Supplementary Online Content

Vell MS, Loomba R, Krishnan A, et al. Association of statin use with risk of liver disease, hepatocellular carcinoma, and liver-related mortality. *JAMA Netw Open.* 2023;6(6):e2320222. doi:10.1001/jamanetworkopen.2023.20222

eAppendix. Supplementary Information

eFigure 1. Cumulative Incidence of New Liver Diseases and Liver-Associated Deaths in Patients Without Prior Liver Disease in UKB

eFigure 2. Metabolic Profile of Statin Users Compared to Non-users in Patients Without Prior Liver Disease in UKB

eTable 1. Numerical Code of the Medication in UKB

eTable 2. Statin Intake and the Development of Incident Liver Disease, Hepatocellular Carcinoma and Liver-Related Mortality in Patients Without Prior Liver Disease in UKB (Adjusted for Diet, Alcohol Intake and Socioeconomic Status)

eTable 3. Analysis of the Basic Characteristics of the Cohort From eTable 2

eTable 4. Statin Intake and the Development of Incident Liver Disease, Hepatocellular Carcinoma and Liver-Related Mortality in Patients Without Prior Liver Disease in UKB in an Inverse Probability of Treatment Model

eTable 5. Influence of CYP3A4 Gene Variant and Statin Intake on Liver Health in UKB Gene Carriers Without Prior Liver Disease

eTable 6. Associations of Statin Use With the Risk of Incident Liver Disease, Hepatocellular Carcinoma, and Liver-Related Mortality in Individuals Without Prior Liver Disease in Different Risk Constellations in UKB

eTable 7. Overview of the Metabolites of the Volcano Plots **eReferences**

This supplementary material has been provided by the authors to give readers additional information about their work.

eAppendix. Supplementary Information **Abbreviations**

ApoA1	Apolipoprotein A1
АроВ	Apolipoprotein B
B18	Chronic viral hepatitis
B20	Human immunodeficiency virus disease resulting in infectious and parasitic disease
B21	Human immunodeficiency virus disease resulting in malignant neoplasms
B22	Human immunodeficiency virus disease resulting in other specified diseases
B23	Human immunodeficiency virus disease resulting in other conditions
B24	Unspecified human immunodeficiency virus disease
ВМІ	Body mass index
С	Cholesterol
C22	Malignant neoplasm of liver and intrahepatic bile ducts
C22.0	Hepatocellular carcinoma
CI	Confidence interval
CYP3A4	Cytochrome P450 3A4
E11	Diabetes mellitus type II
E78	Disorder of lipoprotein metabolism and other lipidaemias
EHR	Electronic Health Records
G72.0	Drug-induced myopathy
GlycA	Glycoprotein acetylation
HCC	Hepatocellular carcinoma
HCO	Health care organization
HDL	High density lipoprotein

HIV	Human immunodeficiency virus
HMG-CoA	3-Hydroxy-3-Methylglutaryl Coenzyme A
HR	Hazard ratio
HSD17B13	Hydroxysteroid 17-Beta Dehydrogenase 13
I10	Essential (primary) hypertension
l11	Hypertensive heart disease
l12	Hypertensive chronic kidney disease
I13	Hypertensive heart and chronic kidney disease
l15	Secondary hypertension
120	Angina pectoris
125	Chronic ischaemic heart disease
ICD-10	International Classification of Diseases and Related Health Problems
IDL	Intermediate density lipoprotein
K70	Alcohol-associated liver disease
K71	Toxic liver disease
K72	Hepatic failure, not elsewhere classified
K73	Chronic hepatitis, not elsewhere classified
K74	Fibrosis and cirrhosis of liver
K75	Other inflammatory liver diseases
K76	Other diseases of liver
K77	Liver disorders in diseases classified elsewhere
LDL	Low density lipoprotein
LMWH	Low molecular weight heparin
MTARC1	Mitochondrial Amidoxime Reducing Component1
MUFA	Monounsaturated fatty acids

NAFLD Non-alcoholic fatty liver disease

NASH Non-alcoholic steatohepatitis

OR Odds ratio

PL Phospholipids

PMBB Penn Medicine Biobank

PNPLA3 Patatin-like phospholipase domain-containing protein 3

PS Propensity score

PUFA Polyunsaturated fatty acids

SD Standard deviation

SERPINA1 Serpin family A member 1

SMD Standardized mean difference

SNP Single nucleotide polymorphism

TG Triglycerides

TriNetX TriNetX Network

TNX TriNetX

TM6SF2 Transmembrane 6 superfamily member 2

UK United Kingdom

UKB UK Biobank

VLDL Very low density lipoprotein

Z94.4 Liver transplant status

UK Biobank

Enrollment

The UKB included patients aged 37-73 years who were recruited from 2006-2010 until May 2021 (end of follow-up). Written consent for data linkage and genotyping was obtained from all participants. Each participant was enrolled by the UK National Health Service and was initially examined as part of the enrollment process. Regular long-term examinations were also conducted.

Exclusion criteria

Criteria for exclusion from the UK Biobank cohort were missing BMI data, HIV (B20-B24) or chronic viral hepatitis (B18), which affected 3932 patients (Figure 1).

We excluded 19 patients with HCC, 2125 patients with liver disease and 4396 patients with pathological alcohol consumption at baseline (Figure 1). One patient was excluded due to a lack of survival data (Figure 1).

Medication

Health professionals conducted interviews to register medications, which were then numerically coded. Of the 4382 medications recorded, 4199 were included.

Patients' medication codes data was sorted and scored according to medication type (i.e., statin, beta-blocker, proton-pump-inhibitor, etc). Unclearly titled specific names and duplicate alignments of specific names were excluded from the study.

Metabolic profile of statin-users compared to non-users in patients without prior liver disease in UKB

Statins are primarily used for their lipid-lowering properties, which protect against serious cardiovascular events and strokes. Würtz et al. analyzed the metabolic profile of patients taking statins. It was shown that the initiation of statin use led to an 80%

reduction in remnant cholesterol relative to LDL cholesterol. Among fatty acids, omega-6 fatty acids decreased the most.² We were able to confirm these results in our study (**Table S7**).

Ethnicity

Ethnicity was also considered in matching and numerical values were used to assign patients. Black ('Caribbean', African', 'Any other black backgorund'), Asian('Indian', 'Pakistani', 'Bangladeshi', 'Any other asian background'), White ('British', 'Irish', 'Any other white background') and other ethnicities ('Mixed', 'Chinese', 'Other ethnic group') were represented.³

Penn Medicine Biobank

Enrollment

The PMBB included patients aged 18-102 years with ongoing recruitment. End of follow-up was December 2020. The PMBB consists of patients enrolled from phlebotomy sites throughout the health system and is agnostic to their underlying illness.

Exclusion criteria

Criteria for exclusion from the PMBB cohort were incorrect (BMI<5 or >500 kg/m²) or missing BMI data and incorrect (negative or <18 years) or missing age and survival data (n=24,337). In addition, we excluded a further 373 patients due to HIV infection (B20). No HIV-associated diseases (B21-B24) were reported. Finally, we excluded 1214 cases due to chronic hepatitis (B18) (Figure 1).

Medication

-

Ethnicity

Ethnicity in PMBB was also considered in matching, and numerical values were used to match patients. In PMBB, Black, Asian, American Indian and Alaska native, White and other ethnicities (Hispanic and Pacific Island, Other or Unknown) were represented.

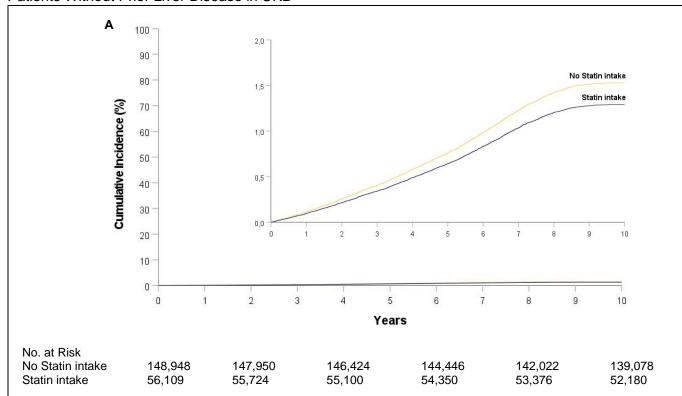
TriNetX

Enrollment

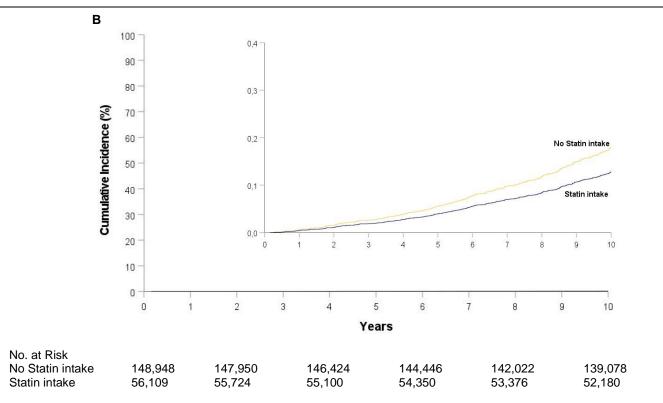
The TriNetX research network (Cambridge, MA) provides access to the EHRs of patients from health care organizations (HCOs) in the United States. Patients in TriNetX were 18-90 years old and were enrolled with real-time data between January 2011 and December 2020. End of follow-up was September 2022. All clinical variables are retrieved directly from the EHR through an integrated system of clinical records. TriNetX can also extract facts of interest from the narrative text of clinical documents using natural language processing. Data are mapped to a standard and controlled set of clinical terminologies and converted to a proprietary data schema. This transformation process includes an extensive data quality assessment to reject records that do not meet quality standards. Quality assurance of the data is performed using a standardized format before integration into the database. Patient data is reduced to statistical summaries so that patients remain de-identified at all times. Likewise, the source of the individual healthcare system remains unknown. Death register was used to obtain information on mortality and the respective age of the individual.

Statistical analysis

All statistical analyses were performed in real-time using the TriNetX platform. We first compared baseline patient characteristics. Categorical variables were compared using chi-squared tests, and continuous variables were assessed using an independent-


samples t-test. Analyses were performed to examine the risk of study outcomes using Cox proportional hazards models. HR and CI along with tests for proportionality were calculated using R's Survival package v3.2-3 and numbers were then validated by comparing them with the output from SAS version 9.4. An a priori-defined 2-sided alpha of <0.05 was used for statistical significance.

a) Development of the Propensity Score Model


Each patient taking statins regularly was matched to a patient in the control group using 1:1 propensity score matching to reduce confounding effects. For the liver-healthy cohort, the propensity score model was adjusted for the following variables: age, sex, BMI, E11, I10, E78.

Logistic regression on these input matrices was used to obtain propensity scores for each patient in both cohorts. Logistic regression was performed in Python 3.6.5 (Python Software Foundation) using standard libraries NumPy and sklearn. The same analyses were also performed in R 3.4.4 software (R Foundation for Statistical Computing, Vienna, Austria) to ensure outputs match. After calculating propensity scores, matching was performed using nearest-neighbor matching algorithm with a caliper of 0.1 pooled standard deviations. The order of the rows in the covariate matrix can affect the nearest neighbor matching; therefore, the order of the rows in the matrix was randomized to eliminate this bias.

eFigure 1. Cumulative Incidence of New Liver Diseases and Liver-Associated Deaths in Patients Without Prior Liver Disease in UKB

A. Cumulative incidence of new liver diseases (K70-K77) in patients without prior liver disease in UKB. Alternative event was death or end of follow-up. To depict the cumulative incidence of new liver disease under Statin intake, we used the Cox Regression model. We adjusted for the variables age, sex, BMI, ethnicity, number of medications and Statin use.

B. Cumulative incidence of liver-associated deaths in patients without prior liver disease in UKB. Alternative event was death from non-liver-related causes or end of follow-up. To depict the cumulative incidence of liver-related deaths under Statin intake, we used the Cox Regression model. We adjusted for the variables age, sex, BMI, ethnicity, number of medications and Statin use.

eFigure 2. Metabolic Profile of Statin Users Compared to Non-users in Patients Without Prior Liver Disease in UKB

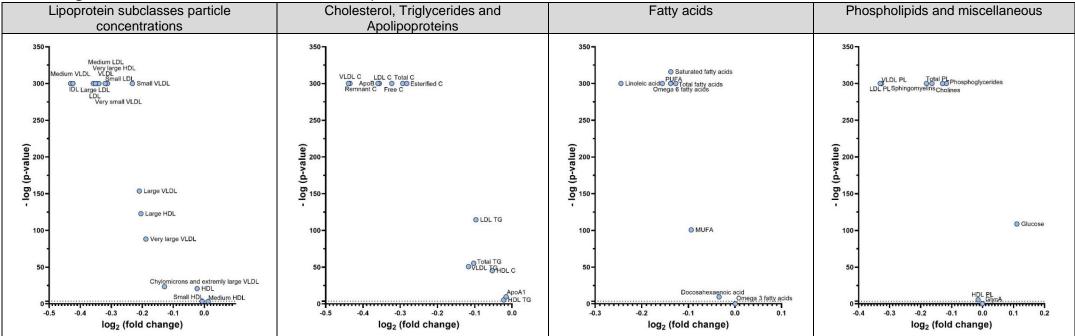


Figure S2. Metabolic profile of statin-users compared to non-users in patients without prior liver disease in UKB - Abbreviations: ApoA1, Apolipoprotein A1; ApoB, Apolipoprotein B'; C, Cholesterol; GlycA, Glycoprotein acetylation; HDL, High-density lipoprotein; IDL, Intermediate density lipoprotein; LDL, Low-density lipoprotein; MUFA, Monounsaturated fatty acids; PL, Phospholipids; PUFA, Polyunsaturated fatty acids; TG, Triglycerides; VLDL, Very-low-density lipoprotein.

eTable 1. Numerical Code of the Medication in UKB						
Medication	Subgroup	Numerical Code				
group						
Aspirina		1140909772, 1140861804, 1140868226,				
		1140861806, 1140882392, 1140882268,				
		1140882108, 1140882190, 1140868282,				
		1140872040, 1141163138, 1141167848,				
		1140909888, 1140871080, 1140925942,				
		1140923344, 1140856336, 1141167844,				
		1140861808, 1140882192, 1141151924,				
		1140868264, 1140882106, 1140856394,				
		1141164050, 1141164044, 1140856314,				
		1140863514, 1140856220, 1141177826,				
		1140872032, 1140864860, 1140856212,				
		1141188536, 1140917408, 1140868294,				
		1140856440, 1140856214, 1140856344				
Biguanide ^a	Metformin	1140921964, 1140874686, 1140884600,				
		1141189090, 1141153138				
Insulin		1140883066				
Statin	Atorvastatin, Fluvastatin,	1141146234, 1141192414, 1140910632,				
	Pravastatin, Rosuvastatin,	1140888594, 1140864592, 1141146138,				
	Simvastatin	1140861970, 1140888648, 1141195196,				
		1141192410, 1141188146, 1140861958,				
		1140910652, 1140910654, 1140881748,				
		1141200040				

^a Combined preparations.

eTable 2. Statin Intake and the Development of Incident Liver Disease, Hepatocellular Carcinoma and Liver-Related Mortality in Patients Without Prior Liver Disease in UKB (Adjusted for Diet, Alcohol Intake and Socioeconomic Status)^A

Event and Treatment No. with Event/ Hazard Ratio (95% P-value Total No. Group CI) New Liver Disease (K70-K77) No Statin intake 1995/131,128 1.00 (reference) 0.84 (0.77 to 0.91) <.001° Statin intake 768/49,309 Subdiagnoses^b Alcohol-associated 87/49,309 0.82 (0.63 to 1.07) .1 liver disease (K70) Toxic liver disease 0.28 (0.08 to 0.93) 3/49.309 .04c (K71) Hepatic failure, not 62/49,309 0.88 (0.65 to 1.20) .4 elsewhere classified (K72) Chronic hepatitis, 1.28 (0.63 to 2.61) .5 11/49,309 not elsewhere classified (K73) Fibrosis and 106/49,309 0.73 (0.58 to 0.91) .006c cirrhosis of liver (K74) Other inflammatory 92/49,309 0.80 (0.63 to 1.02) .07 liver diseases (K75) Other diseases of 597/49,309 0.87 (0.79 to 0.96) .005° liver (K76) Liver disorders in .7 1/49,309 0.62 (0.05 to 8.02) diseases classified elsewhere (K77) Liver cell carcinoma 0.68 (0.41 to 1.12) 21/49,309 .1 (C220)Liver transplant 7/49,309 0.63 (0.27 to 1.50) .3 status (Z944) Liver-related Death No Statin intake 344/131,128 1.00 (reference) Statin intake 129/49,309 0.77 (0.62 to 0.95) .01c

^a Competing risk analysis was performed by additional correction for socioeconomic status (Townsend index), alcohol consume in g/d, and diet (Vegetables and Fruit intake per day, Fish intake per week and Meat intake per week). For this purpose, 57,377 patients were excluded before matching due to missing data.

^b For subdiagnoses, only patients taking statins were referred to, with hazard ratios and P-values calculated consistently compared to patients not taking statins.

^c Significant P-value.

eTable 3. Analysis of the Basic Characteristics of the Cohort From eTable 2							
Patients without prior liver	No Statin	Statin	Standardized	Standardiz			
disease in UKB (adapted for	intake	intake	mean	ed mean			
diet, alcohol intake and	(N=131,128)	(N=49,309)	difference	difference			
socioeconomic status)			before PS	after PS			
Age (Years)	60±6.5	61±6.2	8.0	0.1			
Sex (% Women)	48	45	0.4	0.0			
BMI (kg/m²)	28.2±5.0	28.8±4.7	0.5	0.0			
Ethnicity (% White)	96	95	0.0	0.0			
Number of medications	3.8±3.0	5.0±3.0	1.3	0.0			
Diabetes mellitus type II	6	13	0.6	0.0			
(E11)							
Arterial hypertension	31	44	0.9	0.0			
(110)							
Disorders of lipoprotein	13	27	0.9	0.0			
metabolism and other							
lipidaemias (E78)			5 .	5 .			
			P-value	P-value			
Alaskal assassas Can	0.00.40.07	0.00 40.75	before PS	after PS			
Alcohol consumption	8.96±10.37	9.26±10.75	<.001 ^{a,b}	<.001 ^{a,b}			
(g/d)	7.5±4.1	7.5±4.0	<.001 ^{a,b}	.8 ^a			
Vegetables and Fruit intake per day	7.3±4.1	7.5±4.0	<.001***	.0"			
(tablespoon/pieces)							
Fish intake per week	3.6±1.4	3.6±1.4	<.001 ^{a,b}	<.001 ^{a,b}			
Meat intake per week	8.0±2.7	8.1±2.6	<.001 ^{a,b}	<.001 ^{a,b}			
Socioeconomic Status	-1.44±3.03	-1.21±3.14	<.001 ^{a,b}	<.001 <.001 ^{a,b}			
(Townsend Index)	1.7710.00	1.2110.14	\. .001	\. .001			
(TOWNSCHA HIACK)							

^a Univariate P-values were obtained for continuous variables using an independent T-test. ^b Significant P-value.

eTable 4. Statin Intake and the Development of Incident Liver Disease, Hepatocellular Carcinoma and Liver-Related Mortality in Patients Without Prior Liver Disease in UKB in an Inverse Probability of Treatment Model **Event and Treatment** No. with Event/ Hazard Ratio (95% P-value Total No. Group CI) New Liver Disease^a No Statin intake 3968/411,377 1.00 (reference) .03c Statin intake 0.69 (0.48 to 0.97) 1605/80,661 Subdiagnoses^b Alcohol-associated 168/80,661 0.72 (0.50 to 1.04) .08 liver disease (K70) Toxic liver disease 13/80,661 0.46 (0.20 to 1.03) .06 (K71) Hepatic failure, not 139/80,661 0.85 (0.57 to 1.27) .4 elsewhere classified (K72) Chronic hepatitis, 18/80,661 0.79 (0.42 to 1.50) .5 not elsewhere classified (K73) Fibrosis and 243/80,661 0.76 (0.59 to 0.98) .03c cirrhosis of liver (K74) Other inflammatory .3 201/80,661 1.31 (0.81 to 2.12) liver diseases (K75) Other diseases of 1.10 (0.90 to 1.34) .3 1236/80,661 liver (K76) Liver disorders in 4/80,661 0.45 (0.10 to 2.10) .3 diseases classified elsewhere (K77) .01c Liver cell 45/80,661 0.55 (0.35 to 0.87) carcinoma (C22.0)

^a Incident Liver Disease is defined as new onset Liver Disease K70-K77 or C22.0 after Baseline examination.

^b For subdiagnoses, only patients taking statins were referred to, with hazard ratios and P-values calculated consistently compared to patients not taking statins.

^c Significant P-value.

eTable 5. Influence of CYP3A4 Gene Variant and Statin Intake on Liver Health in UKB Gene Carriers Without Prior Liver Disease							
Event and Treatment Group rs35599367	No. with Event/ Total No.	Hazard Ratio (95% CI)	P-value				
New Liver Disease (K70- K77)	75/5354	0.68 (0.51 to 0.89)	.005ª				
Liver-related Death	11/5354	0.55 (0.27 to 1.13)	.1				
Incident HCC	0/5354	-	-				

Heterozygous and homozygous gene carriers were considered. Separate matching was performed at a 2:1 ratio.
^a Significant P-value.

eTable 6. Associations of Statin Use With the Risk of Incident Liver Disease, Hepatocellular Carcinoma, and Liver-Related Mortality in Individuals Without Prior Liver Disease in Different Risk Constellations in UKB^a

	No. Event/ Total No.*	Hazard Ratio (95% CI)	P-value	No. Event/ Total No.*	Hazard Ratio (95% CI)	P-value	No. Event/ Total No.*	Hazard Ratio (95% CI)	P-value
	I	iver Disease (K70-K77)			Incident HCC			iver-related Death	
in Men ^b	502/31,542	0.76 (0.68 to 0.85)	<.001 ^d	16/31,542	0.53 (0.30 to 0.95)	.03 ^d	87/31,542	0.63 (0.49 to 0.82)	<.001 ^d
In Women ^b	388/24,567	0.94 (0.83 to 1.05)	.3	5/24,567	0.68 (0.25 to 1.86)	.5	51/24,567	0.89 (0.65 to 1.24)	.5
FIB-4 <1.3°	293/21,728	0.85 (0.75 to 0.98)	.02 ^d	1/21,728	0.17 (0.02 to 1.35)	.09	35/21,728	0.85 (0.57 to 1.27)	.4
FIB-4 1.3-2.67°	426/27,686	0.89 (0.79 to 0.996)	.04 ^d	13/27,686	0.76 (0.38 to 1.49)	.4	61/27,686	0.67 (0.49 to 0.91)	.009 ^d
FIB-4 >2.67°	90/1749	0.70 (0.55 to 0.90)	.006 ^d	6/1749	0.57 (0.22 to 1.51)	.3	31/1749	0.71 (0.47 to 1.08)	.1
Diabetes mellitus type II (E11)	324/7590	0.66 (0.57 to 0.76)	<.001 ^d	13/7590	0.56 (0.27 to 1.14)	.11	50/7590	0.61 (0.42 to 0.89)	.01 ^d
<i>PNPLA3</i> rs738409 (wt)	494/33,792	0.88 (0.79 to 0.98)	.02 ^d	12/33,792	0.78 (0.40 to 1.51)	.5	69/33,792	0.66 (0.50 to 0.87)	.004 ^d
PNPLA3 rs738409 (het)	310/18,430	0.82 (0.72 to 0.94)	.004 ^d	5/18,430	0.31 (0.11 to 0.85)	.02 ^d	50/18,430	0.77 (0.55 to 1.07)	.1
PNPLA3 rs738409 (hom)	56/2448	0.73 (0.53 to 1.00)	.05	4/2448	0.87 (0.24 to 3.11)	.8	15/2448	0.89 (0.46 to 1.72)	.7
<i>TM6SF2</i> rs58542926 (wt)	723/47,423	0.85 (0.78 to 0.93)	<.001 ^d	16/47,423	0.65 (0.36 to 1.18)	.2	109/47,423	0.70 (0.56 to 0.88)	.002 ^d
<i>TM6SF2</i> rs58542926 (het)	129/6955	0.86 (0.70 to 1.06)	.2	5/6955	0.52 (0.20 to 1.37)	.2	19/6955	0.61 (0.37 to 1.01)	.06
<i>TM6SF2</i> rs58542926 (hom)	5/191	0.78 (0.28 to 2.15)	.6	0/191	-	-	3/191	6.48 (0.98 to 43.00)	.05
HSD17B13 rs72613567 (wt)	452/29,083	0.80 (0.71 to 0.89)	<.001 ^d	13/29,083	0.61 (0.31 to 1.20)	.2	79/29,083	0.73 (0.55 to 0.95)	.02 ^d
HSD17B13 rs72613567 (het)	333/21,352	0.88 (0.77 to 1.00)	.06	7/21,352	0.63 (0.27 to 1.47)	.3	46/21,352	0.69 (0.49 to 0.98)	.04 ^d
HSD17B13 rs72613567 (hom)	73/4069	1.06 (0.79 to 1.43)	.7	1/4069	0.25 (0.03 to 2.07)	.2	8/4069	0.62 (0.27 to 1.43)	.3

MTARC1 rs2642438	446/27,751	0.85 (0.76 to 0.95)	.005 ^d	13/27,751	0.67 (0.34 to	.2	83/27,751	0.79 (0.61 to	.08
(wt)					1.29)			1.03)	
MTARC1 rs2642438	345/22,330	0.84 (0.74 to 0.96)	.008 ^d	7/22,330	0.54 (0.23 to	.2	45/22,330	0.61 (0.43 to	.005 ^d
(het)					1.27)			0.8)	
MTARC1 rs2642438	69/4545	0.85 (0.63 to 1.13)	.3	1/4545	0.25 (0.03 to	.2	6/4545	0.62 (0.24 to	.3
(hom)		,			1.96)			1.60)	
SERPINA1	854/54,140	0.85 (0.79 to 0.92)	<.001 ^d	19/54,140	0.61 (0.36 to	.1	127/54,140	0.72 (0.58 to	.002 ^d
rs28929474 (wt)		,			1.03)			0.89)	
SERPINA1	36/1962	0.78 (0.52 to 1.19)	.3	2/1962	0.50 (0.06 to	.5	11/1962	0.85 (0.39 to	.7
rs28929474 (het)					4.19)			1.83)	
SERPINA1	0/7	-	-	0/7	-	-	0/7	-	-
rs28929474 (hom)									

^a For sensitivity analyses, only individuals taking statins were reported, with hazard ratios and P-values calculated consistently compared to individuals not taking statins.

^b Sex was excluded from the covariates.

^c Classification by 'Development of a simple noninvasive index to predict significant fibrosis in individuals with HIV/HCV coinfection'. ³⁴

^d Significant P-value

eTable 7. Overview of the Metabolites of the Volc	cano Plots	
Metabolic profile	Log ₂ (fold change)	Log (P-value)
Saturated fatty acids	138	316.03
Total C	293	300.00
Remnant C	435	300.00
VLDL C	439	300.00
LDL C	356	300.00
Total PL	163	300.00
VLDL PL	326	300.00
LDL PL	330	300.00
Esterified C	282	300.00
Free C	323	300.00
VLDL	314	300.00
LDL	350	300.00
Phosphoglycerides	117	300.00
Cholines	129	300.00
Sphingomyelins	181	300.00
АроВ	360	300.00
Total fatty acids	127	300.00
Omega 6 fatty acids	156	300.00
PUFA	138	300.00
Linoleic acid	245	300.00
Medium VLDL	431	300.00
Small VLDL	232	300.00
Very small VLDL	340	300.00
IDL	424	300.00
Large LDL	358	300.00
Medium LDL	351	300.00
Small LDL	312	300.00
Very large HDL	320	300.00
Large VLDL	209	153.57
Large HDL	204	122.70
LDL TG	097	114.45
Glucose	.111	108.70
MUFA	094	100.68
Very large VLDL	188	88.20
Total TG	103	55.27
Alanine	.059	55.09
VLDL TG	117	50.65
Albumin	.019	47.04
HDL C	053	45.16
Leucine	.052	36.90
Branched-chain amino acids	.039	27.94
Chylomicrons and extremly large VLDL	128	23.41
Valine	.031	23.34

HDL	023	20.72
Glycine	051	17.60
Isoleucine	.045	17.42
Creatinine	.032	16.48
Degree of unsaturation	.006	9.98
ApoA1	016	9.47
Docosahexaenoic acid	034	9.44
Lactase	.026	8.97
Tyrosine	.020	8.52
Histidine	013	6.74
HDL PL	014	5.64
HDL TG	022	5.27
Phenylalanine	.016	4.84
Small HDL	007	3.39
Medium HDL	.012	3.16
Pyruvate	.017	2.37
Glutamine	004	1.31
Acetate	048	.95
Citrate	004	.73
GlycA	.000	.08
Omega 3 fatty acids	.001	.04

Abbreviations: ApoA1, Apolipoprotein A1; ApoB, Apolipoprotein B; C, Cholesterol; GlycA, Glycoprotein acetylation; HDL, High-density lipoprotein; IDL, Intermediate density lipoprotein; LDL, Low-density lipoprotein; MUFA, Monounsaturated fatty acids; PL, Phospholipids; PUFA, Polyunsaturated fatty acids; TG, Triglycerides; VLDL, Verylow-density lipoprotein.

eReferences

- 1. Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins. *Lancet*. 2005;366(9493). doi:10.1016/S0140-6736(05)67394-1
- 2. Würtz P, Wang Q, Soininen P, et al. Metabolomic Profiling of Statin Use and Genetic Inhibition of HMG-CoA Reductase. *J Am Coll Cardiol*. 2016;67(10). doi:10.1016/j.jacc.2015.12.060
- 3. UK Biobank. Published January 20, 2022. Accessed January 25, 2022. https://www.ukbiobank.ac.uk/