space, particularly in excitable tissues. We examined the effect of
PIO on the capacity of mitochondria to maintain the level of endogenous ATP and ATP
production after a single Ca2+ pulse (Figure 3). The release of ATP from intact mitochondria
was traced using a 20% solution of a luciferin-luciferase reagent (without lysis buffer),
which rapidly oxidizes external ATP and generates chemiluminescence. It should be
noted that the luminescence produced by luciferase in the presence of ATP (left scale
line) was 20 times more intensive than in the presence of ADP (right scale line) [62]. The
relatively low but sustained luminescence in a mitochondrial suspension was interpreted as
a continuous exchange of small quantities of ATP for ADP/AMP between the medium and
mitochondria, since it was completely inhibited by oligomycin (Figure 3A). As it follows
from the figure, 500 µM ADP caused a strong increase in the chemiluminescence, which
comprised two constituents: (1) oligomycin-sensitive, dependent on the ATP generated
by FoF1-ATPase, and (2) oligomycin-insensitive, dependent on ADP and ATP produced
by adenylate kinase in the intermembrane space. PIO decreased the ADP-stimulated ATP
release in a dose-dependent manner. Ca2+ further diminished the ATP production, which
transiently became negligible at 50 µM PIO. Moreover, PIO reduced the level of matrix ATP,
which can be released by the small Ca2+-activated mitochondrial carrier protein (SCaMC)
in exchange for inorganic phosphate (Figure 3B) [63]. Hence, PIO strongly decreases the
level of matrix ATP and reduces the capacity of the mitochondria for ATP production after
a pulse of Ca2+.
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on the level of matrix ATP (B). Mitochondria (0.2 (A) and 0.5 mg prot./mL (B)) were placed in the standard incubation
medium, which contained a 20% solution of a luciferin-luciferase reagent, 5 mM K+-succinate, 2 µg/mL of rotenone, 10 µM
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2.4. Effect of PIO on the Permeability of the Inner Mitochondrial and Lecithin Liposomal
Membranes to Protons

The molecular structure of PIO indicates that it may be reversibly protonated as
conventional protonophores, such as FCCP or carbonyl cyanide m-chlorophenyl hydrazone
(CCCP) (Figure 4A). Therefore, we studied the effect of PIO on the pH value in large
unilamellar lecithin vesicles loaded with the fluorescent pH probe pyranine. Figure 4B
shows the kinetics of dissipation of a pre-formed pH gradient on membranes of liposomes
after the addition of PIO (red, green, and blue curves) or CCCP (pink curve). Black and
brown curves show the control and vehicle control (15 µL DMSO), respectively. In contrast
to the effect of CCCP, the addition of different concentrations of PIO (10 µM, red; 50 µM,
green; 75 µM, blue) did not lead to an increase in the signal of pyranine (Figure 4B). It can
be concluded that PIO is not able to induce proton transport in a pure lipid system.
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Figure 4. Mechanism of transmembrane proton transport by PIO. (A) Possible mechanism of proton transport by PIO
across the IMM. (B) Comparison of CCCP- and PIO-mediated proton fluxes through liposomes loaded with the pH probe
pyranine. The inner liposomal pH value was estimated from the pyranine fluorescence intensity measured at 505 nm upon
excitation at 455 nm. Lasalocid A (1 µM) was added approximately at 800 s to equilibrate pH. PIO concentrations were
10 µM, red curve; 50 µM, green curve; 75 µM, blue curve. CCCP concentration was 1 µM (pink curve). Lipid concentration
was 20 µg/mL, T = 15 ◦C. Other conditions: see Materials and Methods Section. The proton flux was initiated by an alkaline
pH shift from рН6 to рН8, which was caused by the addition of the previously determined aliquot of KOH. In the presence
of the protonophores, the pyranine fluorescence gradually increased, indicating the alignment of the pH values inside and
outside liposomes due to proton transfer mediated by a protonophore. (C,D) Effect of PIO, palmitic acid, and FCCP on
the swelling of deenergized mitochondria in NH4NO3-based medium. Mitochondria (0.75 mg prot./mL) were added to
NH4NO3-based medium supplemented with rotenone (2.5 mg/mL), and 1 min later, the suspension was placed in the
wells of a plate that contained PIO, sodium palmitate (PA), and FCCP at indicated concentrations. (C) Standard curves
of mitochondrial swelling. (D) Initial rates of mitochondrial swelling during the first 3 min of incubation. Points are the
means ±S.E.M. of three independent experiments (n = 9).
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We examined whether the effect of PIO on ∆Ψm in mitochondria is connected with
the activation of proton inward transport or with other reasons. Figure 4C shows that
PIO accelerated the swelling of deenergized mitochondria in NH4NO3-based medium in a
dose-dependent manner. This indicates that PIO, indeed, increased the permeability of the
IMM to protons. PIO was a proton carrier three orders of magnitude weaker than FCCP
but slightly more efficient than free palmitic acid (Figure 4D). Hence, PIO can transport
protons in mitochondria but cannot do so in/out of liposomes.

2.5. Role of Mmitochondrial Carriers in PIO-Dependent Depolarization of Mitochondria

Mitochondrial carriers are known to contribute to mitochondrial depolarization caused
by fatty acids and other reversibly protonated compounds. The ADP/ATP carrier (ANT)
facilitates the transport of fatty acid anions from the inner to the outer leaflet of the IMM
and, therefore, reinforces the uncoupling of oxidative phosphorylation [64,65]. Uncoupler
proteins 1–3 (UCPs) possess a similar activity [65,66]. We assessed the effect of the ANT and
UCPs inhibitors carboxyatractyloside (CATR) and GDP on mitochondrial depolarization
caused by PIO and conventional protonophores DNP and FCCP. Figure 5A shows that
CATR plus GDP diminished the positive shift in ∆Ψm (depolarization of the inner mem-
brane) by PIO by 1–2 (100 µM PIO) and 3–5 mV, temporarily up to 10 mV (200 µM PIO),
i.e., ~by 50%. The relative effect of DNP was less sensitive to CATR plus GDP: the decrease
in the positive shift was up to 15 mV (15–20%) depending on the DNP concentration
and incubation time (Figure 5B). In contrast, CATR and GDP had a minor effect on the
FCCP-dependent depolarization (not shown). The analysis of the effects of CATR, GDP,
and their combination on the average PIO-dependent positive shift in ∆Ψm demonstrated
that both CATR alone and its combination with GDP reduced the shift to a similar extent
(Figure 5C). GDP alone did not attenuate the mitochondrial depolarization. Similar results
were obtained with DNP (Figure 5D) (Figure 5D shows changes in DNP-dependent ∆Ψm
shift (Control, dashed line) caused by CATR and GDP). Thus, in liver mitochondria, ANT
contributes to PIO- and DNP-induced mitochondrial uncoupling, while UCPs do not.
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(decrease) in relation to control (1% DMSO). The data of one representative experiment of three similar experiments are
shown. Values on traces are the means for three wells. (C) Effect of GDP and CATR on the average PIO-dependent shift in
∆Ψm. Each point on the curves is an average ∆Ψm shift defined as a mean ±S.E.M. for 60 points of experimental curves
(such as in Panel (A)) for three individual experiments (n = 180). (D) Changes in the DNP-dependent ∆Ψm shift caused by
CATR and GDP in relation to DNP alone (Control).

2.6. PIO Causes Mild Mitochondrial Depolarization in Intact Cells

We examined whether the effect of PIO on ∆Ψm is preserved in intact cells. Figure 6
demonstrates that 30-min incubation of cells with 50 (Figure 6B,E) and 200 µM PIO
(Figure 6C,E) significantly increased the portion of isolated thymocytes with depolarized mito-
chondria in comparison with the control (Figure 6A,E). However, the effect was substantially
less pronounced than the effect of 500 nM FCCP (Figure 6D,E). Thus, PIO can act as a mild
depolarizing agent in mitochondria of intact cells.
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2.7. Effect of PIO on ∆Ψm in Isolated Mitochondria and Mitochondria in Nuclei-Free
Liver Homogenate

In isolated mitochondria, PIO-dependent depolarization was transient (see Figures 1, 4 and 5):
the higher the PIO concentration was, the higher the rate of the loss of the effect. Since PIO is
poorly soluble in water, one can assume that, at high concentrations, PIO forms suspension,
which decreases the effective concentration of PIO and deteriorates its protonophoric effect.
However, the cytosol of living cells comprises constituents that increase solubility and
facilitate the transport of poorly soluble compounds [67,68]. Therefore, we compared the
rate of restoration of ∆Ψm in the presence of PIO in a standard mitochondrial suspension
and a suspension that contained mitochondria- and nuclei-free rat liver homogenate (RLH)
diluted to a final concentration of 5 (Figure 7B,D) and 15 mg prot./mL (Figure 7C,D).

As it follows from Figure 7, RLH diminished the initial PIO-dependent positive
shift in ∆Ψm (deteriorated the maximum depolarization) in a dose-dependent manner.
Simultaneously, the depolarization induced by PIO at high concentrations became
more sustainable (Figure 6C,D). Hence, cytosolic components, presumably, did not
increase the solubility and the effective concentration of PIO but rather acted as a
PIO buffer.
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and DMSO-containing samples in one representative experiment of three similar experiments.

3. Discussion

The study confirmed that PIO can act as an uncoupler of oxidative phosphorylation,
though much less efficient than FCCP (Figures 1 and 5) and 2,4-dinitrophenol [69], but
equally or more efficient than fatty (Figure 4) and bile acids [61,70]. However, despite
the octanol-water partition coefficient of 2.3 and the pKa of 5.19 [59], PIO per se cannot
operate either as a classical protonophore (Figure 4) or as a K+ ionophore (Figure 2) in
mitochondrial and artificial lipid membranes. Nevertheless, PIO-dependent mitochondrial
depolarization is associated with the activation of inward proton transport (Figure 4C,D).

It was established three decades ago that ANT can translocate fatty acid anions across
the IMM, which strengthens the uncoupling effect of exogenous and endogenous fatty
acids [64,71]. Substrates and inhibitors of ANT suppress the protonophoric effect of fatty
acids [65,72]. UCPs, a family of proteins structurally related to ANT, can also mediate the
fatty acid-dependent depolarization of the IMM and mitochondrial uncoupling [73]. Ac-
cording to recent findings, UCP2 possesses the activity of the fatty acid flippase, which is es-
sential for proton conductance [66]. GDP interferes with the binding of fatty acids to UCP1
and 2 and suppresses proton currents [73]. Mitochondrial uncoupling by DNP is known
to be partially dependent on ANT, while the effect of FCCP is carrier-independent [64].
Novel data indicate that both recombinant ANT1 and UCP1-3 considerably increase the
protonophoric effect of DNP in planar bilayer lipid membranes and that arginine 79 of
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ANT1 is essential for DNP binding and translocation [65]. Here, we demonstrated that,
in liver mitochondria, ANT considerably contributes to PIO-dependent mitochondrial
depolarization and uncoupling (Figure 5). The role of UCP proteins demands further
clarification since neither PIO- nor DNP-dependent depolarization was sensitive to the
UCP inhibitor in liver mitochondria, which may be due to the low level of the carriers
but not to an inability to transport PIO per se [65]. Thus, PIO-dependent mitochondrial
depolarization and uncoupling is ANT-mediated, at least partially.

The interaction of PIO with ANT, an important regulator of mPTP, can explain the
slight inhibition of state 3 respiration (Figure 1), the reduction of the mitochondrial Ca2+-
retention capacity, and the cancellation of the suppression of mPTP by adenine nucleotides
(Figure 2). Besides, by activating the inward proton transport, PIO can decrease the pH
value in the mitochondrial matrix, which promotes the mPTP opening [74]. Another
mechanism for facilitation of mPTP opening may be connected to the depletion of matrix
ATP (Figure 3) via the Ca2+-activated SCaMC-mediated pathway [62,63,75].

A short duration of the PIO-dependent depolarization of isolated mitochondria in
suspension (Figures 1, 4 and 5) is, presumably, connected with poor solubility in water
(4–6.5 µg/mL or 11–16.5 µM) [67,76], but not with the glutathione-s-transferase-dependent
inactivation of PIO, as it was shown for other uncouplers [77], since GSH had a negligible
effect on the depolarization (not shown).

In living cells, however, the effect of PIO could be long-lasting. Indeed, the cyto-
plasm contains various compounds capable of acting as co-solvents and increasing the
solubility and free concentration of PIO tens and hundreds of times [67]. Alternatively,
multiple cytosolic proteins and systems facilitate the storage and transport of poorly solu-
ble compounds [68]. The data obtained are in favor of the second mechanism, since the
cytosolic fraction decreased the strength but increased the duration of PIO-dependent
mitochondrial depolarization (Figure 7), i.e., acted as a PIO buffer. Thus, one can expect
that PIO-dependent mitochondrial depolarization will be mild (Figure 6) but sustained or
even permanent in prolonged treatment in situ or therapy and in vivo.

The data obtained can help one explain some of the adverse effects of PIO in vari-
ous organs and systems (Figure 8). The increased risk of heart failure in patients with
cardiovascular disease [17] may be connected with the effect of PIO on the efficiency of
ATP production under conditions of repeating Ca2+ pulses (Figure 3). In addition, the
slow release of fluid, peripheral oedema, development of chronic kidney disease, and liver
dysfunction promoted by PIO [2,19–21] can be attributed to insufficient production of ATP
for ion pumps and exchangers in the plasma membrane. Moreover, the reduction of the
mitochondrial Ca2+-retention capacity and the cancellation of the suppression of mPTP
by adenine nucleotides (Figure 2) can be a reason for the toxicity of PIO in several cell
lines [23–26]. At the same time, the reduction of the risk of myocardial infarction and
stroke in patients with clinical manifestation of cardiovascular disease might be connected
with long-term effects of PIO, such as the regulation of autophagy and mitochondrial
quality control (Figure 8) [33]. Further, mild mitochondrial uncoupling and the activation
of glucose and fat metabolism should contribute to the antidiabetic and anti-atherosclerotic
action of PIO [2,16,78]. Indeed, another uncoupler, DNP, was successfully applied for the
correction of glucose and lipid metabolism in animals and humans [79,80] and is now
considered as a promising medicine for the treatment of a range of pathologic states [69].



Pharmaceuticals 2021, 14, 1045 12 of 18

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 12 of 19 
 

 

correction of glucose and lipid metabolism in animals and humans [79,80] and is now 
considered as a promising medicine for the treatment of a range of pathologic states [69]. 

 

Figure 8. Contribution of uncoupling and mPTP-modulating effects of PIO to its healing and harm-
ful action in the cell and the organism. CVD: cardiovascular disease. 

4. Materials and Methods 
4.1. Materials 

ATP Kit SL (144-041) was purchased from BioThema AB (Haninge, Sweden). ADP 
(sodium salt) (A2754), ATP (disodium salt hydrate) (A7699), antimycin A (A8674), bovine 
serum albumin (BSA) (A7030), FCCP (C2920), CATR (C4992), DMSO (276855), DNP 
(D198501), GDP (sodium salt) (G7127), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic 
acid (HEPES) (H3375), palmitic acid (P0500), PIO (hydrochloride) (E6910), rhodamine 123 
(R8004), rotenone (R8875), sucrose (S7903), succinate (S3674), TPP+ (chloride) (218790), 
Trizma Base (93352), and valinomycin (94675) were purchased from the Sigma-Aldrich 
Corporation (St. Louis, MO, USA). Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-
tetraacetic acid (EGTA) (A0878,0025) was from PanReac ApppliChem (Darmstadt, Ger-
many). Other chemicals were of analytical grade and were purchased from local suppliers 
(Moscow, Russia). 

4.2. Isolation of Rat Liver Mitochondria and Preparation of the Cytosolic Fraction of Liver 
Homogenate 

All manipulations with animals before the isolation of the liver were performed in 
accordance with the Helsinki Declaration of 1975 (revised in 1983), national requirements 
for the care and use of laboratory animals, and protocol 9/2020 of 17.02.2020 approved by 
the Commission on Biological Safety and Bioethics at the ITEB RAS. 

Rat liver mitochondria were isolated by a standard differential centrifugation proce-
dure [81]. Adult male Wistar rats were killed by cutting the neck after anesthesia with 
CO2. The homogenization medium contained 220 mM mannitol, 70 mM sucrose, 10 mM 
HEPES (pH adjusted to 7.4 with Trizma Base), 1 mM EGTA, and 0.05% BSA. The pellet 
was washed three times with a medium devoid of EGTA and BSA. Final pellets were re-
suspended in this medium to yield 60–70 mg protein/mL. Measurements were performed 
at 37 °C in KCl-based medium (125 mM KCl, 20 mM sucrose, 10 mM HEPES (pH adjusted 
to 7.3 with Trizma Base), 2 mM KH2PO4, 2 mM MgCl2, and 10 µM EGTA) supplemented 
with 5 mM potassium succinate and rotenone (2 µg/mL), unless otherwise indicated. 
Other experimental details are provided in figures and figure legends. The intactness of 
isolated mitochondria was assessed as described previously [82]. 

The cytosolic fraction of liver homogenate (mitochondria- and nuclei-free RLH) was 
prepared as follows. The liver (1 g) was homogenized in the standard homogenization 
medium devoid of BSA. The homogenate was centrifuged 700 g × 15 min and 15,000 g × 
20 min. Pellets were discarded at each step. The resulting RLH was kept on ice until use. 

Figure 8. Contribution of uncoupling and mPTP-modulating effects of PIO to its healing and harmful
action in the cell and the organism. CVD: cardiovascular disease.

4. Materials and Methods
4.1. Materials

ATP Kit SL (144-041) was purchased from BioThema AB (Haninge, Sweden). ADP
(sodium salt) (A2754), ATP (disodium salt hydrate) (A7699), antimycin A (A8674), bovine
serum albumin (BSA) (A7030), FCCP (C2920), CATR (C4992), DMSO (276855), DNP
(D198501), GDP (sodium salt) (G7127), 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic
acid (HEPES) (H3375), palmitic acid (P0500), PIO (hydrochloride) (E6910), rhodamine 123
(R8004), rotenone (R8875), sucrose (S7903), succinate (S3674), TPP+ (chloride) (218790),
Trizma Base (93352), and valinomycin (94675) were purchased from the Sigma-Aldrich
Corporation (St. Louis, MO, USA). Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-
tetraacetic acid (EGTA) (A0878,0025) was from PanReac ApppliChem (Darmstadt,
Germany). Other chemicals were of analytical grade and were purchased from local
suppliers (Moscow, Russia).

4.2. Isolation of Rat Liver Mitochondria and Preparation of the Cytosolic Fraction of
Liver Homogenate

All manipulations with animals before the isolation of the liver were performed in
accordance with the Helsinki Declaration of 1975 (revised in 1983), national requirements
for the care and use of laboratory animals, and protocol 9/2020 of 17.02.2020 approved by
the Commission on Biological Safety and Bioethics at the ITEB RAS.

Rat liver mitochondria were isolated by a standard differential centrifugation proce-
dure [81]. Adult male Wistar rats were killed by cutting the neck after anesthesia with CO2.
The homogenization medium contained 220 mM mannitol, 70 mM sucrose, 10 mM HEPES
(pH adjusted to 7.4 with Trizma Base), 1 mM EGTA, and 0.05% BSA. The pellet was washed
three times with a medium devoid of EGTA and BSA. Final pellets were resuspended in
this medium to yield 60–70 mg protein/mL. Measurements were performed at 37 ◦C in
KCl-based medium (125 mM KCl, 20 mM sucrose, 10 mM HEPES (pH adjusted to 7.3
with Trizma Base), 2 mM KH2PO4, 2 mM MgCl2, and 10 µM EGTA) supplemented with
5 mM potassium succinate and rotenone (2 µg/mL), unless otherwise indicated. Other
experimental details are provided in figures and figure legends. The intactness of isolated
mitochondria was assessed as described previously [82].

The cytosolic fraction of liver homogenate (mitochondria- and nuclei-free RLH) was
prepared as follows. The liver (1 g) was homogenized in the standard homogenization medium
devoid of BSA. The homogenate was centrifuged 700 g× 15 min and 15,000 g× 20 min. Pellets
were discarded at each step. The resulting RLH was kept on ice until use.

The total protein in mitochondrial and cytosolic fractions was determined by the
Biuret method using BSA as a standard [83].
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4.3. Measurements of the Oxygen Consumption Rate

Mitochondrial respiration was measured using an oxygen Clark-type electrode in a
temperature-controlled electrode chamber connected to a computerized recording system,
Record 4 (Institute of Theoretical and Experimental Biophysics, Russian Academy of
Sciences (ITEB-RAS), Russia). Mitochondria (1 mg/mL) were incubated at 25 ◦C in standard
medium supplemented with 5 mM succinate in the presence of rotenone (2 µg/mL).
In order to assess state 3 and state 4 respiration rates, 200–500 µM ADP was added to
mitochondria respiring in the presence of substrates (state 2). The RC coefficient was
defined as the ratio of the respiration rate in state 3 to the rate in state 4.

4.4. Measurements of ∆Ψm in Isolated Mitochondria

∆Ψm across the IMM was measured using the ∆Ψm-sensitive fluorescent dye rho-
damine 123 and a plate reader Infinite 200, Tecan (Grödig, Austria). Standard incubation
medium contained respiratory substrates, 1 mM EGTA, 330 nM rhodamine 123, and, where
indicated, 2 mM ADP, 1 mM GDP, 2 µM CATR, and PIO, FCCP, and RLH at different
concentrations. In order to calibrate the fluorescent signal, each experimental series con-
tained samples with a cocktail of respiratory inhibitors and ionophores, which disrupt
ionic gradients across the IMM (500 nM FCCP, antimycin A (2.5 µg/mL), and valinomycin
(25 ng/mL)) [84]. ∆Ψm was calculated using the Nernst equation assuming that: (1) the
matrix volume is equal to 1 µL/mg protein (liver mitochondria), (2) the fluorescence of rho-
damine 123 is directly proportional to the concentration in solution and is totally quenched
upon the accumulation in mitochondria, and (3) initial fluorescence in samples with a
cocktail of respiratory inhibitors and ionophores corresponds to 300 nM rhodamine 123.

Alternatively, ∆Ψm was assessed using a TPP+-selective electrode (Niko Analyt, Russia)
connected to a computerized recording system, Record 4 (ITEB RAS). The electrode was
calibrated with known amounts of TPP+ at the beginning of each experimental series.

4.5. Measurements of ∆Ψm in Isolated Thymocytes

Thymocytes were isolated from two thymuses of male Wistar rats (90–110 g) in
accordance with a known method [85]. Medium containing 145 mM NaCl, 5.6 mM KCl,
10 mM glucose, and 8 mM Mops-KOH (pH 7.4) was used to isolate, wash, suspend, and
incubate the cells. In control samples, the cell survival was at least 90%. All experiments
with cells were carried out for 3 h; in this case, the cells retained similar viability and
mitochondrial potential, as assessed by flow cytometry using a Muse Cell Analyzer (Merck
Millipore, Burlington, MA, USA).

The mitochondrial potential was assessed by using a Muse MitoPotential Kit (MCH100110,
Merck Millipore, Burlington, MA, USA) in order to determine the percentages of cells
exhibiting a change in mitochondrial polarization. All assays were performed strictly
according to the manufacturer’s protocols.

4.6. Recording of the Permeabilization of Mitochondrial Membranes

The permeabilization of mitochondrial membranes for solutes was assessed by high-
amplitude mitochondrial swelling. Mitochondrial swelling (a decrease in A550) was
recorded using an Infinite 200 plate reader, Tecan, Austria, and 96-well plates. Other details
are provided in figures and figure legends.

4.7. Ca2+-Retention Capacity of Mitochondria

Mitochondrial Ca2+ uptake and release were recorded in a temperature-controlled
electrode chamber using a Ca2+-electrode connected to the computerized recording system,
Record 4. The Ca2+-retention capacity was defined as the amount of Ca2+ mitochondria
taken up in small pulses before the Ca2+ release. Mitochondria (1 mg/mL) were added to
incubation medium (25 ◦C) supplemented with 5 mM K+-succinate plus 2 µg/mL rotenone.
Other experimental details are provided in figure legends.
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4.8. Measurement of ATP in Mitochondrial Suspension

The ATP content in a suspension of intact mitochondria was determined using an ATP
Biomass Kit HS in accordance with the manufacturer’s instructions. Incubation medium
contained a 20% luciferin-luciferase reagent, 5 mM K+-succinate, 2 µg/mL of rotenone,
10 µM EGTA, and 0.2 mg of mitochondrial protein/mL. Other experimental details are
provided in figures and figure legends. The chemiluminescent signal was calibrated by
additions of ATP standards and known amounts of ADP.

4.9. Assessment of the Protonophoric Properties of PIO Using Pyranine-Loaded Vesicles

The luminal pH of liposomes was assayed with pyranine by a slightly modified
procedure of [86]. To prepare pyranine-loaded liposomes, a lipid (2 mg POPC, 1 mg
POPG, and 1 mg cholesterol) in a chloroform suspension was dried in a round-bottom
flask under a stream of nitrogen. The lipid was then resuspended in a buffer (100 mM
KCl, 20 mM MES, 20 mM MOPS, 20 mM Tricine titrated with KOH to pH 6.0) containing
0.5 mM pyranine. The suspension was vortexed and then freeze-thawed three times.
Unilamellar liposomes were prepared by extrusion through 0.1 µm pore size Nucleopore
polycarbonate membranes using an Avanti Mini-Extruder. The unbound pyranine was
then removed by passage through a Sephadex G-50 coarse column equilibrated with the
same buffer solution. To measure the rate of pH dissipation in liposomes with luminal
pH 6.0, liposomes were diluted in a solution buffered to pH 8 and supplemented with
2 mM p-xylene-bis-pyridinium bromide to suppress the fluorescence of leaked pyranine.
The inner liposomal pH was estimated from the pyranine fluorescence intensity measured
at 505 nm upon excitation at 455 nm with a Panorama Fluorat 02 spectrofluorometer [87].
At the end of each recording, 1 µM lasalocid A was added to dissipate the remaining pH
gradient. To prevent the formation of H+-diffusion potential, the experiments were carried
out in the presence of 10 nM valinomycin.

4.10. Assessment of PIO-Dependent Proton Transport in Mitochondria

The rate of proton transport was assessed by the PIO-dependent osmotic swelling of
deenergized mitochondria in NH4NO3-based medium (135 mM NH4NO3, 0.5 mM EGTA,
and 10 mM HEPES-KOH (pH 7.0)) [88]. Mitochondrial swelling was defined as a decrease
in A550 using a plate reader (Infinite 200 Tecan, Austria) and 96-well plates. Other details
are provided in figures and figure legends.

4.11. Statistical Analysis

The data shown represent the means ± standard error of means (S.E.M.) or are the
means of at least three experiments. Statistical probability (p) values were derived by the
Student’s t-test.

5. Conclusions

Thus, here, we demonstrated that PIO can behave as a carrier-dependent uncoupler, a
regulator of the efficiency of ATP production, and a modulator of the mPTP sensitivity to
Ca2+ and adenine nucleotides. These properties contribute to both therapeutic and adverse
effects of PIO in cells and the organism.
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