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Abstract: A subarachnoid hemorrhage (SAH), leading to severe disability and high fatality in sur-
vivors, is a devastating disease. Neuro-inflammation, a critical mechanism of cerebral vasospasm and
brain injury from SAH, is tightly related to prognoses. Interestingly, studies indicate that 2-[(pyridine-
2-ylmethyl)-amino]-phenol (2-PMAP) crosses the blood–brain barrier easily. Here, we investigated
whether the vasodilatory and neuroprotective roles of 2-PMAP were observed in SAH rats. Rats were
assigned to three groups: sham, SAH and SAH+2-PMAP. SAHs were induced by a cisterna magna
injection. In the SAH+2-PMAP group, 5 mg/kg 2-PMAP was injected into the subarachnoid space
before SAH induction. The administration of 2-PMAP markedly ameliorated cerebral vasospasm
and decreased endothelial apoptosis 48 h after SAH. Meanwhile, 2-PMAP decreased the severity of
neurological impairments and neuronal apoptosis after SAH. Furthermore, 2-PMAP decreased the
activation of microglia and astrocytes, expressions of TLR-4 and p-NF-κB, inflammatory markers
(TNF-α, IL-1β and IL-6) and reactive oxygen species. This study is the first to confirm that 2-PMAP
has vasodilatory and neuroprotective effects in a rat model of SAH. Taken together, the experimental
results indicate that 2-PMAP treatment attenuates neuro-inflammation, oxidative stress and cere-
bral vasospasm, in addition to ameliorating neurological deficits, and that these attenuating and
ameliorating effects are conferred through the TLR-4/NF-κB pathway.

Keywords: 2-PMAP; apoptosis; brain injury; neuro-inflammation; subarachnoid hemorrhage (SAH);
vasospasm

1. Introduction

Aneurysmal subarachnoid hemorrhage (SAH) is a deadly cerebrovascular disease [1]
with a mean age of 35 years, the incidence of which increases 1.06-fold with every year of
age [2]. In elderly patients the risk of fatality and adverse outcomes after SAH increase by
6% and 11%, respectively, with age [3]. After surviving a first SAH, cerebral vasospasm and
early brain injury (EBI) contribute to subsequent morbidity and death for the most part [4–6].
Only two-thirds of survivors are functionally independent 1 year after SAH [7]. Notably,
one study has demonstrated that, after SAH, apoptosis participates in aneurysm formation,
vasospasm and EBI [8]. After global ischemia, patients with SAH exhibit apoptosis in the
vasculature, blood–brain barrier (BBB) and brain [9]. Mechanisms of secondary brain injury
after SAH are multifactorial.

Cells 2022, 11, 242. https://doi.org/10.3390/cells11020242 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11020242
https://doi.org/10.3390/cells11020242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://doi.org/10.3390/cells11020242
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11020242?type=check_update&version=1


Cells 2022, 11, 242 2 of 18

After SAH, neuro-inflammation is an important pathological mechanism in vasospasm
and brain injury [10]. Global hypoperfusion initially induces inflammatory processes in
both blood vessels and cerebrospinal fluid (CSF) [11]. Inflammatory responses character-
ized by the release of pro-inflammatory mediators and the activation of resident microglia
and astrocytes exacerbate BBB disruption. These responses further worsen the inflam-
matory reactions and neurological impairments [12]. The breakdown of red blood cells
activates Toll-like receptor-4 (TLR-4) [13], which induces inflammatory responses result-
ing from interaction with nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB), which signals inflammatory cascades that damage nerve tissues [14,15]. NF-kB
is the transcription factor known to have the largest regulatory role in the induction of
inflammation-related genes in intracranial aneurysm lesions [16]. Microglia in the central
nervous system are resident macrophages with various functions [17]. The M1 microglia
induce inflammation, while M2 microglia restore brain tissue homeostasis [18]. NF-κB
signaling contributes to the polarization of microglia and the secretion of pro-inflammatory
cytokines [19]. Reducing neuronal apoptosis and inhibiting inflammation can potentially
improve neurological recovery after SAH [20]. Therefore, enhancing protection against
neuro-inflammation may be an effective strategy for treating SAH.

Treatment with 2-[(pyridine-2-ylmethyl)-amino]-phenol (2-PMAP) is reportedly a
possible alternative therapeutic treatment for Alzheimer’s disease (AD) mice models [21].
The neuropathology of AD manifests as the progressive deposition of β-amyloid (Aβ)
peptides in the brain parenchyma. Hence, neurofibrillary tangles evolve with the loss
of synapses, paralleling local inflammatory responses [22]. Interestingly, 2-PMAP can
inhibit amyloid precursor protein (APP) synthesis and Aβ secretion in CHO APP751SW
cells. Since 2-PMAP apparently has no toxic effects and penetrates the BBB, 2-PMAP
administered in a transgenic mouse model of AD can also reduce full-length APP and
soluble Aβ accumulation in the brain. A novel finding is that 2-PMAP can improve mouse
objective and spatial memory in a radial arm maze, which suggests that 2-PMAP may
directly regulate brain function.

This study established an SAH rat model to explore whether 2-PMAP ameliorates
vasospasm and brain injury after SAH and whether it improves neurological functioning
after SAH. The experiments proved that 2-PMAP has potential use for reducing apoptosis
and attenuating neuroinflammation in the brain. Therefore, 2-PMAP has potential use not
only for treating vasospasm induced by SAH, but also for treating ischemia-induced brain
injury after SAH.

2. Materials and Methods
2.1. Ethics Statement

All procedures in experimental animals complied with the relevant ethical protocols
approved by the Institutional Animal Care and Use Committee of Kaohsiung Medical
University. All experimental protocols also complied with ARRIVE guidelines.

2.2. Animal Preparation

2-PMAP (Sigma; 102212-26-0; St. Louis, MO, USA) was resynthesized from 2-aminophenol
and 2-pyridine carboxaldehyde, and then purified with a commercially available flash column
chromatograph. All animal studies that were conducted utilized 2-PMAP with ≥ 98% purity,
confirmed by HPLC/UV analysis. Male Sprague Dawley rats weighing 350 to 450 g (Bi-
oLasco, Taiwan Co., Ltd., Taipei, Taiwan) were randomly assigned into three groups (six
rats per group): (1) a group with sham treatment (non-SAH group); (2) a group with
SAH treatment (SAH group); and (3) a group with SAH treatment and 2-PMAP treatment
(SAH+2-PMAP group). The SAH+2-PMAP group was pretreated with 5 mg/kg 2-PMAP
injected into the subarachnoid space before the induction of SAH. The non-SAH group
served as a control. The animals were housed at a constant temperature (24 ◦C) in a 12 h
light/dark cycle, with free access to food and water.
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2.3. SAH Model

Experiments were performed using a single-injection cisterna magna rat model. By
an intraperitoneal injection of Zoletil 50® (40 mg/kg, Virbac, Carros cedex), rats were
anesthetized. The rats were then put in a prone head-down position, and a 25-gauge
butterfly needle was inserted into the cisterna magna to slowly aspirate the cerebrospinal
fluid (0.3 mL). Through the butterfly needle, the autologous fresh non-heparinized blood
(0.1 mL/100 g of body weight), withdrawn from the central tail artery, was slowly injected
into the subarachnoid space. The rats were then placed in the ventral recumbent position for
30 min to ensure ventral blood distribution. Then, they were kept warm with maintenance
of the body temperature at 36 ± 1 ◦C until they recovered. The sham group received
the same surgical procedure without blood injection. Two days after SAH, samples were
collected for analysis.

2.4. Neurological Scores

Neurological function was evaluated 48 h after SAH by motor function (Table 1),
which scored ambulation from 0 to 4 and placing/stepping response from 0 to 2 [23]. By
walking with lower extremities, ambulation was assessed; by dragging the hind paw dorsal
surface edge, placing/stepping reflex was also evaluated [24]. Total scores of motor deficits
index (MDI) was determined by two blinded investigators.

Table 1. Motor function examination.

Motor Behavior Score

Ambulation

Normal (symmetric and coordinated) 0

Toes flat under the body while walking with ataxia 1

Knuckle walking 2

Movement in lower extremities but unable to knuckle walk 3

No movement, dragging lower extremities 4

Placing/stepping reflex

Normal (coordinated lifting and placing response) 0

Weak response 1

No stepping 2

2.5. Tissue Processing

Each rat was anesthetized again at the end of experiments for perfusion and fixation;
the chest was opened and a 16 G catheter was inserted into the left ventricle. Next, the rat
was perfused with phosphate-buffered saline (PBS) and fixed with 4% paraformaldehyde
for BA morphometric studies and TUNEL staining. The brain tissues were removed and
postfixed in 4% paraformaldehyde with 30% sucrose overnight. At last, these tissues
were dehydrated and embedded in a Tissue-Tek® optimal cutting temperature compound.
Furthermore, the rat was perfused with phosphate-buffered saline (PBS) for Western
blotting analysis. The brain tissues were removed and further washed in ice-cool PBS.
Basilar artery tissues were removed and the whole brain tissues were cut into slices. The
degree of cerebral vasospasm was blindly measured by physicians using measurements of
the cross-sectional area and intima-media thickness of the basilar artery, calculating their
relative ratio.

2.6. BA Morphometric Studies

The middle-third part of the BA was dissected for analyzing the extent of vasospasm.
The BA cross-sectional area and intima-media thickness were scanned and analyzed by
computerized image analysis. The BA cross-sectional area was measured by tracing the
entire internal arterial lumen, and at least six random areas were qualitatively assessed and
averaged in each rat. The intima-media thickness was measured as the maximal distance



Cells 2022, 11, 242 4 of 18

between the internal intima and the outer adventitia. The ratio of the cross-sectional area
to the intima-media thickness was analyzed to assess the severity of vasospasm based on
previous studies from the literature [9,25–27].

2.7. Immunofluorescence Staining

To retrieve antigens with a DAKO antigen retrieval solution (DAKO, Carpenteria, CA,
USA), brain samples were heated by steam for 30 min. To inhibit endogenous peroxidase, a
series of slices were washed with Tris-buffered saline (TBS) and immersed in a 3% hydrogen
peroxide solution for 10 min. Slices were then incubated with a TUNEL kit and primary
antibodies (mouse anti-NeuN antibodies (Merck; MAB377; Darmstadt, Germany); rabbit
anti-Iba1 (proteintech; 10904-1-AP; Rosemont, IL, USA); and mouse anti-GFAP antibodies
(Sigma; G3893; USA)) at room temperature. After being washed twice with TBS, the slices
were incubated with anti-mouse antibodies (Thermo; A10524; Waltham, MA, USA) and
anti-rabbit antibodies (Thermo; A11008; Waltham, MA, USA) at room temperature for
3 h. Next, the slices were stained and mounted within Fluroshield TM with DAPI (Sigma;
F6057; USA) after being washed twice with TBS. Images were captured with a fluorescence
microscope (Olympus, U-RFL-T) and the fluorescence intensity was measured by Image J
vers. 1.44d software (NIH).

2.8. Western Blotting Analysis

The protein of brain tissue was extracted from each rat using an ice-cold lysis buffer
containing protease inhibitors (Sigma; St. Louis, MO, USA), and the concentrations in the
supernatant were determined with a protein assay kit (Bio-Rad Laboratories). Next, an
equal amount of total protein was put into each well, separated with a 10% SDS-PAGE
and further transferred onto a polyvinylidene fluoride membrane. After that, the mem-
brane was blocked for 1 h with TBST and 5% skim milk at room temperature, and was
further incubated at 4 ◦C overnight with primary antibodies (TLR-4 (1:500; 19811-1-AP;
Proteintech, Rosemont, IL, USA), NF-κB (1:500; 10745-1-AP; Proteintech), p-NF-κB (1:500;
#3033; Cell signalling), cleaved caspase-3 (1:400; #9661; Cell Signaling), Bcl-2(1:500; #3498;
Cell Signaling), Bax (1:2000; 60267-1-Ig; Proteintech,) and β-actin (1 : 20000; A5441; Sigma)).
Then, corresponding secondary antibodies (goat anti-rabbit IgG (1:2000; 111-035-444; Jack-
son ImmunoResearch, West Grove, PA, USA) and goat anti-mouse IgG (1:2000; AP124P;
Jackson ImmunoResearch, West Grove, PA, USA)) were probed for 1 h at 25 ◦C after the
membrane was rinsed for several times. Ultimately, the MiniChemi™ chemiluminescent
system (Sage Creation Science, Beijing, China) was applied to measure the band density.

2.9. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted from the BA and brain tissues with a TOOLSmart RNA Ex-
tractor (Biotools, Taiwan), and a TOOLS Easy Fast RT Kit (Biotools, New Taipei City, Taiwan)
was then employed to reverse-transcribe the total RNA to cDNA. The cDNA was amplified
with primers manufactured by Sigma (Darmstadt, Germany). GAPDH (glyceraldehydes-3-
phosphate dehydrogenase) was used as the internal reference gene. The target genes and
GAPDH were amplified by PCR performed with TOOLS 2X SYBR qPCR Mix. The primer se-
quences were as follows: TNF-α: forward: 5′-GCCCAGACCCTCACACTC-3′ and reverse:
5′-CACTCCAGCTGCTCCTCT-3′; IL-1β: forward: 5′-CACCTTCTTTTCCTTCATCTTTG-3′

and reverse: 5 ′-GTCGTTGCTTGT CTCTCCTTGTA-3′; IL-6: forward: 5′-CCGGAGAGGAG
ACTTCACAG-3′ and reverse: 5′-ACAGTGCATCATCGCTGTTC-3′; TLR-4: forward: 5′-
TGCTCAGACATGGCAGTTTC- 3′ and reverse sequence: 5′-TCAAGGCTTTTCCATCCAAC
-3′; GAPDH: forward: 5′-AGACAGCCGCATCTTCTTGT-3′ and reverse: 5′-CTTGCCGTGGG
TAGAGTCAT-3′. The RT-PCR was performed on a Step One Plus Real-Time PCR system
using Step One software, V2.3 (Applied Biosystems, Waltham, MA, USA).
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2.10. Enzyme-Linked Immunosorbent Assay (ELISA)

Forty-eight hours after SAH, CSF samples were collected and centrifuged immediately
at 2000× g at 4 ◦C for 10 min to remove cells, then stored below−15 ◦C until analysis. After
passing samples through C2 columns (Amersham, UK; Nutley, NJ, USA), cytokine levels
(TNF-α, IL-1β and IL-6) were determined at 450 nm by ELISA kits (Amersham, UK).

2.11. Measurement of Reactive Oxygen Species (ROS)

A Superoxide Detection Assay Kit (ab139476; abcam, Cambridge, MA, USA) was
applied to measure ROS in brain tissues. Slices of brain tissues were incubated with
1 mL of 5 µM oxidative stress detection reagent at 37 ◦C for 10 min protected from light.
After staining, the slices were observed under a microscope (Olympus, Tokyo, Japan) to
determine the amount of ROS generated from mitochondria.

2.12. Statistical Analyses

All data were processed using SPSS software and presented as group means ± stan-
dard deviation (SD). Comparisons between groups were performed by a one-way ANOVA
or Mann–Whitney U test for data with or without a normal distribution. Differences were
considered significant for p-value less than 0.05.

3. Results
3.1. Mortality and Neurological Deficit in SAH Rats

A total of 36 rats were used for these studies. After SAH, thick blood clots were seen
over the basal surface of the brain stem. Two days after SAH, no rats died. To determine
how 2-PMAP affected brain injury in the SAH rats, the MDI was determined to evaluate
the neurological deficits. According to the examination results, both scores in the SAH
groups were significantly higher than that of the sham group. The values of the MDI in
the SAH were 4.33 ± 1, compared with a score of 0 in the sham group. Treatment with
2-PMAP significantly improved the MDI (Table 2). Therefore, the results indicated that
2-PMAP treatment protected against the impairment of neurological function in SAH rats.

Table 2. Behavioral assessment.

Treatment Ambulation Placing/Stepping Reflex MDI

Sham 0 0 0

SAH 2.56 ± 0.88 # 1.78 ± 0.44 # 4.33 ± 1 #

2-PMAP + SAH 1.44 ± 0.53 * 1.22 ± 0.49 * 2.67 ± 0.71 *
Neurological function was evaluated 48 h after SAH by motor function, total scores of motor deficits index
(ambulation and placing/stepping response). MDI, motor deficits index. Six rats per group. *, p < 0.05, significantly
different from SAH group. #, p < 0.05, significantly different from sham group.

3.2. 2-PMAP Reduced Vasospasm Severity in SAH Rats

Cerebral vasospasm in SAH rats was evaluated by measuring the cross-sectional areas
of the BA in individual rats 48 h after blood injection into the cisterna magna (Figure 1A).
In the sham group, the tunica media of the BA had an orderly arrangement of smooth
muscle cells. In the SAH group, the BA revealed marked curling and thickening in the
elastic lamina and marked swelling in endothelial cells. In contrast, the SAH+2-PMAP
group only had mild curling of the elastic lamina and mild swelling of endothelial cells.
Figure 1B compared the mean BA cross-sectional area in the three groups. The BA had a
significantly smaller mean cross-sectional area in the SAH group compared to the sham
group, but improved after treatment with 2-PMAP. Figure 1C showed that the vessel wall
intima-media thickness was significantly lower in the SAH+2-PMAP group compared to
the SAH group. Finally, vasospasm severity was estimated by calculating the ratio of the
BA cross-sectional area to the BA wall intima-media thickness. Again, the SAH+2-PMAP
group had a significantly decreased ratio compared to the SAH group (Figure 1D). Notably,
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the TUNEL staining results for BA endothelial cells in the sham group were negative. At
48 h after SAH, TUNEL-positive cells appeared in the BA in SAH rats. Treatment with
2-PMAP remarkably reduced these cells. By attenuating BA endothelial apoptosis, 2-PMAP
was able to improve cerebral vasospasm after SAH.
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Figure 1. 2-PMAP reduced vasospasm severity in SAH rats. (A) Representative cross-sections of the
BA in SAH rats by H&E stain. Left panels have scale bars of 100 µm. Right panels are high-power
views of tissues, with scale bars of 25 µm. (B–D) Quantification of the (B) cross-sectional areas of the
internal lumen, (C) the BA wall intima-media thickness and (D) the ratio of the cross-sectional area
to the wall intima-media thickness. Data are shown as mean + SD (n = 6 for each group); *, p < 0.05,
significantly different from the SAH group. #, p < 0.05, significantly different from the sham group.
(E) TUNEL staining was utilized to detect apoptotic endothelial cells. Scale bars: 50 µm. No apoptotic
endothelial cells of the BA were observed in sham rats. Increased apoptotic endothelial cells were
observed in SAH rats, which was reduced markedly by 2-PMAP (arrows).
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3.3. 2-PMAP Decreased Apoptotic Neurons in SAH Rats

An SAH can cause apoptosis in the cerebral cortex, with poor prognoses [9,28]. In
this work, the protective effect of 2PMAP against neuronal apoptosis was evaluated by
performing TUNEL staining 48 h after SAH with neurons marked by NeuN. No apoptosis
occurred in the sham group (Figure 2A), whereas the SAH group had significantly higher
apoptotic neuron counts. Figure 2B shows that neuronal apoptosis was substantially lower
in the SAH+2-PMAP group compared to the SAH group.

On the other hand, the protein expression of cleaved caspase-3, Bcl-2 and Bax in brain
tissues were measured by Western blotting. SAH induced significant increases in cleaved
caspase-3 in the brain tissues of the rats (approximately 2.5-fold higher compared to the
sham group) and decreased the ratio of Bcl-2 to Bax; compared to the SAH group, the
administration of 2-PMAP markedly reversed these expressions (Figure 2C).
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Figure 2. 2-PMAP decreased apoptotic neurons in SAH rats. (A) TUNEL staining was utilized to
detect apoptotic neurons in SAH rats after 2-PMAP treatment. Scale bars: 100 µm. NeuN was used as
a neuron marker. Representative immunofluorescence staining of neuronal nuclei (NeuN, red) and
cell death (TUNEL, green). Images of each group are displayed as single staining results for NeuN
and TUNEL, and a fused image displays both cells (green and red). SAH induced the development
of apoptotic neurons in the brain tissues, whereas 2-PMAP decreased neuronal apoptosis (arrows).
(B) Percentage of apoptotic neurons in the brain tissues 48 h after SAH. (C) Western blotting was
utilized to measure the protein levels of cleaved caspase-3, Bcl-2 and Bax in brain tissues. Left panel:
representative expression of cleaved caspase-3, Bcl-2 and Bax protein of brain tissues. Beta-actin was
used as its internal control. Right panel: quantification of cleaved caspase-3 and relative ratio of Bcl-2
to Bax activity. Data are shown as mean ± SD (n = 6 for each group); *, p < 0.05, significantly different
from the SAH group. #, p < 0.05, significantly different from sham group.
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Taken together, these results suggested that 2-PMAP administration substantially
reduced the neuronal damage caused by SAH in the experimental rats.

3.4. 2-PMAP Decreased Inflammatory Cytokines in SAH Rats

Next, we performed an ELISA to characterize inflammatory cytokines in CSF, which
is implicated in the pathology of SAH (Figure 3A). At 2 days after the induction of SAH,
the SAH group had significantly higher levels of pro-inflammatory cytokines compared
to the sham group (TNFα and IL-1β were approximately three-fold higher compared to
the sham group and IL-6 was approximately two-fold higher compared to sham group).
However, the expression of these cytokines was significantly lower in the SAH+2-PMAP
group compared to the SAH group.
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Figure 3. 2-PMAP decreased inflammatory cytokines in SAH rats. (A) The inflammatory cytokines
in CSF were measured by an enzyme-linked immunosorbent assay 48 h after SAH. The level of
TNFα, IL-1β and IL-6 was significantly increased after SAH, whereas 2-PMAP reversed these levels.
(B,C) qRT-PCR was used to test the relative expression of inflammatory cytokines in the BA and
brain tissues. The level of TNFα, IL-1β and IL-6 in (B) the BA and (C) brain tissues was significantly
increased after SAH, whereas 2-PMAP also reduced these levels. Data are shown as mean ± SD
(n = 6 for each group); *, p < 0.05, significantly different from the SAH group. #, p < 0.05, significantly
different from the sham group.
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Similarly, we performed qRT-PCR to analyze the level of inflammatory cytokines in
the brain tissues and BA, which also contribute to the pathology of SAH. At 2 days after
the induction of SAH, the SAH group had significantly higher levels of pro-inflammatory
cytokines compared to the sham group in brain tissues (TNFα, IL-1β and IL-6 were ap-
proximately 10-fold, 7-fold and 4-fold higher compared to the sham group, respectively)
(Figure 3B) and the BA (TNFα, IL-1β and IL-6 were approximately 35-fold, 15-fold and
6-fold higher compared to the sham group, respectively) (Figure 3C). However, the expres-
sion of these cytokines was also significantly lower in the SAH+2-PMAP group compared
to the SAH group in brain tissues and the BA.

On the other hand, the protein expression of TLR-4 and p-NF-κB/NF-κB in brain
tissues were measured by Western blotting. SAH induced significant increases in the
brain tissues of the rats (TLR-4 and p-NF-κB/NF-κB were approximately 10-fold higher
compared to the sham group); compared to the SAH group, the administration of 2-PMAP
markedly reduced these expressions (Figure 4A). Besides, the expression of TLR-4 in the BA
was measured by qRT-PCR. SAH induced significant increases in the BA of the rats (TLR-4
was approximately 20-fold higher compared to the sham group); compared to the SAH
group, the administration of 2-PMAP markedly reduced the expression (Figure 4B). Taken
together, by ameliorating apoptosis through regulating inflammatory cytokines, 2-PMAP
improved neurobehavioral outcomes after SAH.
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to measure the protein levels of TLR-4, NF-κB and phospho-NF-κB in brain tissues. Left panel:
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was used as an internal control. Right panel: quantification of TLR-4 and relative p-NK-κB activity.
(B) qRT-PCR was used to test the relative expression of TLR-4 in the BA. The level of TLR-4 in the BA
was significantly increased after SAH, whereas 2-PMAP also reduced the level. Data are shown as
mean ± SD (n = 6 for each group); *, p < 0.05, significantly different from the SAH group. #, p < 0.05,
significantly different from the sham group.

3.5. 2-PMAP Inhibited Microglia Activation in SAH Rats

Since SAH may induce microglia activation within brain parenchyma, the inflamma-
tion status of brain tissues was measured by immunofluorescence staining. Figure 5 shows
that there were relatively low IBA1-positive microglia existing in the sham group. As
compared with the sham group, a significantly greater number of IBA1-positive microglia
appeared in the SAH group with amoeboid morphology and activated microglia, whereas
2-PMAP recovered the number of activated microglia. These results suggest microglia
activated in the brain after SAH and was markedly reversed after 2-PMAP treatment.
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Figure 5. 2-PMAP inhibited microglia activation in SAH rats. Slices of brain tissues were prepared
in rats treated with the administration of 2-PMAP, or not, 48 h after the SAH. Immunofluorescence
staining showing microglia activation in brain tissues after SAH. (A) Representative images for
activated microglia in the brain tissues, which show ameboid morphology of IBA1-positive microglia.
Scale bars: 100 µm. (B) Relative fluorescence intensity of IBA-1. Data are shown as mean ± SD (n = 6
for each group); *, p < 0.05, significantly different from the SAH group. #, p < 0.05, significantly
different from the sham group.

3.6. 2-PMAP Decreased Astrocyte Activation in SAH Rats

Reactive astrogliosis (upregulation of glial fibrillary acidic protein (GFAP)) is a conse-
quence of microglia activation, enhancing the inflammatory response in SAH [29]. Figure 6
shows SAH significantly induced a nearly seven-fold increase in GFAP expression com-
pared to the sham group, whereas 2-PMAP reversed the number of reactive astrocytes.
These results suggest reactive astrocytosis was induced in the brain after SAH, and was
markedly improved after 2-PMAP treatment.
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Figure 6. 2-PMAP decreased astrocyte activation in SAH rats. Slices of brain tissues were prepared
in rats treated with the administration of 2-PMAP, or not, 48 h after the SAH. Immunofluorescence
staining showing reactive astrogliosis in brain tissues after SAH. (A) Representative images of reactive
astrogliosis in the brain tissues. Scale bars: 100 µm. (B) Relative fluorescence intensity of GFAP. Data
are shown as mean± SD (n = 6 for each group); *, p < 0.05, significantly different from the SAH group.
#, p < 0.05, significantly different from the sham group.

3.7. 2-PMAP Decreased ROS in SAH Rats

Mitochondrial dysfunction leads to the overproduction oxygen radicals, the release of
apoptogenic proteins and the generation of mitochondria-related inflammation, which are
associated with brain injury after SAH [30,31]. Figure 7 shows SAH significantly induced a
nearly four-fold increase in the production of ROS as compared to the sham group, whereas
2-PMAP reduced these elevated levels. These results suggest mitochondrial dysfunction
was induced in the brain after SAH and was markedly improved after 2-PMAP treatment,
which is consistent with the brain neuronal apoptosis.
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Figure 7. 2-PMAP decreased reactive oxygen synthase (ROS) in SAH rats. Slices of brain tissues were
prepared in rats treated with the administration of 2-PMAP, or not, 48 h after the SAH. Immunoflu-
orescence staining showing ROS elevated in brain tissues after SAH. (A) Representative images of
ROS in the brain tissues. Scale bars: 100 µm. (B) Relative fluorescence intensity of ROS. Data are
shown as mean ± SD (n = 6 for each group). *, p < 0.05, significantly different from the SAH group. #,
p < 0.05, significantly different from the sham group.

4. Discussion

In the present study, treatment with 2-PMAP significantly suppressed vasospasm
through decreasing apoptotic endothelial cells 2 days after SAH in rats. Meanwhile,
2-PMAP ameliorated microglia and astrocyte activation as well as neuro-inflammation
(p-NF-κB/NF-κB, TLR-4, TNF-α, IL-1β and IL-6)) and oxidative stress, leading to a de-
crease in neuronal apoptosis in the brain cortex, which demonstrated that 2-PMAP was a
promising drug to attenuate vasospasm and brain injury in SAH rats. This is the first study
to explore the vasodilatory effect and neuroprotective role of 2-PMAP after SAH (Figure 8).
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Approximately 10 out of 100,000 people each year experience SAH with residual
sequela and economic burdens [32]. Despite advanced surgical techniques, EBI and va-
sospasm remain the major causes of mortality and morbidity [9,33]. Vasospasm induces
ischemic damage to brain, in which the outcomes depend on the extent of the damage [1].
Therapies designed to alleviate brain injury can be expected to reduce death and disability
in SAH patients. The mortality rate and neurological deficits are important to evaluate the
outcome after SAH. In our study, the mortality rates in SAH patients with and without
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2-PMAP treatment were similar. However, neurological deficits only improved in SAH
patients with 2-PMAP treatment. Microglial and astrocyte activation in addition to neuro-
inflammation are also consistent with the occurrence of vasospasm or neurobehavioral
deficits [18].

After SAH, two major changes in vascular wall structure, endothelial apoptosis and
smooth muscle cell proliferation, promote vascular remodeling in spastic vessels [34–36].
Endothelial apoptosis in major cerebral arteries initiates and maintains cerebral vasospasm [37–40].
It further induces anti-apoptotic factors to release and act on smooth muscle cells [41].
Hence, smooth muscle cells proliferate, arterial walls thicken and vascular stiffening
develops to enhance cerebral vasospasm [35]. In the rat model performed by Leclerc et al.
(2018), vasospasm severity was highest at 48 h after a single cisterna magna injection [42].
Therefore, we defined vasospasm severity as measured at 2 days after SAH. In our study,
the ratio of the BA cross-sectional area to the BA wall intima-media thickness was compared
after 2-PMAP treatment in a rat model of SAH. 2-PMAP significantly increased the activity
of vasodilators in vasospastic BAs 48 h after SAH. The TUNEL studies revealed that
apoptotic endothelial cell counts differed between the SAH+2-PMAP group and the SAH
group. This finding suggested that the anti-vasospastic effect of 2-PMAP was an apoptosis-
dependent effect.

Apart from impaired cerebral perfusion, neuro-inflammation is considered the hall-
mark pathology of brain damage after SAH [43]. Free hemoglobin released in the subarach-
noid space stimulates inflammatory responses, which then cause both cerebral vasospasm
and oxidative burst [37,44–46]. TNF-α causes apoptosis of cerebral endothelial cells [47].
Endothelial cell injuries disrupt the BBB, which further accelerates the release of inflam-
matory cytokines (TNF-α, IL-1β and IL-6) into CSF. TNF-α contributes to the recruitment
of inflammatory mediators, oxidative stress and cell death [48]. Elevated expressions of
inflammatory cytokines in serum or in CSF are associated with poor SAH outcomes [49–52].
Of all the Toll-like receptors (TLRs) in SAH, TLR-4 is the most important, which is activated
by heme, fibrinogen and heat shock proteins produced after SAH [53]. The abnormally
high level of TLR-4 in peripheral blood mononuclear cells is related to a high incidence
of cerebral vasospasm with delayed cerebral infarction, a high severity of SAH with poor
functional recovery [54]. The TLR-4 interacts with MyD88 or toll-receptor-associated acti-
vator of interferon (TRIF) to activate inflammatory cytokine genes [55]. Through MyD88,
TLR-4 induces early phase NF-κB activation, and the TRIF-dependent pathway induces
late-phase NF-κB activation. The NF-κB signaling pathway regulates inflammation and
BBB integrity in brain ischemia [56], in which the phosphorylated NF-κB is required to
activate inflammatory responses [57,58]. In our study, p-NF-κB/NF-κB and TLR-4 protein
levels were increased in brain tissues after SAH; 2-PMAP treatment decreased the expres-
sions. Taken together, the results indicated that the TLR-4/NF-κB signals were involved in
the anti-inflammatory effects in SAH of 2-PMAP.

In patients with neuro-inflammation after SAH, activated microglia are the main
source of cytokines in the CNS [59,60]. Microglia are resident macrophages or differentiated
recruited monocytes in brain innate immunity. Their function can rapidly change according
to physiological or pathophysiological needs [61–63]. Within 2 days after SAH, microglia
are activated with monocyte recruitment. Whereas the activation of microglia prevents
neuronal injury and promotes tissue repair, microglia hyperactivation also promotes cell
death and neuronal dysfunction [64]. Hence, we hypothesize that monocytes activate
and differentiate in response to SAH. Excessive microglia activation further causes the
secretion of inflammatory factors, which aggravates brain injury. Therefore, preventing
excess microglia activation can alleviate brain injury after SAH [18,65,66]. In our study,
significant increases in microglia activation and inflammatory cytokines resulted in severe
brain injury. Notably, 2-PMAP treatment impeded SAH-induced microglia activation
and reduced expressions of TLR-4/p-NF-κB. These effects were also accompanied by
reduced expressions of inflammatory factors (TNF-α, IL-1β and IL-6), which indicated the
suppression of microglial activation and the inhibition of neuro-inflammation. Therefore,
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we concluded that 2-PMAP ameliorates brain injury after SAH by inhibiting microglia
activation and NF-κB signaling, which then reduces the inflammatory response to SAH.

Both human models [67] and animal models [44] of SAH indicate that neuronal apop-
tosis occurs after SAH. Besides apoptosis, oxidative stress contributes to brain injury after
SAH [68]. Inside the cells, the electric chain of mitochondrial oxidative phosphorylation
is the predominant source of ROS [69]. Excessive ROS production induces DNA damage,
and the resulting oxidative stress environments further exacerbate the cell damages [70].
Mitochondrial dysfunction generates ROS, thereby breaking the mitochondrial membrane
potential, which causes neuronal death [71]. In the intrinsic mitochondrial pathway, the
activity of cleaved caspase 3 contributes to cell apoptosis to the greatest extent. Cell death
signals result in not only mitochondrial dysfunction but also caspase pathways, which are
downstream of the Bcl-2 family [72]. Since the pro-survival protein, Bcl-2, regulates the
activation or cleavage of caspases, and further suppresses the formation of pro-apoptotic
proteins, Bax and Bad, the ratio of Bcl-2 to Bax usually indicates whether cell survival
or cell death is the most dominate event [9]. In our study, SAH not only induced the
increased production of ROS and cleaved caspase-3 in the brain tissues of the rats but
also decreased the ratio of Bcl-2 to Bax; the administration of 2-PMAP improved these
expressions. These results suggest that upstream death signals were induced in the brain
after SAH, further resulting in mitochondrial dysfunction and the activation of caspases;
both were ameliorated after 2-PMAP treatment, which is consistent with the brain neuronal
apoptosis and neurological deficits.

Although activated microglia and astrocytes have beneficial effects in the early stage
after SAH, they also cause the activation of macrophages through the recruitment of
monocytes and neutrophils. The entry of monocytes and neutrophils into the subarachnoid
space after SAH activates and maintains early phase inflammation [10,18,66]. Astrocytes are
essential to keep brain homeostasis by regulating the CNS immune system, by supporting
neuronal development/survival and by modulating neurotransmission [73]. In the adult
brain, astrocytes do not proliferate unless nerve tissue damage occurs [74]. In response
to tissue injury, “reactive astrocytes” are activated to preserve tissue integrity. Reactive
astrogliosis, characterized by alterations in phenotype and by increases in the size and
number of astrocytes (upregulation of GFAP and S100B) [75], have both protective and
deleterious influences on neurons [75,76]. They not only can decrease brain edema, preserve
BBB and protect neurons from damage, but also ensue scar formation, enhance the release
of cytokines and limit axonal regeneration. Astrocyte activation is a possible consequence
of microglia activation, which can cause neuro-inflammation [31]. In SAH patients, GFAP
and S100B are elevated in both CSF and serum [77,78], in which high S100B levels in CSF is
associated with poor one-year clinical outcomes [79]. In our study, GFAP was significantly
increased in SAH, but the increase was reversed by 2-PMAP treatment, which suggests
that 2-PMAP can reduce astrocyte activation, which is consistent with microglial activation
and brain injury. Therefore, 2-PMAP is likely to act against neuro-inflammation and brain
injuries by blocking microglial and astrocyte activation.

5. Conclusions

In summary, our findings in a rat model of SAH suggest that the administration of
2-PMAP may ameliorate inflammatory responses, cerebral vasospasm and improve neuro-
logical impairment after SAH. The neuroprotective effects of 2-PMAP were mediated by
the TLR-4/NF-κB signaling pathway. This study is the first to demonstrate that exogenous
2-PMAP treatment may protect against neuro-inflammation in patients with SAH.
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